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Abstract: Fuel load is a crucial input in wildfire behavior models and a key parameter for 
the assessment of fire severity, fire flame length, and fuel consumption. Therefore, wildfire 
managers will benefit from accurate predictions of the spatiotemporal distribution of fuel 
load to inform strategic approaches to mitigate or prevent large-scale wildfires and re-
spond to such incidents. Field surveys for fuel load assessment are labor-intensive, time-
consuming, and as such, cannot be repeated frequently across large territories. On the 
contrary, remote-sensing sensors quantify fuel load in near-real time and at not only local 
but also regional or global scales. We reviewed the literature of the applications of remote 
sensing in fuel load estimation over a 12-year period, highlighting the capabilities and 
limitations of different remote-sensing sensors and technologies. While inherent techno-
logical constraints currently hinder optimal fuel load mapping using remote sensing, re-
cent and anticipated developments in remote-sensing technology promise to enhance 
these capabilities significantly. The integration of remote-sensing technologies, along with 
derived products and advanced machine-learning algorithms, shows potential for en-
hancing fuel load predictions. Also, upcoming research initiatives aim to advance current 
methodologies by combining photogrammetry and uncrewed aerial vehicles (UAVs) to 
accurately map fuel loads at sub-meter scales. However, challenges persist in securing 
data for algorithm calibration and validation and in achieving the desired accuracies for 
surface fuels. 

Keywords: fuel load estimate; forest fuels; fire behavior; fuel mapping; fire risk; remote 
sensing 
 

1. Introduction 
Wildfires have the potential to significantly influence ecosystems, altering the com-

position, structure, and function of the vegetation by selectively favoring particular spe-
cies and facilitating species introductions. However, they also play a critical role in main-
taining the health and diversity of fire-prone ecosystems and altering biogeochemical pro-
cesses like nutrient and carbon cycles and landscape patterns influenced by fire mosaics 
[1,2]. Additionally, some plants and animals are adapted to a regime of periodic fire, 
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which reduces plant competition and diseases, benefiting the post-fire growth and devel-
opment of vegetation. As a result, humanity has profited from fires for millennia through 
a variety of commodities and services, including hunting, tourism, pollination, food, and 
fiber [3]. However, due to global climate change and urbanization, the negative effects of 
wildfires have grown [4]. Associated with this is a commonly accepted notion that wild-
fires represent a form of natural hazard, posing risks to society, the economy, and the 
environment [5]. Since the early 1980s, there has been a statistically significant increase in 
wildfire frequency and the extent of the area burned, which has sparked increased interest 
in understanding wildfire hazards and behavior [6]. In addition, research on global mete-
orological patterns indicates that fire seasons are extending globally, and the severity of 
the fire weather is increasing [7]. Therefore, to effectively manage and provide early warn-
ing for wildfires, preventing or mitigating catastrophic fires, high-resolution and near-
real-time assessments of wildfire danger become paramount [8]. Conventional fire danger 
assessment primarily relies on meteorological indicators like temperature, relative humid-
ity, wind speed, and rainfall [9], which can be sourced globally from re-analysis data or 
locally from weather stations. However, understanding wildfire hazards and behavior re-
quires incorporating fuel and topography factors, as outlined in the “fire environment 
triangle,” [10] along with models like BehavePlus [11] and FARSITE [12] that rely on 
weather, topography, and detailed fuel inputs. Fuel-related factors, such as moisture con-
tent, spatial continuity, horizontal coverage, and load, play a crucial role in fire occurrence 
and behavior [13,14]. Accurate spatiotemporal predictions of these fuel properties can as-
sist fire managers in reducing large-scale fire risks through prescribed burning and more 
effective fire spread prediction during active events [15,16]. 

However, while remote-sensing methodologies are well-established for determining 
fuel arrangement, composition, and moisture content [13,17,18], fully characterizing fire 
fuel load remains challenging. Fuel load refers to the amount of combustible material in a 
defined space, fuel type, and fuel layer [19]. Current techniques for fuel load characteri-
zation include destructive fuel inventories, fuel description systems, and fuel accumula-
tion models. Destructive fuel inventories provide direct data but are labor-intensive and 
time-consuming, making universal field surveys impractical [20,21]. Fuel description sys-
tems, like those developed by Rothermel [22] or Ottmar, et al. [23], offer efficient alterna-
tives for quantifying fuel loads by size-class categorizations related to fuel types. How-
ever, evidence suggests that using non-site-specific input data can bias fire simulations 
[24,25]. 

Fuel loads also vary across different fuel layers, encompassing not only surface fuel 
but also other fuel layers, exhibiting dynamic changes over time, and fuel load is a func-
tion of the balance between fuel accession and decomposition rates [26]. For example, sur-
face litter fuel in forests accumulates when annual accession exceeds decomposition. After 
fires, fuel typically builds up quickly and steadily for a while, and then the accumulation 
rate gradually slows down to the equilibrium level [27]. Therefore, fuel loads can be esti-
mated and predicted using fuel accumulation models, which have been implemented in 
land management decision-making [28]. A widely used exponential function describes 
surface litter fuel rapidly increasing to a steady state [27,29,30] using the following equa-
tion: 𝑤௧ = 𝐿 𝑘ൗ (1 − 𝑒௧) (1)

where k is the decomposition constant, L denotes the accumulated surface litter fuel mass 
under steady-state conditions, and wt is the surface litter fuel mass at time t (years since 
the last fire). The years since the last fire, the only independent factor that predicts fuel 
load growth within the general framework of the fuel accumulation model, cannot be 
used to assess the spatial variability in fuel load within vegetation burned at the same 
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time. Also, another limitation aspect is the proportion of fuel consumed at the last fire, 
which will determine whether the accumulation has an intercept of zero fuel. Conse-
quently, the manner in which fuel accumulates varies not only based on environmental 
factors, the type of vegetation species present, and the time since fire, but also the burned 
severity [31,32]. 

Instead of steady-state fuel accumulation models, field measurements, or tabular val-
ues, predictive modeling can estimate spatial variability in fuel load by incorporating ex-
planatory factors like soil type, fuel type, and canopy density, making it particularly val-
uable in areas without a known fire history [33]. For example, Agee, et al. [26] found a 
polynomial relationship between the blue gum (Eucalyptus globulus) basal area and dry 
fuel weight, linking greater crown volume with higher surface litter fuel. Similarly, Gilroy 
and Tran [34] used multivariate regression to identify canopy cover, fuel depth, and years 
since the last fire as significant predictors, with average annual rainfall being less influen-
tial. They suggested that adding more factors could further enhance the model’s accuracy. 

Long-term and large-scale earth observation or remote-sensing technologies offer a 
promising avenue for systematic, efficient, and accurate quantification of fuel load for var-
ious fuel layers across different scales and fuel types [35–37]. This is particularly crucial in 
dynamic circumstances, caused by disturbances such as fires and storms and inter-annual 
variations in factors influencing fuel loads such as rainfall. Enabling the consistent avail-
ability of comprehensive and high-quality fuel maps over large regions via the remote 
sensing of fuel loads could potentially offer valuable support to fire management strate-
gies. 

In this study, we conducted a comprehensive review of how remote-sensing technol-
ogy has been utilized to estimate fuel load from various fuel layers across diverse fuel 
types. Additionally, our focus extends to other fuel attributes that directly or indirectly 
influence fuel load. The prior examination in this field was undertaken by Gale, et al. [38] 
who conducted a comprehensive review encompassing various remote-sensing applica-
tions for diverse forest fire fuel characterizations. While Gale, et al. [38] provided a broad 
overview, outlining the array of remote-sensing data used for forest fire fuels, our review 
delves more deeply into the data sources and techniques utilized to connect remote-sens-
ing data to fuel load estimation. We not only highlight their limitations but also elucidate 
how cutting-edge machine-learning techniques, such as convolutional neural networks 
(CNNs) or a fusion of radiative transfer models (RTMs) with deep learning (DL) models, 
effectively address the shortcomings of empirical techniques that rely on linear or nonlin-
ear relationships between the remote-sensing data and ground-based fuel load measure-
ments. Furthermore, we underscore recent advancements in remote-sensing technologies 
on both the regional and global scales, showcasing their ability to generate up-to-date and 
precise fuel load estimations. Our review encompassed peer-reviewed articles from sci-
entific journals or conference proceedings in English from Web of Science and Google 
Scholar databases with complete text provided by the publisher, published from 2010 to 
2022 inclusive, and focused on remote sensing-based estimation of fuel load from different 
fuel layers across various fuel types. Articles were excluded if the full text was not avail-
able from the publisher or if they were not written in English. Different keyword combi-
nations with Boolean operators, such as “Fuel Load Mapping” OR “Fuel Load Prediction” 
AND “Remote Sensing,” “Fuel Load Estimation” AND “Remote Sensing,” and “Fuel 
Load Monitoring” AND “Satellite Images” were used to identify relevant articles. We 
structured our review by the type of remote-sensing sensor, encompassing passive, active, 
and integrated sensors. In doing so, we evaluated the merits and limitations of these tech-
niques and provided valuable perspectives for future research in the domain of estimating 
fuel load. 
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2. Fuel Load Definition and Its Influence on Fire Behavior 
Fuel consists of the physical characteristics of both dead and live fuel, playing a cru-

cial role in wildfire occurrence, severity, and spread. In forest ecosystems, fuel layers are 
categorized into surface, understory (elevated and near-surface), and canopy fuel layers 
[29] (Figure 1), each with attributes like bulk density, height, and loading (Table 1). 
Among these, fuel load holds particular significance, representing the quantity of both 
dead and live biomass available for combustion in terms of dry biomass per unit area [39]. 
Fuel load mapping has become a vital tool for fire management, aiding in prescribed burn-
ing, promoting biodiversity through pyrodiversity, prioritizing fire suppression, and 
aligning fire management with conservation goals [40]. 

 
Figure 1. Distinct fuel layers within a dry eucalypt forest, with the grayscale on the left representing 
the relative bulk density of each layer [29]. Figure reproduced with permission. 

Crown fires are particularly concerning due to their severe, long-lasting impacts and 
difficulty in control, prompting fire managers to prioritize understanding crown fuel at-
tributes. Key canopy attributes like canopy fuel load (CFL), canopy height (CH), canopy 
bulk density (CBD), and canopy base height (CBH) are widely acknowledged for their 
crucial role in determining crown fire propagation [41]. CFL, expressed in kg/m2 or Mg/ha, 
represents the dry weight of canopy fuel per unit of area potentially available for ignition, 
influencing fire intensity and spread rate [41,42]. CBH, the vertical distance between the 
surface and the lowest canopy foliage, affects the likelihood of surface fires reaching the 
canopy, with a lower CBH increasing the overall fuel load and crown fire risk [43]. CBD 
quantifies the amount of fuel in the canopy layer per unit of volume (kg/m3), influencing 
the speed at which fire can spread from one tree to another [44]. Higher CBD values indi-
cate denser vegetation cover, leading to a more substantial accumulation of fuel load. CH 
not only affects wind trajectory but also reduces wind speed. The relation of CH with CFL 
is that taller canopies typically contain more biomass, contributing to a higher fuel load 
[41,42]. The significance of the canopy extends beyond influencing the spread and rate of 
fire through tree crowns. It also plays a crucial role in determining the type, volume, and 
distribution of surface fuel via litterfall which is also another important factor in wildfire 
behavior [41]. 
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The understory fuel layers, consisting of shrubs, grasses, creepers, and small trees, 
play a critical role in wildfire behavior and spread. Shrubs can act as ladder fuels, enabling 
fires to climb from the surface to the canopy, while grasses, as fine fuels, ignite easily and 
rapidly spread fire. During dry periods, these understory fuels become highly flammable, 
increasing fire intensity and the likelihood of transitioning to crown fires. Understanding 
the composition and condition of understory fuels is vital for effective wildfire manage-
ment and mitigation strategies [45,46]. 

Surface fuels are regarded as the most complex fuel types to manage in the context 
of wildfire. Most fire behavior prediction models, including BEHAVE, FlamMap, and 
FARSITE require a precise physical description of this fuel layer [12,47]. This description 
involves providing a detailed and quantifiable representation of the properties and char-
acteristics encompassing factors such as fuel type, size, arrangement, moisture content, 
bulk density, and other relevant attributes that collectively define the composition and 
structure of surface fuels present within a given area [12,47]. 

Surface fuels, comprising dead and live biomass (i.e., litter, logs, twigs, branches, her-
baceous vegetation, and woody debris), are crucial for the initiation and spread of surface 
fires [39,46]. Dead fuels play a pivotal role in wildfire prediction, influencing vegetation 
arrangement and flammability. Surface fuel load, measured as the dry weight of the sur-
face fuel layer per unit area (kg/m2), is a key parameter in fire behavior models, affecting 
fire spread rate and fire-line intensity [48]. The load of specific surface fuel types is critical 
because different fuel types affect fire behavior models differently. To use fire behavior 
models and danger systems effectively, the physical parameters of each fuel type, such as 
load, must be quantified numerically [49]. Fine woody debris (FWD) with diameters less 
than 0.64 cm and litter are conspicuous examples of critical surface fuel loads, as they dry 
quickly and ignite easily, unlike larger woody fuels, which are more resistant to drying 
and ignition [50]. Downed woody debris (DWD), comprising dead and fallen materials 
(e.g., twigs, branches, stems, and trunks), is categorized into four time-lag classes—1 h 
(<0.64 cm diameter), 10 h (0.65–2.54 cm diameter), 100 h (2.55–7.6 cm diameter), and 1000 
h (>7.6 cm diameter)—based on their moisture equilibrium rates, reflecting their varying 
roles in fire behavior [51]. 

Table 1. Various forest fuel attributes that play a crucial role in determining canopy, understory, 
and surface fuel load and its potential impact on fires. 

Fuel Layer Attribute Definition Role on Fire 

Canopy layer 

Canopy bulk density (CBD)  
Amount of fuel in the canopy 
layer per unit of volume 
(kg/m3). 

Crown fire spread 

Canopy fuel load (CFL) 
Amount of fuel in the canopy 
layer per area (kg/m2). 

Canopy height (CH) 

The height of the tallest tree 
within the sampling area that 
impacts wind speed and tra-
jectory. 

Canopy base height (CBH) 
Vertical distance between the 
surface and canopy fuel lay-
ers. 

Understory layer 
Understory fuel load of 
shrubs, grasses, creepers, and 
small trees 

Dry weight of combustible 
materials presents within this
vegetation stratum in a given 
area (kg/m2) 

Fire transition from the sur-
face to the canopy 
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Surface layer 

Surface fuel load of all sur-
face fuel elements (i.e., litter, 
logs, twigs, branches, herba-
ceous vegetation, and woody 
debris) 

Dry weight of combustible 
materials found on or near 
the ground in a given area 
(kg/m2) and are collectively 
determined by adding the es-
timated loads from all sur-
face fuel layers. 

Surface fire initiation and 
propagation 

3. Remote-Sensing Techniques for Fuel Load Mapping 
Remote sensing provides a wide array of sensors and methodologies for mapping 

fuel loads. In this section, we present various remote-sensing techniques for fuel load and 
other related fuel attributes mapping, categorized according to the type of sensor em-
ployed. These categories encompass passive sensors, active sensors, or combined ap-
proaches. 

3.1. Passive Sensors 

Passive sensors are remote-sensing devices that capture electromagnetic radiation 
emitted or reflected by objects without emitting their own energy. Passive optical sensors, 
such as those onboard of Landsat, Sentinel, Terra/Aqua, and QuickBird, capture and 
measure electromagnetic radiation in the visible and infrared parts of the electromagnetic 
spectrum and have commonly been employed to assess fuel attributes, including fuel 
load. Generally, fuel load models are established through the calibration of empirical re-
lationships between spectral data acquired by these sensors and on-ground observations 
[52]. Multispectral optical remote-sensing captures the spectral reflectance of the canopy, 
which can reveal both the geometric characteristics of standing woody components and 
the biochemical traits of leaves [53]. Numerous research endeavors have leveraged optical 
imaging to establish predictive techniques that portray the spatial variances of fuel load 
(Table 2). 

Using basic spectral analysis, Jin and Chen [54] demonstrated the correlation be-
tween fuel loads and stand characteristics such as mean diameter at breast height (DBH) 
and stand height using multispectral and low-resolution Landsat Thematic Mapper ™ 
and high-spatial-resolution (<5 m) QuickBird imagery in northeastern China. They found 
stand attributes to be correlated and intertwined with fluctuations in fuel load levels. The 
QuickBird imagery provided accurate estimations of fuel loads and outperformed the 
lower-resolution Landsat TM imagery. In many cases, QuickBird estimations were as 
good as those based on surveyed stand characteristics at 70 plots, particularly for fine and 
total dead fuel loads. However, the estimation of coarse fuel loads was less accurate with 
either of these two satellite images due to their weaker association with stand character-
istics. Building on Jin and Chen’s work on basic spectral analysis, the work in [40] intro-
duced a more sophisticated approach using partial unmixing techniques. They mapped 
variations in fuel loads over wide areas of the Brazilian savanna using Sentinel-2 and 
Landsat 8 data and a partial unmixing technique called mixture tuned matched filtering 
(MTMF). The study found a strong correlation (R2 = 0.81) through linear regression anal-
ysis between in situ data and matched filter scores for dry vegetation, indicating the 
method’s effectiveness in mapping fuel loads variations. Arellano-Pérez, et al. [55] further 
advanced fuel load estimation by incorporating various vegetation indices such as the 
enhanced vegetation index (EVI), soil adjusted vegetation index (SAVI), modified soil ad-
justed vegetation index (MSAVI), normalized difference vegetation index (NDVI), and red 
edge normalized difference vegetation (RENDVI) along with Sentinel-2A bands in the 
modeling as explanatory variables. They performed random forest (RF) and multivariate 
adaptive regression splines (MARS) techniques to characterize and estimate canopy and 
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surface fuel structure and load-related attributes such as CBD, CBH, and surface fuel load. 
The estimated fuel loads for each surface fuel layer (e.g., duff, litter, DWD, and shrubs and 
herbaceous layers) were added up to determine the total surface fuel load. The results 
underscore that the integration of medium-resolution imagery with machine-learning 
techniques can contribute significant insights into the surface and canopy fuel attributes 
on a larger scale. This combination enables the classification of factors such as crown fire 
potential and the potential wildfire type, thereby enhancing the understanding of fire be-
havior and its potential impacts. 

Quan, et al. [14] marked a significant leap by combining machine learning with radi-
ative transfer models (RTM). They used this combination to retrieve the foliage fuel load 
(FFL) from Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and 8 Operational Land 
Imager (OLI) data. RTMs offer a valuable methodology for extracting biophysical and bi-
ochemical parameters from remote-sensing data. These models are constructed on the 
foundation of physical principles that establish clear connections between the properties 
of canopies or leaves and the resulting reflectance. Consequently, RTM-based techniques 
possess a distinct advantage of reproducibility, making them applicable to diverse loca-
tions and satellite sensors. This adaptability allows for the estimation of relevant variables 
of interest across a spectrum ranging from local to global scales. They employed the PRO-
SAIL RTM to generate a look-up table (LUT) of simulated canopy reflectance spectra for 
various biophysical parameters, including FFL. From these simulated spectra, they calcu-
lated several vegetation indices (VIs) sensitive to fuels, including the NDVI, two normal-
ized difference infrared indices (NDII6 and NDII7), moisture stress index (MSI), global 
vegetation moisture index (GVMI), EVI, visible atmospherically resistant index (VARI), 
global environmental monitoring index (GEMI), and greenness index (Gratio). These VIs 
were then used as input features to train three machine-learning models: RF, Support Vec-
tor Machine (SVM), and Multilayer Perceptron (MLP). The machine-learning algorithms 
were trained to predict FFL based on the relationships established in the RTM-generated 
LUT. This approach allowed the models to learn the complex relationships between the 
VIs and FFL as simulated by the RTM. The trained models were then applied to real sat-
ellite data to retrieve the FFL. Additionally, MODIS reflectance products were used in 
conjunction with the RTM models to further refine and validate the FFL retrieval process, 
integrating multiple data sources into the assessment. The accuracy assessment of FFL 
estimates was carried out within a forest located in southwestern China, encompassing 
two fire incidents in 2014 and 2020. The resulting MLP model, with an R2 value of 0.77 
between observed and retrieved predictions, demonstrated a higher performance com-
pared to the other methods. This finding underscores the significance of combining ma-
chine learning with RTM for FFL estimates derived from remote sensing. 

Oliveira, et al. [56] developed temporal dynamics and a biome-specific approach fo-
cused on estimating fuel load dynamics in Brazilian grasslands and savannas, using an 
RGB composite of three Landsat 8 bands, namely red, near-infrared, and short wavelength 
infrared with historical burned areas. The correlation between fuel loads and the remote-
sensing data used varies from 0.27 to 0.88 for different fuel types (with an average corre-
lation of R2 = 0.61 and a standard deviation of 0.18) across the Cerrado region. Wells, et al. 
[57] further refined this approach by estimating yearly fine-fuel loads from 2015 to 2020 
in semi-arid grasslands using Sentinel-2A imagery, in situ fuel loads, and machine learn-
ing. They included 11 of the 13 total Sentinel-2A bands available for each image during 
the periods of vegetation dormancy and vegetation peak greenness in the analysis. The 
fine-fuel model correlated well with on-site validation in the initial (R2 = 0.52, Root Mean 
Square Error (RMSE) = 218 kg/ha) and final (R2 = 0.63, RMSE = 196 kg/ha) years of the 6-
year study. By providing a more advanced validated model that effectively captures the 
complexities of fine-fuel dynamics, this study highlights the potential of integrating 
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remote-sensing data, in situ fuel loads, and machine learning. Chaivaranont [58] intro-
duced an innovative temporal dynamics approach using vegetation optical depth (VOD) 
derived from the Advanced Microwave Scanning Radiometer—Earth observing system 
(AMSR-E) to estimate the grasslands fuel load. More specifically, the author converted the 
annual mean VOD to gridded annual aboveground biomass (AGB) serving as a proxy for 
fuel load. This satellite-based ABG product was then regressed with fuel load measures 
from the ground according to Australian bioregions. Additionally, a vegetation structure 
dataset was used to assess the utility of the AGB dataset as a proxy for evaluating the 
estimated fuel load data. The outcomes of this evaluation indicated that nationwide AGB 
estimates obtained through VOD could approximately depict the characteristics of vege-
tation structure, achieving a significant relationship with an R2 of 0.82. This observation 
inferred that estimates of fuel load derived from AGB were in alignment with the charac-
teristics of vegetation cover. Consequently, the model was able to reasonably predict fuel 
load quantities across Australia, with higher fuel loads correlating with taller and denser 
vegetation covers. 

Overall, the utilization of optical data and associated methodologies has proven ef-
fective in estimating fuel loads within the tree canopy. However, their precision some-
what diminishes when assessing surface fuel loads due to limitations in optical sensors to 
effectively penetrate dense canopies [55]. To bolster the accuracy of assessments, incorpo-
rating stand-related factors such as stand age, closure, height, and basal area have shown 
significant correlations and enhancements in predictions of both canopy and surface fuel 
loads [59]. Nonetheless, the effort to predict these stand-related variables from optical re-
motely sensed data introduces inaccuracies into the estimation process due to their inher-
ent limitations, such as the inability to determine whether the detected signal comes from 
the canopy, understory, or ground, which subsequently affects the accuracy of stand-re-
lated variable estimations. To counter this constraint and refine the precision of fuel load 
estimation, the integration of active sensors like LiDAR has been proposed [60]. LiDAR 
can furnish intricate insights into canopy structure, height, and biomass metrics. The in-
clusion of a LiDAR remote-sensing approach facilitates a more precise evaluation of 
height and biomass-related parameters, ultimately culminating in heightened accuracy 
when estimating both canopy and surface fuel loads. 

Table 2. Optical and microwave remote-sensing data and their use in modeling fuel load parameters 
and other key variables crucial in shaping fuel load. 

Data Source Parameters Definition Estimated Variables Citation 

Landsat 

Band 1 Blue 

Foliage fuel load (FFL)  
 
 
 
 
Grassland and savanna fuel 
load 

[14,40,54] 
 
 
 
[56] 

Band 2 Green 
Band 3 Red 
Band 4 Near infrared (NIR) 
Band 5 SWIR1 
Band 7 SWIR2 
EVI Enhanced vegetation index 

NDII6/NDII7 
 
GEMI 

Normalized difference infrared in-
dices 
Global environmental monitoring 
index 

GVMI 
 
NDVI 

Global vegetation moisture index 
Normalized difference vegetation 
index 

VARI Visible atmospheric resistant index  
MSI Moisture stress index 
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Gratio Greenness index 

Sentinel-2 

Band 2 Blue 

Surface fuel load (SFL) for 
each surface fuel layer (e.g., 
duff, litter, DWD, and 
shrubs and herbaceous lay-
ers) 
Fuel strata gap (FSG), can-
opy base height (CBH), 
canopy bulk density (CBD)  
 
Grassland fuel load 

[55] 
 
 
 
 
[57] 

Band 3 Green 
Band 4 Red 
Band 5 Red Edge 
Band 6 Red Edge 
Band 7 Red Edge 
Band 8 Near Infrared (NIR) 
Band 8A Near Infrared (NIR) 
Band 11 SWIR1 
Band 12 SWIR2 
SAVI Soil adjusted vegetation index 

MSAVI Modified soil adjusted vegetation 
index 

EVI 
NDVI 

Enhanced vegetation index 
Normalized difference vegetation 
index 

MODIS  
 Bands Reflectance products Foliage fuel load  

(FFL)  
 
Grassland fuel load  

[14] 
 
[58] 

 
AMSR-E 

 
VOD  

 
Vegetation optical depth  

QuickBird B1 Blue Diameter at breast height 
(DBH), 
stand height, 
fine, coarse and total dead 
fuel loads  

[54] 
 B2 Green 
 B3 Red 

 B4 Near Infrared (NIR) 

3.2. Active Sensors 

Radio Detecting and Ranging (RADAR) is an active remote-sensing technology that 
uses polarimetric information and it is unaffected by weather conditions. It has been 
widely used to observe various Earth surface variables such as soil and fuel moisture con-
tents [61,62]. RADAR, particularly those with long wavelengths, have shown immense 
potential for estimating fuel load such as CFL, foliage biomass, stem fuel load (SFL), 
branch fuel load (BFL), and FFL [63,64]. RADAR sensors transmit different wavelength 
bands (X-, C-, L-, and P-band), which have varying levels of penetration into vegetation 
layers. For example, the L- and P-band signals, which have a longer wavelength, interact 
with thick trunks and branches, making them better suited for fuel load mapping, whereas 
the C-band has shorter wavelengths which can penetrate foliage but will be scattered by 
small branches [65,66]. Airborne L- and P-bands’ horizontal–vertical (HV) polarizations 
were used by Saatchi, et al. [63] to determine the CFL empirically. The fuel characteristics 
derived from RADAR data showed a notable alignment with the fuel measurements taken 
in the field, resulting in coefficients of determination of R2 = 0.85 for the canopy fuel load 
and R2 = 0.78 for the foliage biomass. Airborne RADAR’s ability to monitor fuel load is 
constrained by its high cost, while spaceborne RADAR provides a more economical op-
tion. 

LiDAR is another active sensor that operates by emitting a laser beam and receiving 
backscattered or reflected light from the target [67]. In comparison to other remote-sensing 
data, LiDAR can give three-dimensional information on the structure of the forest and the 
spatial characteristics of the depth and coverage of surface fuel, canopy density, and to-
pography [68]. Numerous research efforts have utilized active remote-sensing data, in-
cluding LiDAR and RADAR, to develop predictive techniques that estimate spatial vari-
ations in fuel load (Table 3). 
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Some research focused on the potential of the airborne LiDAR system (ALS) for re-
gional-scale assessments. Skowronski, et al. [59] used ALS data, calibrated with field plots 
and allometric equations, to estimate canopy fuel loading. The LiDAR datasets were ap-
plied to predict CBD and CFW in wildfire-prone areas of the New Jersey Pinelands. Ad-
ditionally, LiDAR-derived height profiles were created in 1 m layers and regressed against 
CBD estimates from field plots to assess three-dimensional canopy fuel loading. Their 
findings indicated that single-beam LiDAR has potential for estimating regional-scale can-
opy fuel loading. However, the weakest relationships were observed in the mid-canopy, 
where the fuel loading variability and average values were highest. Hermosilla, et al. [24] 
further explored the capabilities of full-waveform LiDAR-derived metrics to assess forest 
canopy parameters (e.g., CH, CBH, CBD, and CFL) and structural fuel parameters (e.g., 
stand density index and volume, basal area, and aboveground biomass) in north-west Or-
egon (United States). By estimating parameters such as CH and stand density index, their 
study demonstrated the potential of full-waveform airborne LiDAR to describe various 
fuel parameters. The results demonstrated strong explanatory power for aboveground bi-
omass modeling (R2 = 0.84), CH (R2 = 0.79), CBH (R2 = 0.78), and CFL (R2 = 0.79). Cameron, 
et al. [69] also explored the fuel characteristics of black spruce stands such as CFL, CH, 
CBH, and CBD in Alberta, Canada, using ALS data and field measurements. Least abso-
lute shrinkage and selection operator (lasso) regression models demonstrated statistically 
significant connections between ALS data and the forest metrics of interest. These rela-
tionships were particularly strong, with an R2 value of 0.81 for all metrics except for CBH, 
which had an R2 value of 0.63. Stefanidou, et al. [70] further explored the capability of 
discrete-return multispectral airborne LiDAR data with structural and intensity infor-
mation to reliably estimate surface fuel load, including litter, downed woody debris, forbs, 
and grass and shrubs in a dense coniferous forest based on derived height and intensity 
distribution metrics. The linear regression analysis method and leave-one-out cross-vali-
dation was employed to evaluate predictive models utilizing different sets of predictor 
variables, revealing that models combining structural and intensity metrics outperformed 
those using individual metrics, with a notable explained variance (R2) ranging from 0.59 
to 0.70. These findings highlight the significance of both structural and intensity variables 
obtained from multispectral LiDAR data for surface fuel load estimation. 

Other approaches to improving fuel load estimation have focused on integrating var-
ious datasets, including field surveys, time-since-fire metrics, topographic elements, and 
fuel characteristic classification systems, with ALS measurements. These efforts have 
aimed to address challenges in capturing spatial variability and improving the accuracy 
of fuel load modeling in diverse landscapes. Price and Gordon [71] conducted research on 
postfire mid-story and canopy fuel accumulation, focusing on dry sclerophyll forests in 
the Sydney Basin, Australia. They integrated airborne LiDAR data with field surveys to 
assess the fire hazard, contributing to a better understanding of fuel dynamics at fine ge-
ographical scales. They conducted an examination of how effectively time-since-fire 
serves as an indicator for vegetation cover and accumulation, with these parameters being 
utilized to estimate fuel load. Their specific focus was on the vegetation strata (0.5–4 m, 
4–15 m, >15 m) crucial for the spread of crown fires, and they quantified the percentage of 
fuel cover and accumulation in three distinct vegetation height categories: elevated fuels 
(0.5–4 m), lower canopy fuels (4–15 m), and upper canopy fuels (15–45 m). Their findings 
revealed that time-since-fire is an unreliable predictor for the accumulation of mid-story 
and canopy fuels, particularly in capturing spatial variability. This result underscores the 
limitations of using temporal proxies for fuel load modeling in heterogeneous landscapes, 
highlighting the need for methodologies that account for finer-scale variability. Similarly, 
Lin, et al. [72] suggested a methodology for producing surface fuel load maps (fine and 
total surface fuel loads) by combining multiple linear regression methods, airborne 
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LiDAR, and topographic data with in situ fuel inventory data and classified fuel models 
(forest types). The synergy of topographic elements, such as slope and aspect, as explan-
atory variables, along with their interactions with fuel types (pine, non-pine conifer, 
broadleaf, and conifer–broadleaf mix) effectively characterized variations in surface fuel 
loads across diverse terrain morphology such as different altitudes and different aspects 
of the slope. By using cross-validation, the estimation of total and fine surface fuel load 
maps for the study area yield RMSE values of 3.476 tons/ha and 3.384 tons/ha, respec-
tively. This approach demonstrated its effectiveness in addressing the complexities of un-
dulating terrain and inaccessible regions, underscoring the importance of integrating ter-
rain and vegetation characteristics into fuel load estimation models. Building on the theme 
of integration, McCarley, et al. [73] utilized multitemporal airborne laser scanning data 
along with the fuel characteristic classification system (FCCS), a widely-used fuel classifi-
cation system that was designed and applied across all ecosystems in the United States, 
adapted for use in LANDFIRE (LF), to estimate the total pre-fire fuel load. Pre-fire ALS 
data for the Tepee Fire consisted of two collections from 2010 and 2011, whereas the pre-
fire ALS data for the Keithly Fire were gathered in 2017. This encompassed the sum of 
individual fuelbed categories, including duff, litter, downed woody debris, herbaceous 
vegetation, and shrubs. The results indicated that the LF FCCS approach produced higher 
estimates of pre-fire fuel loads and fuel consumption than the ALS approach. However, 
the coarse resolution of FCCS data failed to capture the fine-scale heterogeneity effectively 
represented by ALS. This finding highlights the potential of integrating coarse FCCS data 
with finer-scale ALS measurements to improve finer-scale spatial variability and accuracy 
in fuel load quantification. 

While ALS proved effective in estimating spatial variations in fuel load, some studies 
revealed limitations. González-Ferreiro, et al. [74] utilized low-density (up to 0.5 pulses 
m-2) airborne laser scanning (ALS) data and Spanish national forest inventory data to 
predict the vertical distribution of canopy fuel variables for different pine species in Gali-
cia, Spain. Their research provided estimates of canopy fuel variables, namely CFL, CBH, 
and CBD, specific to the maritime pine and radiata pine stands. The canopy fuel load de-
rived from field measurements accounted for 84% of the variability in maritime pine and 
86% in radiata pine, while the canopy fuel load based on ALS metrics explained 52% for 
maritime pine and 49% for radiata pine, suggesting that low-density data might not be 
sufficient for highly precise estimations of canopy fuel load. To address the limitations of 
ALS, terrestrial laser scanning (TLS) has emerged as a valuable complement, offering 
high-density, high-resolution data well-suited for detailed assessments of vegetation lay-
ers in specific areas. Alonso-Rego, et al. [20] examined TLS’s potential for estimating 
shrub, litter, and live/dead fuel loads in Galicia, Spain. Two methods for estimating fuel 
loads and live/dead fractions from TLS data were compared: (i) Indirect estimation (IE) 
involved a two-step process. Initially, three equations were fitted to estimate shrub height, 
shrub cover, and litter depth from TLS data. These estimates were then used as inputs for 
existing species-specific fuel load equations, segmented by size fractions; and (ii) direct 
estimation (DE) consisted of fitting seven equations, one for each fuel fraction, to directly 
estimate fuel loads for each size category using TLS data. Overall, the direct method 
showed a better performance, explaining over 80% of the variability for fuel load for all 
fuel layers except litter loads. 

Recognizing that ALS and TLS each bring unique strengths and limitations, Chen, et 
al. [68] combined these data sources to improve surface fuel load modeling in the Upper 
Yarra Reservoir Park, Victoria, Australia. Their model, which incorporated fuel type, ele-
vation, and canopy density as predictors, demonstrated an R2 of 0.89, significantly outper-
forming models using ALS alone, such as McArthur’s (R2 = 0.61) and Gilroy and Tran’s 
(R2 = 0.69). The high accuracy of the combined model underscores the value of integrating 
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ALS with TLS to enhance predictive power, especially when using multiple regression 
analysis. Expanding on this integration, Alonso-Rego, et al. [75] explored how combining 
TLS and low-density ALS with machine learning could improve fuel variable estimates, 
specifically canopy and surface metrics in pure stands of Pinus pinaster and Pinus radiata. 
They applied three machine-learning models—SVM, RF, and multivariate adaptive re-
gression splines (MARS)—to estimate variables such as CBD, CFL, CBH, stand mean 
height (SMH), fuel strata gap (FSG), and surface fuel loads. TLS data proved more effec-
tive for inner canopy and understory assessments, though challenges remained in captur-
ing upper canopy details due to mid-canopy foliage obstruction. Their findings suggested 
that combining ALS and TLS metrics with machine learning provides a promising alter-
native to field surveys, offering accurate surface/canopy fuel load estimates on a broader 
scale. 

The studies mentioned above showed that metrics derived from airborne and terres-
trial LiDAR systems have the potential to estimate fuel load and other related fuel attrib-
utes. However, it is crucial to recognize that each system comes with its own set of trade-
offs, and these trade-offs can influence the accuracy of the predictive models. The terres-
trial system provides high-resolution data on the characteristics of understory vegetation 
and canopy structural diversity by capturing the vegetation structure from below the can-
opy from ground. However, due to mid-canopy foliage occlusion, terrestrial measure-
ments are less reliable for calculating upper canopy parameters and may not fully charac-
terize the distribution and density of vegetation throughout the canopy. This incomplete 
representation can lead to inaccuracies in estimating fuel loads, particularly when consid-
ering the contribution of vegetation in the upper canopy to overall fuel load or canopy 
fuel load [76]. Conversely, the vegetation structure is captured by the airborne system 
from above. As a result, it provides a higher level of information in the top canopy and 
decreases accuracy in portraying canopy and subcanopy properties as canopy depth in-
creases, particularly for species with dense canopies. This limitation can impact the preci-
sion of fuel load estimations, particularly in areas with complex canopy structures where 
dense vegetation might obscure underlying layers [75]. The models’ overall accuracy of 
fuel load estimates can be improved as a result of combining the benefits of both airborne 
and terrestrial LiDAR systems by incorporating both sets of metrics as predictor parame-
ters [68]. However, both terrestrial and airborne LiDAR have limitations when it comes to 
fuel load mapping at continental and global scales. Thus, the capability of spaceborne Li-
DAR sensors such as Global Ecosystem Dynamics Investigation (GEDI) or ICESat/GLAS 
for predicting large-scale fuel load and other vegetation structural measures will aid in 
tackling the limitations faced by airborne and terrestrial LiDAR systems when estimating 
fuel characteristics across wider geographic areas, though space-borne data with lower 
spatial resolution may even have an aggravated problem of canopy occlusion than air-
borne lidar [77,78]. 

Table 3. Active sensors-derived metrics for estimating fuel load metrics and other key variables 
crucial in shaping fuel load. 

Data Data Characteris-
tic  

Metrics Definition Estimated Variables Citation 

LiDAR Height 

H10, H25, H50, H75, 
H90, H95, H99 

Height percentiles Canopy fuels: canopy 
base height (CBH), 
canopy fuel load 
(CFL), canopy bulk 
density (CBD), canopy 
height (CH) 
 

[24,70,75,79] 
Mean_h Mean height 
Std_h Standard deviation 
CD_h Canopy depth 
Kurt_h Kurtosis 
Skew_h Skewness 
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CC_h Canopy cover Stand variables: tree 
height, diameter at 
breast height (DBH), 
basal area, quadratic 
mean diameter, vol-
ume, stand density in-
dex, aboveground bio-
mass 
 
Surface fuels: total 
surface fuel load 
(TSFL), surface fuel 
types’ load (SFTL) 

CV_h Coefficient of variation 

Intensity 

I10, I25, I50, I75, I90, I95, 
I99 

Intensity percentiles 

CC_i Canopy cover 
Kurt_i Kurtosis 
Skew_i Skewness 
Range_i Range of intensities 
CV_i Coefficient of variation 

Std_i Standard deviation in-
tensity 

Mean_i Mean intensity 
Max_i Maximum intensity 

RADAR 

Frequency 
 
 
 
 
 
Polarization 

L- and P-band 

Radio frequency at 
which the system emits 
and receives electro-
magnetic waves 

Canopy fuel weight 
(CFW), canopy bulk 
density (CBD), foliage 
biomass (FB) 

[63,65] 

HV, HH, VV 
Orientation of the oscil-

lations of the electric 
field component 

  

3.3. Combined Remote-Sensing Sensors 

Several studies have explored the potential of combining passive and active sensors 
to estimate fuel metrics relevant to retrieve fuel loads, particularly in the last decade (Table 
4). This approach provides a more comprehensive picture of the fuel characteristics in an 
area compared to relying on a single sensor type. 

Early studies, like the one by Erdody and Moskal [80], laid the groundwork by 
demonstrating the value of combining LiDAR data, which provides detailed 3D infor-
mation about vegetation structure, with passive imagery like color near-infrared aerial 
photographs to quantify CFL and other various canopy fuel parameters in shaping fuel 
load, including CBD, CBH, and CH. The results indicated that LiDAR contributed to en-
hancing the precision and accuracy of canopy fuel measurements when compared to re-
laying on passive imagery alone. Incorporating imagery with LIDAR improved the R2 
value from 0.94 to 0.96, 0.78 to 0.84, 0.83 to 0.88, and 0.88 to 0.91 for CH, CBH, CBD, and 
CFL, respectively. Building upon this foundation, subsequent studies incorporated high-
resolution imagery and advanced data analysis techniques. Skowronski, et al. [81] incor-
porated high-resolution 0.3 m multispectral orthophoto imagery and a technique called 
object-oriented fuel categorization alongside ALS data to quantify canopy fuel load and 
distribution in the wildland–urban interface. Their study confirmed the link between the 
type of forest cover observed in the high-resolution imagery and the fuel load derived 
from the LiDAR data with a statistically significant linear relationship of R2 = 0.66. 

Researchers have also explored the use of multi-temporal remote-sensing data across 
fire events. García, et al. [79] introduced a method that combined pre-fire data from Land-
sat OLI satellites with post-fire airborne LiDAR data to estimate pre-fire canopy fuel char-
acteristics such as CBD, canopy cover, and CFL. CFL and CBD were first estimated using 
LiDAR data with derived height and intensity information. Subsequently, LiDAR-based 
canopy fuel characteristics were extrapolated over the entire area using the spectral bands 
(B2-B7) of Landsat OLI data. In addition, the authors also incorporated various other fac-
tors as proxies of fuel load estimation such as NDII, VARI, EVI, NDVI, and the tasseled 
cap transformation (TCT). This approach yielded notable results, with R2 values of 0.8, 
0.79, and 0.64 between observed and modeled CFL, canopy cover, and CBD, respectively, 
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demonstrating a more comprehensive approach for fuel characterization by incorporating 
data from both pre- and post-fire scenarios. 

The focus of research has also shifted towards estimating specific fuel components 
and emphasizing the importance of selecting appropriate data sources tailored to the tar-
geted fuel load component. Li, et al. [82] combined Sentinel-2 optical and Sentinel-1 SAR 
satellite data with an RF regression model to specifically assess dead fuel load, including 
1 h, 10 h, 100 h fuels, litter, and their total. This study was conducted in the southwestern 
region of Sichuan, China. Sentinel-1’s dual-polarization capabilities proved particularly 
valuable, as they allowed penetration of the canopy to capture underlying conditions, 
which was essential for accurately estimating the dead fuel load. The findings indicated 
that optical (sentinel-2) and SAR (Sentinel-1) data are a better indicator for measuring the 
1 h (R2 = 0.57) and total dead fuel load, comprising 1 h, 10 h, 100 h, and litter (R2 = 0.59). In 
contrast, the predictive capability of optical and SAR data was relatively less robust for 10 
h (R2 = 0.41), 100 h (R2 = 0.40), and litter (R2 = 0.29). This study highlighted the effectiveness 
of combining optical and SAR remote-sensing data sources to target specific fuel compo-
nents such as the 1 h and total dead fuel load, enabling a more focused approach to fuel 
load assessment. Li, et al. [64] compared the performance of combining optical data (Land-
sat TM+) with synthetic aperture RADAR (ALOS PALSAR) data with the L-band for esti-
mating different fuel loads such as the foliage fuel load (FFL), branch fuel load (BFL), and 
stem fuel load (SFL). Optical data yielded the most accurate results for FFL estimation (R2 
= 0.66), followed by a moderate performance for both BFL (R2 = 0.56) and SFL (R2 = 0.37) 
estimation. Notably, further enhancements were observed in estimating SFL, BFL, and 
FFL when integrating optical and SAR data (R2 = 0.76, 0.81, and 0.82, respectively) com-
pared to using just one type of data. This emphasizes the need for thoughtful data selec-
tion based on the specific fuel component of interest. 

The latest advancements involved using machine-learning algorithms and placing a 
strong emphasis on multi-sensing data composition. D’Este, et al. [83] employed machine-
learning techniques like SVM, RF, and multiple linear regression (MLR) to estimate the 
fine dead fuel load (referring to 1 h time-lag fuels with a diameter of 0–0.65 cm) using a 
combination of LiDAR, Sentinel-1, and Sentinel-2 data. Sentinel-2 data were used to cal-
culate NDVI, NDWI, and NDMI, whereas Sentinel-1 data were utilized with both VV (ver-
tical transmit–vertical receive) and VH (vertical transmit–horizontal receive) polariza-
tions. In addition, LiDAR data calculated the canopy height model (CHM) based on a 
digital terrain model (DTM) and digital surface model (DSM), facilitating the extraction 
of vegetation and canopy cover information. The findings indicated that RF exhibited a 
better predictive capability with an R2 value of 0.50 compared to SVM and MLR, which 
showed a similar performance with R2 values of 0.39 and 0.40, respectively. Also, the au-
thors found that CHM and canopy cover, derived from LiDAR data, were more important 
in fuel load estimation compared to optical and RADAR variables like vegetation indices 
or polarizations. Notably, the outcomes underscored a positive correlation between the 
presence of the tree components (e.g., cover and height) and the 1 h fuel load. On the 
contrary, geomorphological variables demonstrated comparatively weaker predictive ca-
pabilities. This trend underscores the increasing role of sophisticated algorithms and di-
verse data sources in enhancing fuel load assessment accuracy. 

As demonstrated by the studies mentioned earlier, passive and active remote-sensing 
data each offer unique strengths in estimating fuel load. While passive data are sensitive 
to biochemical attributes, active data provides critical insights into the vertical structure 
and distribution of forest fuels, encompassing surface fuels. Combining these complemen-
tary data types can enhance the accuracy of fuel load predictions by leveraging the 
strengths of each approach [82]. 
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Table 4. Overview of combined remote-sensing data used for fuel load estimation and other essen-
tial variables pivotal in determining fuel load characteristics. 

Data Sources Parameters Definition Estimated Var-
iables 

Citation 

Aerial color infra-
red Imagery 

Bands 1–3 Green, red, NIR 

ACF, CBD, 
CBH, and CH [80]  NDVI 

Normalized difference 
vegetation index 

LiDAR 
Height infor-
mation 

Height distribution of Li-
DAR returns 

Landsat OLI Bands 2–7 Blue-SWIR2 

CBD, CC, CFL [79] 

 NDII 
Normalized difference 
infrared indices 

 VARI Visible atmospheric re-
sistant index 

 EVI 
Enhanced vegetation in-
dex 

 NDVI 
Normalized difference 
vegetation index 

 TCT Tasseled cap transfor-
mation 

LiDAR Height  Height distribution of 
canopy returns 

 
Intensity infor-
mation 

Intensity values of each 
LiDAR return 

Sentinel-1 VH VH polarization 
Dead fuel load 
(DFL) 

[82]  VV VV polarization 
Sentinel-2 Bands 2–12 Blue-SWIR2 
Landsat ETM+ Bands 1–7 Blue-SWIR2 

FFL, BFL, and 
SFL 

[64] ALOS PALSAR HH HH channel 
 HV HV channel 
LiDAR CHM Canopy height model 

Fine dead fuel 
load (FDFL) [83] 

Sentinel-1 VH VH polarization 
 VV VV polarization 
Sentinel-2 Bands 2–12 Blue- SWIR1 

 NDVI Normalized difference 
vegetation index 

 NDWI 
Normalized difference 
water index 

 NDMI Normalized difference 
moisture index 

4. Challenges in Estimating Fuel Load with Remote-Sensing Data 

In this section, we explore the difficulties faced when using remote-sensing data to 
estimate fuel load. These challenges are crucial because they affect how accurately we can 
predict fuel load and fall into two main categories: how we build our models to make 
these estimates, which is determined by the specific technique used to link remote-sensing 
data to fuel load (methodological challenges); and the quality and capability of the specific 
sensor or remote-sensing data used to estimate fuel load for various fuel layers across 
diverse fuel types (sensor data challenges). 

4.1. Methodological Challenges 
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Remote sensing-based fuel load prediction often involves the application of empirical 
techniques that rely on linear or nonlinear relationships between the remote-sensing data 
and ground-based fuel load measurements. These empirical methods are straightforward 
to calibrate, require less computational complexity, and therefore have been broadly uti-
lized [38,40]. However, these techniques generally lack reproducibility, as they rely on 
site-dependent and sensor-specific relationships, making them difficult to effectively im-
plement in other locations [84]. Alternately, fuel load parameters can be extracted from 
remote-sensing data using the inversion of radiative transfer models (RTMs) such as PRO-
SPECT [85], SAIL [86], and GeoSail [14,87]. RTMs were developed based on physical laws 
that offer explicit relationships between leaf or canopy features and reflectance. Therefore, 
when it comes to predicting the variables of interest on a local or global scale, RTM-based 
techniques offer the advantage of reproducibility, making them applicable to various sen-
sors and geographical regions [84,88]. Nonetheless, their utility is restricted by the sub-
stantial computational resources needed for model inversion. Furthermore, it is essential 
to incorporate prior knowledge of plant biophysical characteristics to limit the input pa-
rameters of the RTM, aligning model conditions as closely as possible with the real canopy 
state [89]. Additionally, the choice and configuration of the RTM are challenging, as they 
necessitate plant physiological and structural data that may not always be accessible, re-
lying on assumptions that may not precisely mirror natural conditions [84,90]. 

Contemporary prevalent machine-learning methodologies like MLP, SVM, and RF 
can automatically extract patterns and relationships from the available data, allowing 
them to potentially adapt and provide utility across different temporal and spatial scales. 
Also, ML models are designed to learn patterns and relationships from data. They can 
handle complex relationships and adapt to different data distributions [91,92]. Training 
the models with data from satellite observations and field measurements is a crucial step 
in applying these approaches. However, to prevent underfitting issues that significantly 
reduce method robustness, having enough samples is necessary during the training pro-
cedure. In order to tackle this issue, previous studies have connected RTMs with machine-
learning techniques. As previously stated, physics-based models leverage the principles 
of physics to accurately simulate interactions between light and vegetation, leading to en-
hanced accuracy in vegetation attributes. Consequently, these detailed attributes could 
serve as effective training data for machine-learning models to predict input parameters 
[93,94]. However, it is worth noting that these models have not seen widespread adoption 
for fuel load monitoring [14]. We hypothesize that the limited adoption may be attributed 
to the complexity of configuring these models, the availability of accessible vegetation 
structural data for retrieving fuel load, and the substantial computational resources re-
quired for model inversion. Advanced deep-learning (DL) techniques have been intro-
duced and widely adopted in recent years to address challenges related to remote-sensing 
and geoscientific data [95–97]. These approaches for parameter retrieval exhibit remarka-
ble efficiency, capable of processing extensive datasets while effectively accommodating 
the temporal and spatial characteristics of the data. DL methods possess the capability to 
automatically extract abstract and invariant features, thus handling issues related to data 
dimensionality when fitting models with numerous predictors [98,99]. Consequently, the 
development of novel and robust DL methodologies holds the potential to enhance esti-
mations of fuel load metrics, and research on various cutting-edge techniques is steadily 
expanding. Nevertheless, obstacles remain in obtaining sufficient data for algorithm cali-
bration and validation, as well as in attaining the desired levels of precision for surface 
fuels. 

4.2. Sensor Data Challenges 
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As previously described, the literature has utilized both passive (mainly optical sen-
sors) and active (RADAR/LiDAR) remote-sensing sensors in fuel metric estimations, 
However, it is important to note that each type of data has its advantages and disad-
vantages, which are summarized in Table 5. Optical remote-sensing data records the spec-
tral reflectance of the forest canopy, providing a two-dimensional representation of the 
fuel load distribution. These data often give insights into the biochemical characteristics 
of leaves and can provide an integrated value of all forest layers, particularly when can-
opy cover is sparse, though they are constrained by their inability to effectively penetrate 
dense canopies. Its lower sensitivity to the vertical structure of forests—a critical factor 
influencing fuel load distribution—can impact the accuracy of fuel load estimates, espe-
cially in forests with complex vertical structures where fuel distribution varies signifi-
cantly across layers and heights [64]. In contrast, LiDAR presents significant opportunities 
for mapping fuel load. LiDAR has proven to be highly effective in a variety of forest ap-
plications because it enables a detailed characterization of the vegetation’s vertical struc-
ture including height estimation and surface fuels [24,100]. Small-footprint airborne dis-
crete systems, which digitize the return pulse into a small number of three-dimensional 
coordinates typically coinciding with the return of the first and last energy components 
and some intermediate energy peaks, are the most prevalent type of LiDAR systems avail-
able to resource managers [101]. These LiDAR sensors’ small footprint makes the data 
extremely ideal for predicting and mapping fuel map features for fine-scale fire behavior 
and growth simulations [102]. Thus, a variety of fuel parameters, including crown dimen-
sion (CD), CH, CBD, CBH, and canopy fuel load (CFL), have been retrieved using LiDAR 
[24,103]. However, the extent of information retrieval from different vegetation layers var-
ies based on the specific characteristics of the active sensors employed [104,105]. 

When it comes to characterizing the fuel load from various vegetation layers, discrete 
LiDAR systems have limitations in providing comprehensive information along the entire 
path traveled by the emitted pulse. On the other hand, full-waveform LiDAR systems can 
record the full return backscattered signal over time, offering a more detailed view of the 
vegetation structure and its constituents for fuel load estimations [24,106]. Thus, research-
ers should possess the capability to provide more comprehensive explanations of the 
physical characteristics of intercepted objects by analysis of the returned waveform. This 
is due to the fact that the waveform’s amplitude at any height is proportionate to the 
quantity of reflective material intercepted at that height, the reflectance properties of that 
material, and its orientation [107]. The majority of research on fuel load characterization 
with LiDAR data has been conducted using airborne sensors, typically focusing on small 
geographic areas and fine spatial scales. However, the cost of LiDAR data acquisition re-
stricts their temporal coverage which can hinder the analysis of fuel dynamics. Moreover, 
to develop effective decision-making processes for fire management, it is essential to have 
information on fuels at various geographical scales [79]. The potential of spaceborne Li-
DAR sensors such as the Global Ecosystem Dynamics Investigation (GEDI) [77], ICE-
Sat/GLAS [108], or ICESat-2/ATLAS [109] has also been demonstrated for estimating fuel 
load properties. These sensors provide dense sampling of terrestrial ecosystems but not 
continuous coverage. Therefore, methodologies for integrating LiDAR and other satellite 
sensors can be developed to offer large-scale estimations of fuel load characteristics, either 
by extrapolating from airborne LiDAR-based estimations or by using satellite LiDAR sen-
sors to cover broader geographical areas. For example, Leite, et al. [77] assessed GEDI’s 
capability for estimating large-scale, multi-layer fuel loads in the Brazilian tropical sa-
vanna (Cerrado). GEDI’s ability to penetrate dense vegetation is a key differentiator from 
previous spaceborne LiDAR sensors, such as those designed primarily for ice sheet meas-
urements. Furthermore, GEDI features footprints separated by 60 m along track and 600 
m across track—an improvement over GLAS’s 70 m footprints, which were separated by 
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approximately 170 m along the track. These enhanced technical specifications make GEDI 
more suitable than any prior spaceborne sensor for measuring forest structure and fuel 
attributes, including fuel load, at regional and global scales across various fuel types and 
layers. 

RADAR measurements are highly sensitive to moisture content as well as crown and 
stem biomass, making them direct indicators of vegetation structure and biomass, espe-
cially at low frequencies (400–1500 MHz) [110]. When integrated with available allometric 
equations for various vegetation types, RADAR interferometric measurements can also 
provide vegetation height which can be easily converted to fuel load [111]. One significant 
advantage of RADAR remote sensing is its insensitivity to visibility conditions, allowing 
it to be efficiently used in situations with cloud and smoke cover, vegetation canopy ob-
struction, or even during day and night. Consequently, both airborne and spaceborne RA-
DAR remote sensing have become crucial tools for monitoring and managing wildfires at 
a local and global scale [63]. Thus, integrating RADAR data with optical data can help to 
address the issue of optical imagery, such as its inability to penetrate cloud cover and 
dense vegetation canopy. This integration has the potential to significantly enhance the 
accuracy of fuel load estimations. 

Thermal remote sensing also offers potential for fuel load estimation, though its ap-
plication has received less attention compared to optical, LiDAR, and RADAR technolo-
gies. Thermal sensors detect emitted radiation in the thermal infrared spectrum, provid-
ing information on the surface temperature and thermal properties of vegetation [112]. 
These data can be particularly useful for estimating fuel moisture content, which is a crit-
ical component of fire behavior prediction [113]. Thermal imagery can detect variations in 
canopy temperature that may indicate differences in vegetation density and structure, po-
tentially correlating with fuel load. Additionally, thermal data can help to identify areas 
of high biomass or dense vegetation, which often have lower surface temperatures due to 
increased evapotranspiration or shading. While no studies specifically focusing on direct 
fuel load estimation using thermal remote sensing were identified during this review, the 
technology’s integration with other remote-sensing products holds promise for enhancing 
fuel load mapping. Future research could explore combining thermal data with other re-
mote-sensing technologies and modeling approaches such as advanced machine-learning 
methods, as discussed in the methodological challenges, to address existing gaps and im-
prove estimation accuracy. 
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Table 5. The benefits and drawbacks of different remote-sensing data implemented to fuel load estimation. 

Remote-Sensing Sensors Type of Data Advantages Disadvantages 

Passive 

Optical  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Sensors analyze canopy fuel load and other critical attrib-
utes in shaping fuel load. 

• Sensors enable differentiation of vegetation types and 
health conditions, which enhances the accuracy of fuel 
load estimation by providing insights into the vegetation 
composition, moisture content, etc.  

• The frequent revisit capabilities of many optical satellites 
enable regular monitoring of fuel load changes over time, 
essential for understanding seasonal variations, tracking 
accumulation rates, and identifying areas of rapid fuel 
build-up.  

• Sensors demonstrate a degree of penetration through cano-
pies, particularly in cases where canopy coverage is not 
continuous, allowing for the detection of understory vege-
tation and surface fuels that contribute to the total fuel 
load. 

• High-resolution optical data allow for detailed analysis of 
vegetation patterns and fuel load distribution. 

• Thermal sensors provide data on surface temperature and 
vegetation properties, helping to detect variations in can-
opy temperature, identify areas of high biomass, and cor-
relate vegetation density with fuel load. 

• Dense canopies penetration limitations: lack the ability to dis-
cern whether the detected signal originates from the canopy, 
understory, or ground, thereby impacting fuel load estima-
tions.  

• Mixed pixels can complicate accurate fuel load estimation. 
• Optical data provide spectral information, which is an indi-

rect measure of fuel load. Converting spectral signatures to 
actual biomass quantities requires accurate modeling and ex-
tensive ground validation. 

• Atmospheric conditions such cloud cover and thick smoke 
limit their availability. 

• In areas with high fuel loads, optical sensors can experience 
signal saturation, limiting their ability to differentiate be-
tween varying levels of high fuel load. 

• Changes in vegetation phenology can significantly affect 
spectral signatures, potentially leading to inconsistent fuel 
load estimates across seasons. 



Remote Sens. 2025, 17, 415 20 of 27 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thermal 

Active LiDAR 

• Sensors analyze canopy and surface structural metrics 
which directly contribute to fuel load estimations. 

• Sensors provide three-dimensional information on vegeta-
tion structure, which is crucial for accurate fuel load esti-
mation from different layers. 

• Sensors are able to estimate vegetation height, which is 
useful for a better understanding of vegetation structure, 
estimating the potential for ladder fuels and fuel load dis-
tribution. 

• Terrestrial LiDAR captures detailed ground-level data, re-
vealing understory vegetation often overlooked by aerial 
or satellite LiDAR, thus providing critical information for 
accurately assessing understory fuel load. 

• High-density airborne LiDAR enables detailed mapping of 
fuel load variability at fine spatial scales. 

• Airborne and terrestrial LiDAR typically covers limited geo-
graphic areas due to cost and logistical constraints, making 
large-scale fuel load mapping challenging. 

• Spaceborne LiDAR provides sampling rather than continu-
ous coverage, requiring interpolation for comprehensive fuel 
load mapping. 

• Airborne and Spaceborne LiDAR systems cannot retrieve 
very detailed fine surface fuel load properties.  

• Terrestrial LiDAR data are collected from specific locations, 
resulting in limited coverage in fuel load estimation. 

• Fuel load estimates can vary based on LiDAR sensor specifi-
cations (e.g., point density, footprint size), necessitating care-
ful calibration and validation. 
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• Spaceborne LiDAR provides information on fuel load at 
large scales 

 RADAR 

• RADAR can penetrate vegetation canopies to varying de-
grees, allowing for estimation of both canopy and surface 
fuel load attributes. 

• RADAR backscatter responds to vegetation structure, ena-
bling the estimation of key fuel load parameters such as 
height, fuel weight and bulk density.  

• It is insensitive to visibility conditions, allowing for con-
sistent fuel load monitoring regardless of cloud cover or 
smoke. 

• Spaceborne RADAR can cover extensive areas, facilitating 
fuel load mapping at regional to global scales. 

• It is sensitive to vegetation moisture content, which is cru-
cial for estimating available fuel load and fire behavior 
prediction. 

• High-resolution airborne RADAR surveys for detailed fuel 
load mapping can be costly, limiting frequent acquisitions.  

• Only RADAR sensors with longer wavelengths have signifi-
cant potential for fuel load estimation, particularly in dense 
forest environments. 

• Satellite RADAR can become insensitive to variations in fuel 
load at high levels of biomass, limiting its effectiveness in 
dense forest areas.  

• RADAR provides indirect measurements of fuel load, requir-
ing accurate models and often ground validation to translate 
backscatter to meaningful fuel load estimates. 

• While effective for canopy and larger fuel components, RA-
DAR may have limitations in directly measuring fine surface 
fuels critical for fire ignition and spread. 
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5. Implications and Future Directions 
The diverse remote-sensing techniques used in recent years to assess fuel load are 

evaluated in this comprehensive review. The central focus of the paper was directed to-
wards elucidating the remote-sensing technologies employed to quantify fuel load across 
distinct fuel categories from different fuel layers. The prevailing techniques for each study 
were encompassed, accompanied by instances of ongoing research. The discerned limita-
tions within the scrutinized studies can be largely attributed to the inherent constraints of 
the existing remote-sensing technologies. The task of accurately estimating fuel load, par-
ticularly concerning surface fuel layers, poses challenges, and relying solely on one single 
remote-sensing data source might not invariably yield an all-encompassing approach to 
characterizing fuel load. Exploring innovative avenues for fuel load estimation, aligned 
with the capabilities and restrictions of contemporary technology, is conceivable through 
the possession of remote-sensing techniques that are continually advancing. Conse-
quently, important advancements in how we use remote-sensing technology and the pro-
jected advancements in sensor technology such as upcoming optical and RADAR mis-
sions with higher spatial and temporal resolutions offer promising prospects for the evo-
lution of detailed fuel load mapping at fine scales. Additionally, integrating emerging 
technologies like photogrammetry and unmanned aerial vehicles (UAVs) with optical and 
LiDAR technology offers the potential for highly precise fuel load mapping at sub-meter 
scales. Moreover, future research efforts are poised to enhance existing methodologies by 
incorporating advanced modeling approaches, including sophisticated machine-learning 
algorithms and fusion modeling techniques, to achieve the accurate analysis and predic-
tion of fuel load dynamics. It is important to recognize that, in addition to fuel load—a 
key component of vegetation characterization and fire behavior models measurable 
through remote sensing—vegetation structural characteristics, both vertical and horizon-
tal (e.g., height, canopy cover, plant area, and density), are also critical. These structural 
metrics are often easier to extract and provide valuable insights into the spatial and tem-
poral dynamics of ecosystem functionality and fire behavior. Future research should focus 
on integrating fuel load estimation with vegetation structural metrics, leveraging the com-
plementary capabilities of various remote-sensing modalities to develop a holistic under-
standing of vegetation dynamics and fire risk. 
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