Mapping Rural Areas with Widespread Plastic Covered Vineyards Using True Color Aerial Data
Abstract
:1. Introduction
2. Plasticulture Extraction from Remote Imagery
3. Methodology
3.1. Study Area and Data
3.2. Image Segmentation
- - The segmentation procedure should produce highly homogeneous segments for the visual separation and representation of image regions;
- - Since objects are typically represented on different scales in an image simultaneously, the extraction of meaningful image objects should take into account the scale of the problem to be solved [32].
3.3. Classification Procedure
4. Results
5. Conclusions
References
- Raclot, D.; Le Bissonnais, Y.; Louchart, X.; Andrieux, P.; Moussa, R.; Voltz, M. Soil tillage and scale effects on erosion from fields to catchment in a Mediterranean vineyard area. Agr. Ecosyst. Environ 2009, 134, 201–210. [Google Scholar]
- Karydas, C.G.; Sekuloska, T.; Silleos, G.N. Quantification and site-specification of the support practice factor when mapping soil erosion risk associated with olive plantations in the Mediterranean island of Crete. Environ. Monit. Assess 2009, 149, 19–28. [Google Scholar]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar]
- Lamont, W.J., Jr. What are the components of a plasticulture vegetable system? HortTechnology 1996, 6, 150–154. [Google Scholar]
- Espi, E.; Salmeron, A.; Fontecha, A.; García, Y.; Real, A. Plastic films for agricultural applications. J. Plast. Film Sheeting 2006, 22, 85–102. [Google Scholar]
- Canora, F.; Fidelibus, M.D.; Sciortino, A.; Spilotro, G. Variation of infiltration rate through karstic surfaces due to land use changes: A case study in Murgia (SE-Italy). Eng. Geol 2008, 99, 210–227. [Google Scholar]
- Kristensen, L.S.; Thenail, C.; Kristensen, S.P. Landscape changes in agrarian landscapes in the 1990s: The interaction between farmers and the farmed landscape. A case study from Jutland, Denmark. J. Environ. Manage 2004, 71, 231–244. [Google Scholar]
- Nunes, A.N.; De Almeida, A.C.; Coelho, C.O.A. Impacts of land use and cover type on runoff and soil erosion in a marginal area of Portugal. Appl. Geogr 2011, 31, 687–699. [Google Scholar]
- Trimble, Ecognition Developer 8.64.1 Release Notes; Trimble GmbH: Munich, Germany, 2011.
- Castellano, S.; Scarascia Mugnozza, G.; Russo, G.; Briassoulis, D.; Mistriotis, A.; Hemming, S.; Waaijenberg, D. Plastic nets in agriculture: A general review of types and applications. Appl. Eng. Agric 2008, 24, 799–808. [Google Scholar]
- Liu, J.G.; Mason, P. Essential Image Processing and GIS for Remote Sensing; Wiley: Hoboken, NJ, USA; p. 2009.
- Carvajal, F.; Crizanto, E.; Aguilar, F.; AGU ERA, F.; Aguilar, M. Greenhouses detection using an artificial neural network with a very high resolution satellite image. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2006, 36, 37–42. [Google Scholar]
- Arcidiacono, C.; Porto, S. A model to manage crop-shelter spatial development by multi-temporal coverage analysis and spatial indicators. Biosyst. Eng 2010, 107, 107–122. [Google Scholar]
- Agüera, F.; Liu, J. Automatic greenhouse delineation from QuickBird and Ikonos satellite images. Comput. Electron. Agric 2009, 66, 191–200. [Google Scholar]
- Picuno, P.; Tortora, A.; Capobianco, R.L. Analysis of plasticulture landscapes in Southern Italy through remote sensing and solid modelling techniques. Landscape Urban Plan 2011, 100, 45–56. [Google Scholar]
- Levin, N.; Lugassi, R.; Ramon, U.; Braun, O.; Ben-Dor, E. Remote sensing as a tool for monitoring plasticulture in agricultural landscapes. Int. J. Remote Sens 2007, 28, 183–202. [Google Scholar]
- Caprioli, M.; Tarantino, E. Accuracy assessment of per-field classification integrating very fine spatial resolution satellite imagery with topographic data. J. Geospatial Eng 2001, 3, 127–134. [Google Scholar]
- Tarantino, E. Land Cover Classification of QuickBird Multispectral Data with an Object-Oriented Approach. In Management Information Systems 2004: Incorporating GIS and Remote Sensing; Brebbia, C.A., Ed.; WIT Press: Billerica, MA, USA, 2004; Volume 8, pp. 125–134. [Google Scholar]
- Walter, V. Object-based classification of remote sensing data for change detection. ISPRS J. Photogramm 2004, 58, 225–238. [Google Scholar]
- Tso, B.; Mather, P.M. Classification Methods for Remotely Sensed Data; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Baatz, M.; Schäpe, A. Multiresolution Segmentation: An Optimization Approach for High Quality Multi-Scale Image Segmentation. In Angewandte Geographische Informationsverarbeitung XII. Beiträge zum AGIT-Symposium Salzburg 2000; Strobl, J, Ed.; Herbert Wichmann Verlag: Karlsruhe, Germany, 2000; pp. 12–23. [Google Scholar]
- Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm 2004, 58, 239–258. [Google Scholar]
- Caprioli, M.; Tarantino, E. Identification of Land Cover Alterations in the Alta Murgia National Park (Italy) with VHR Satellite Imagery. Int. J. Sustain. Dev. Plan 2006, 1, 261–270. [Google Scholar]
- Hofmann, P.; Strobl, J.; Nazarkulova, A. Mapping green spaces in Bishkek—How reliable can spatial analysis be? Remote Sens 2011, 3, 1088–1103. [Google Scholar]
- Jones, D.; Pike, S.; Thomas, M.; Murphy, D. Object-based image analysis for detection of Japanese knotweed sl taxa (polygonaceae) in Wales (UK). Remote Sens 2011, 3, 319–342. [Google Scholar]
- Polychronaki, A.; Gitas, I.Z. Burned area mapping in greece using SPOT-4 HRVIR images and object-based image analysis. Remote Sens 2012, 4, 424–438. [Google Scholar]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm 2010, 65, 2–16. [Google Scholar]
- Hinz, A.; Heier, H. The Z/I imaging digital camera system. Photogramm. Rec 2000, 16, 929–936. [Google Scholar]
- Groom, G.; Mücher, C.; Ihse, M.; Wrbka, T. Remote sensing in landscape ecology: Experiences and perspectives in a European context. Landscape Ecol 2006, 21, 391–408. [Google Scholar]
- Okeke, F.; Karnieli, A. Methods for fuzzy classification and accuracy assessment of historical aerial photographs for vegetation change analyses. Part I: Algorithm development. Int. J. Remote Sens 2006, 27, 153–176. [Google Scholar]
- Navulur, K. Multispectral Image Analysis Using the Object-Oriented Paradigm; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Hay, G.J.; Blaschke, T.; Marceau, D.J.; Bouchard, A. A comparison of three image-object methods for the multiscale analysis of landscape structure. ISPRS J. Photogramm 2003, 57, 327–345. [Google Scholar]
- Gao, Y.; Kerle, N.; Mas, J.F. Object-based image analysis for coal fire-related land cover mapping in coal mining areas. Geocarto Int 2009, 24, 25–36. [Google Scholar]
- Pal, N.R.; Pal, S.K. A review on image segmentation techniques. Pattern Recog 1993, 26, 1277–1294. [Google Scholar]
- Myint, S.W.; Gober, P.; Brazel, A.; Grossman-Clarke, S.; Weng, Q. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens. Environ 2011, 115, 1145–1161. [Google Scholar]
- Laliberte, A.; Browning, D.; Rango, A. A comparison of three feature selection methods for object-based classification of sub-decimeter resolution UltraCam-L imagery. Int. J. Appl. Earth. Obs. Geoinf 2011, 15, 70–78. [Google Scholar]
- Tarantino, E.; Figorito, B. Extracting buildings from true color stereo aerial images using a decision making strategy. Remote Sens 2011, 3, 1553–1567. [Google Scholar]
- Sibiryakov, A. House Detection from Aerial Color Images; Internal Report; Institute of Geodesy and Photogrammetry: Mandelbachtal, Germany, 1996. [Google Scholar]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ 2002, 80, 76–87. [Google Scholar]
- Kaufman, Y.J.; Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens 1992, 30, 261–270. [Google Scholar]
- Rouse, J.; Haas, R.; Schell, J.; Deering, D. Monitoring vegetation systems in the Great Plains with ERTS. Proceedings of the Third ERTS Symposium, Washington, WA, USA, 10–14 December 1973; NASA SP-351. NASA: Washington, WA, USA, 1973; 1, pp. 309–317. [Google Scholar]
- Nussbaum, S.; Niemeyer, I.; Canty, M. SEATH—A New Tool for Automated Feature Extraction in the Context of Object-Based Image Analysis. Proceedings of 1st International Conference on Object-Based Image Analysis (OBIA 2006), Salzburg, Austria, 4–5 July 2006.
- Delenne, C.; Durrieu, S.; Rabatel, G.; Deshayes, M. A Local Fourier Transform Approach for Vine Plot Extraction from Aerial Images. In Object-Based Image Analysis; Blaschke, T., Lang, S., Hay, G.J., Eds.; Springer-Verlag: Berlin, Germany, 2008; pp. 443–456. [Google Scholar]
ID Study Area | ID Frame | EST | NORD |
---|---|---|---|
A | B047_30 | 660679 | 4484457 |
B | B046_24 | 656189 | 4487862 |
C | B049_24 | 657840 | 4487862 |
D | B049_27 | 663339 | 4487990 |
E | B049_37 | 666638 | 4488074 |
F | B049_43 | 663267 | 4491482 |
G | B058_38 | 667646 | 4493305 |
H | B049_45 | 656867 | 4482635 |
Features | Description | ||
---|---|---|---|
Computed features based on spectral information | VARI | (Green − Red) /(Green + Red − Blue) | |
Spectral information | Ratio Layer 3 (Red) | Amount of the image layer 3 contribution to the total brightness. | |
StdDev. Layer 2 (Green) | Calculated from the image layer 2 intensity values of all pixel forming an image object. | ||
StdDev. Layer 3 (Red) | Calculated from the image layer 3 intensity values of all pixel forming an image object. | ||
Texure (after Haralick) | GLCM Ang. 2nd moment Layer1 (Blue) |
| |
Generic shape features | Density | Number of pixels forming the image object divided by its approximated radius, based on the covariance matrix. | |
Rectangular fit | Ratio of the area inside the fitting equi-areal rectangle divided by the area of the object outside the rectangle. |
Classification for each study area | Reference | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | |||||||||
U (%) | P (%) | U (%) | P (%) | U (%) | P (%) | U (%) | P (%) | U (%) | P (%) | U (%) | P (%) | U (%) | P (%) | U (%) | P (%) | |
Bare soil | 80 | 88 | 70 | 100 | 95 | 90 | 80 | 100 | 85 | 77 | 100 | 80 | 85 | 90 | 85 | 77 |
Orchard | 80 | 100 | 85 | 100 | 85 | 100 | 90 | 95 | 90 | 95 | 80 | 100 | 90 | 100 | 80 | 80 |
Vegetables | 85 | 70 | 100 | 80 | 80 | 88 | 90 | 86 | 85 | 91 | 85 | 100 | 100 | 100 | 70 | 74 |
Plastic sheet vineyard | 90 | 100 | 100 | 95 | 100 | 95 | 100 | 100 | 100 | 91 | 90 | 100 | 100 | 83 | 90 | 90 |
Hail net vineyard | 100 | 90 | 95 | 100 | 95 | 95 | 100 | 100 | 90 | 100 | 100 | 91 | 80 | 100 | 90 | 90 |
Uncovered vineyard | 100 | 90 | 100 | 83 | 95 | 83 | 95 | 79 | 75 | 75 | 100 | 91 | 90 | 90 | 75 | 79 |
Overall Accuracy (%) | 89 | 92 | 93 | 93 | 88 | 93 | 91 | 83 | ||||||||
Total Accuracy (%) = 90.25 |
Share and Cite
Tarantino, E.; Figorito, B. Mapping Rural Areas with Widespread Plastic Covered Vineyards Using True Color Aerial Data. Remote Sens. 2012, 4, 1913-1928. https://doi.org/10.3390/rs4071913
Tarantino E, Figorito B. Mapping Rural Areas with Widespread Plastic Covered Vineyards Using True Color Aerial Data. Remote Sensing. 2012; 4(7):1913-1928. https://doi.org/10.3390/rs4071913
Chicago/Turabian StyleTarantino, Eufemia, and Benedetto Figorito. 2012. "Mapping Rural Areas with Widespread Plastic Covered Vineyards Using True Color Aerial Data" Remote Sensing 4, no. 7: 1913-1928. https://doi.org/10.3390/rs4071913
APA StyleTarantino, E., & Figorito, B. (2012). Mapping Rural Areas with Widespread Plastic Covered Vineyards Using True Color Aerial Data. Remote Sensing, 4(7), 1913-1928. https://doi.org/10.3390/rs4071913