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Abstract: Precise statistics on the spatial distribution of photovoltaics (PV) are essential 
for advancing the PV industry, and integrating remote sensing with artificial intelligence 
technologies offers a robust solution for accurate identification. Currently, numerous 
studies focus on the detection of single-type PV installations through aerial or satellite 
imagery. However, due to the variability in scale and shape of PV installations in complex 
environments, the detection results often fail to capture detailed information and struggle 
to scale for multi-scale PV systems. To tackle these challenges, a detection method known 
as Dynamic Spatial-Frequency Attention SwinNet (DSFA-SwinNet) for multi-scale PV ar-
eas is proposed. First, this study proposes the Dynamic Spatial-Frequency Attention 
(DSFA) mechanism, the Pyramid Attention Refinement (PAR) bottleneck structure, and 
optimizes the feature propagation method to achieve dynamic decoupling of the spatial 
and frequency domains in multi-scale representation learning. Secondly, a hybrid loss 
function has been developed with weights optimized employing the Bayesian Optimiza-
tion algorithm to provide a strategic method for parameter tuning in similar research. 
Lastly, the fixed window size of Swin-Transformer is dynamically adjusted to enhance 
computational efficiency and maintain accuracy. The results on two PV datasets demon-
strate that DSFA-SwinNet significantly enhances detection accuracy and scalability for 
multi-scale PV areas. 

Keywords: high-resolution images; photovoltaic; swin-transformer; dynamic spatial- 
frequency attention 
 

1. Introduction 
As global demand for renewable energy rises, solar photovoltaic (PV) technology, a 

pivotal form of renewable energy, has experienced remarkable growth worldwide. The 
National Energy Administration (NEA) of China reports in its latest construction update 
for 2023 that newly installed PV capacity of China hits a record 216.88 GW by December 
2023, representing a 148% increase compared to the previous year [1]. These achievements 
herald the swift progression of the PV industry in the renewable energy sector and estab-
lish a robust foundation for the sustainable utilization of clean energy in the future. 

However, the accelerated growth of photovoltaic technology, while a key catalyst in 
the evolution of the clean and renewable energy sector, has unintentionally given rise to 
a variety of issues, including land degradation, environmental pollution, and the 
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encroachment on arable land [2–4]. Driven by the goal of enhancing the environmental 
compatibility of PV technologies and reducing their potential detrimental effects on socio-
ecological systems, the imperative for precise detection of PV areas has escalated. Cur-
rently, this process is beset by formidable challenges: 

• The geographical distribution of PV installations exhibits significant unevenness, in-
dicating a lack of real-time coordination strategies. This results in an inability to in-
tegrate fine-grained data effectively, which constrains the maintenance of the facili-
ties and the assessment of their eco-efficiency; 

• The morphological complexity and textural diversity of PV areas pose a significant 
challenge to accurately identify their detailed features; 

• Existing methods focus on single spatial forms, overlooking the diverse scales of PV 
installations. 
Conventional visual detection methods for PV areas frequently demand substantial 

resources, struggle to meet the need for rapid response within a short period, and face 
challenges in accurately detecting extensive areas. Consequently, the automatic and pre-
cise segmentation of PV areas through high-resolution remote sensing imagery (HRSI) is 
particularly urgent and has garnered broad interest from both industrial and academic 
researchers [5–7]. Current methods for large-scale PV areas detection predominantly rely 
on machine learning [8–10] and deep learning [11,12]. 

Machine learning methods primarily focus on the extraction of morphological fea-
tures or artificially designed features [13]. These morphological features include shape, 
scale, spectral, and texture, which can be obtained through morphological operations such 
as binarization, expansion, and closed operations, etc. [14,15]. Following the feature ex-
traction process, researchers construct shallow models such as RF, Support Vector Ma-
chine (SVM), and Extreme Gradient Boosting (XGBoost) using manually designed fea-
tures [16]. Malof et al. are the first to deploy automated remote sensing to assess distrib-
uted solar PV [17]. Chen et al. use raw spectral features, photovoltaic extraction indices, 
and topographic features as XGBoost classification features to extract time-series data of 
large-scale photovoltaic power plants for the first time from medium-resolution imagery 
[18]. Li et al. design the SolarFinder system, which combines the advantages of SVM and 
CNN with a linear regression method to achieve better true positives and true negatives 
in the PV array detection task [19]. Despite the success of these methods, manual feature 
design limits the generalization of these methods due to challenges in capturing imaging 
conditions and PV material properties [20]. Advancing deep learning in remote sensing 
provides adaptive feature extraction for improved large-scale PV areas detection. 

Current deep learning detection methods for PV areas can be broadly categorized 
into four types, namely CNN [21,22], FCN [23,24], models derived from FCN (e.g., 
DeepLabV3+, SegNet, Unet, FPN, etc.) [25–27], and Visual Transformer [28]. 

CNN-based methods provide a technical foundation for the application of deep 
learning in the field of PV detection. Yu et al. develop DeepSolar, a CNN-based deep 
learning framework, and successfully create a high-fidelity solar deployment database 
covering the contiguous U.S. [29]. Castello et al. propose a CNN-based pixel-level image 
segmentation method for obtaining the location and size information of rooftop PV panels 
[30]. Following the emergence of FCN, it adopts convolutional layers instead of fully con-
nected layers and generates feature maps with the same size as the input image through 
upsampling, supporting inputs of arbitrary size and enabling end-to-end pixel-level pre-
diction. Yuan et al. are pioneers in proposing FCN model for the identification of distrib-
uted PV power plants [31]. Based on this, Sizkouhi et al. use the Mask-RCNN architecture 
to enhance the detection accuracy of PV plant boundaries [32]. While FCN improves the 
recognition accuracy of PV areas, it faces issues such as the loss of details in the feature 
maps and the inability of a fixed receptive field to capture the global contextual 



Remote Sens. 2025, 17, 332 3 of 33 
 

 

relationships when dealing with small objects in complex scenes. To curtail detail loss and 
broaden the receptive field, researchers have turned to FCN-derived semantic segmenta-
tion models including DeepLabV3+ [33], SegNet [34], Unet [35], etc. Though the previous 
studies have provided insights into detecting PV areas, the limited receptive field of con-
volutional methods, constrained by their kernel size, impacts the capture of large-scale 
feature relationships [36–38]. In 2021, Dosovitskiy et al. initially propose Visual Trans-
former (ViT) model [39], which enables Transformer to process image data. Subsequently, 
a range of remote sensing methods integrating CNN and Transformer have emerged 
[40,41]. Chen et al. use a Trans-UNet-based architecture to analyze multi-year satellite 
data for PV variations in China [42]. Guo et al. propose the TransPV model by combining 
Unet and Visual Transformer, which further enhances the ability of the model to compre-
hend the global context [43]. 

On the other hand, to further improve detection performance and overcome the chal-
lenges posed by the heterogeneous textures and color features of PV areas, related studies 
have proposed various deep learning model enhancement strategies, including percep-
tual enhancement, positive and negative sample balancing, and multi-scale feature opti-
mization. 

In the realm of perceptual enhancement, beyond the aforementioned explorations 
ranging from CNN to FCN-derived semantic segmentation models and extending to Vis-
ual Transformer approaches, several studies have explored how attention mechanisms 
influence the extraction of PV features. Hou et al. develop an Expectation Maximization 
Attention (EMA) module that utilizes clustering to enhance spatial feature capture [44]. 
Zhu et al. incorporate a Dual-Attention Module (DAM) to dynamically merge local fea-
tures with their global dependencies [45]. 

To manage the balance between positive and negative samples, many studies have 
adjusted the loss function. Guo et al. introduce Focal loss for mining hard samples [43], 
while Zhu et al. add IoU loss to address the imbalance between foreground and back-
ground in positive and negative samples [45]. However, most hybrid loss functions are 
constructed without discussing the weight relationship of each loss, and their default 
weights may not be truly applicable to PV features. 

Regarding multi-scale feature optimization, numerous studies have leveraged the 
Atrous Spatial Pyramid Pooling (ASPP) concept [46]. Tan et al. enhance the ASPP struc-
ture for the horizontal features of PV arrays, focusing on processing the contextual fea-
tures output from the encoder [47]. Moreover, other researchers have explored ways to 
augment the multi-scale feature extraction capabilities of the model at the data and model 
training levels. Kleebauer et al. propose hyper-parameter tuning of the PV detection 
model to adapt it to images of various resolutions [48]. 

Despite the rich technical support provided by the aforementioned studies for PV 
areas detection, existing methods still exhibit limitations in global feature extraction, 
multi-scale feature modeling, and computational efficiency. 

• As depicted in Figure 1, there is a significant scale difference between PV arrays and 
panels in images. While Swin-Transformer [49] mitigates computational complexity 
with windowing and hierarchies, its fixed window size limits the capture of multi-
scale features, leading to an absence of internal multi-scale information within the 
model [50–52]; 

• In feature learning, existing enhancement strategies do not sufficiently account for 
the specific characteristics of different PV areas, making it difficult to dynamically 
adapt to the multi-scale and multi-textural nature of PV features. Furthermore, they 
lack interpretability regarding hyperparameter tuning; 

• Challenges arise as higher image resolutions lead to longer feature sequences, slow-
ing down attention computations and reducing efficiency. 
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Figure 1. Examples of scale differences between PV arrays and PV panels are illustrated. Figure 1 
(a,b) show size differences between PV arrays (rectangles) and panels (circles). 

To address the issues mentioned above, this study proposes a multi-scale attention 
fusion network called Dynamic Spatial-Frequency Attention Swin-Transformer Network 
(DSFA-SwinNet). The contributions of this study are summarized as follows: 

Firstly, to tackle the issue of high intra-class variation and inter-class resemblance in 
PV areas in HRSI, this study proposes a dynamic window size adjustment mechanism 
(DWA). This mechanism dynamically adjusts the feature window size based on the long-
term token dependency mining mechanism of Swin-Transformer, and effectively captures 
both the local and global dependencies of multi-scale features in HRSI. 

Secondly, this study introduces the Dynamic Spatial-Frequency Attention (DSFA) 
mechanism and the multi-scale feature refinement bottleneck structure Pyramid Attention 
Refinement (PAR). These methods significantly bolster the performance of the model by 
dynamically decoupling the spatial and frequency domains within multi-scale represen-
tation learning. 

Lastly, this study puts forward the refined skip connection strategy and the depth-
supervision-based Multi-Level Upsampling Head (MLUH) module, aiming to augment 
the representation learning capabilities for PV areas by refining the feature propagation 
mechanism. 

The structure of this study is organized as follows: Section 2 details the datasets, ex-
plains the theoretical architecture, and outlines the step-by-step development process of 
DSFA-SwinNet; Section 3 details the datasets and evaluation criteria employed to assess 
the performance of the model and presents the experimental results; Section 4 addresses 
the limitations of the model and proposes potential future enhancements; Section 5 out-
lines the conclusions. 
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2. Materials and Methods 
2.1. Materials 

2.1.1. BDAPPV Dataset 

This study employs the Google subset of the BDAPPV dataset [53], as shown in Fig-
ure 2. This subset contains 13,303 images from Google Earth with a spatial resolution of 
0.1 and a resolution of 400 × 400 pixels. 

BDAPPV 

(Google) 
    

Labels 

    

Figure 2. BDAPPV (Google) subset. 

2.1.2. Jiangsu PV Dataset 

To enhance PV sample diversity, this study employs the PV03 subset of a multi-res-
olution PV Dataset from Jiangsu Province, China [54], containing 2308 satellite and aerial 
images, as shown in Figure 3. With a spatial resolution of 0.3 m and image size of 1024 × 
1024 pixels, the PV03 subset includes both rooftop and ground-based PV systems in areas 
like shrubland, grassland, cropland, saline-alkali land, and water surfaces. 

PV03 

    

Labels 

    

Figure 3. PV03 subset. 

2.2. DSFA-SwinNet 

As shown in Figure 4, the architecture of DSFA-SwinNet is outlined in this section, 
encompassing the encoder-decoder U-structure architecture, the DSFA mechanism, the 
PAR bottleneck structure, the refined skip connection strategy, and the hybrid loss func-
tion for training. 
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Figure 4. DSFA-SwinNet structure. 

2.2.1. Swin-Transformer Based U-Model Architecture 

DSFA-SwinNet employs Swin-Transformer as the encoder backbone and refers to the 
ideas of Ren et al. [55] to construct a dynamic window size adjustment mechanism that 
applies different windows to different channels to achieve multi-scale feature extraction 
at different levels. 

The structure of the dynamic window size adjustment mechanism is depicted in Fig-
ure 5. The mechanism constructs a pyramid structure that divides the input feature maps 
and computes window attention in a distributed manner by utilizing multiple parallel 
branches, each equipped with distinct window sizes along the channel dimension. This 
algorithm effectively mitigates the constraints imposed by a fixed window size on the ex-
traction of representational information in traditional vision Transformers, without incur-
ring a substantial increase in computational load. Moreover, it notably enhances the per-
formance of DSFA-SwinNet in the multi-scale representation learning of PV areas features. 

The initial size of the input tensor of DSFA-SwinNet is noted as (H, W, C), and mul-
tiple patches of size (ுସ, ௐସ , 96) are generated after window splitting. Each patch is consid-
ered as a token and fed into the downsampling layer of Swin-Transformer to deduce fea-
ture representations. DSFA-SwinNet utilizes each stage of Swin-Transformer as a layer in 
Unet encoder, the input tensor with shape (𝐻௖௨௥, 𝑊௖௨௥, 𝐶௖௨௥) will be downsampled to (ு೎ೠೝଶ , ௐ೎ೠೝଶ , 2𝐶௖௨௥) after traversal through each layer, with the final encoder outputting feature 
maps with the shape ( ுଷଶ, ௐଷଶ, 8C). Furthermore, to ensure that DSFA-SwinNet can acquire 
multi-scale features, the output of each stage is stored in a cache, which is then leveraged 
in the decoder to execute the refined skip connection strategy. 
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Figure 5. Structure of DWA mechanism. 

In the decoder, the DecoderBlock is employed to progressively restore the spatial 
dimensions of the feature maps through upsampling. Each DecoderBlock is composed of 
one upsampling layer followed by two convolutional layers. After processing by De-
coderBlock module, the input feature maps with shape (ு೎ೠೝଶ , ௐ೎ೠೝଶ , 2𝐶௖௨௥) will be upsam-
pled to (𝐻௖௨௥, 𝑊௖௨௥, 𝐶௖௨௥). Within the refined skip connection strategy, the output feature 
maps are integrated with the skip-connection outcomes at matching resolutions. These 
are then subjected to the DSFA mechanism to augment the multi-scale information em-
bedded within the feature maps. The output feature maps from both the bottleneck struc-
ture and each decoder layer are cached, as indicated by the box called Multi-Level Up-
sampling Head in Figure 4. These feature maps are converted to feature maps of shape 
(𝐻௖௨௥, 𝑊௖௨௥, Class) by 3 × 3 convolutional layers in the MLUH module, and then upsam-
pled to the original image resolution. During training, the deeply supervised approach is 
adopted, employing output feature maps from the bottleneck structure and the last three 
decoder layers for auxiliary loss and the top layer for the primary prediction task. During 
inference, only output feature maps from the top decoder layer are utilized for the main 
loss. With this multi-scale and deep supervised learning framework, DSFA-SwinNet is 
more proficient in capturing feature information at various scales. 

2.2.2. Dynamic Spatial-Frequency Attention 

As the network depth increases, original feature maps evolve from capturing low-
level to high-level features, potentially leading to the loss of details. To overcome this is-
sue, this study has engineered the DSFA mechanism to achieve fine-grained PV areas de-
tection by dynamically decoupling multi-scale representation learning in the spatial and 
frequency domains. The architecture of the DSFA mechanism is delineated in Figure 6. 
Within the DSFA mechanism, the input feature maps 𝑋௜, shaped as (𝐶௖௨௥, 𝐻௖௨௥, 𝑊௖௨௥), are 
initially directed into the concurrent pathways of channel-space attention and channel-
frequency attention. 
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Figure 6. The structure of the DSFA mechanism. 

In the channel-space attention path, features from the 𝐻௖௨௥  and 𝑊௖௨௥  dimensions 
are independently reconstructed, the processing results of the maximum pooling and av-
erage pooling operations are concatenated, and spatial attention weight maps are dynam-
ically generated through the 3 × 3 convolutional layer combined with the Sigmoid function. 
These maps are then multiplied and summed with the reconstructed features to learn the 
importance of the feature maps at different spatial locations. Finally, the feature maps are 
reshaped into the shape of (𝐶௖௨௥, 𝐻௖௨௥, 𝑊௖௨௥) to obtain the outputs 𝑋௖௦௛ and 𝑋௖௦௪ for this 
path. 

In the channel-frequency attention path, the Discrete Cosine Transform (DCT) is har-
nessed to craft a frequency attention mechanism. Figure 7 illustrates the application pro-
cess of DCT. According to the experimental findings of Qin et al. [56], a predefined set of 
16-band frequency position indices is established to direct the creation of the DCT filter, 
as represented by 𝑓𝑟𝑒𝑞௫ and 𝑓𝑟𝑒𝑞௬ in Figure 7. The input feature maps are split along 
the channel dimension into 16 parts. DCT is applied according to each frequency index, 
resulting in a corresponding set of DCT filters. These filters are sized to match the spatial 
dimensions of the input features, ensuring comprehensive representation of each feature 
dimension across different frequency bands. The input features are then translated into 
the frequency domain through an element-wise multiplication with the DCT filters. The 
mapping relationship from the spatial domain to the frequency domain is as follows: 

𝐹௜[𝑢௜, 𝑣௜] = 𝜆(𝑢௜)𝜆(𝑣௜) ෍ ෍ 𝑇௜[𝑥, 𝑦] cos[π𝐻 (𝑥 + 12)𝑢௜] cos[ π𝑊 (𝑦 + 12)𝑣௜]ௐିଵ
௬ୀ଴

ுିଵ
௫ୀ଴  (1) 
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Figure 7. DCT Application Process. 

For the ith tensor slice 𝑋௜ (i = 0, 1, 2, …, 15), 𝐹௜[𝑢௜, 𝑣௜] represents the 2D frequency 
space coefficients, and 𝑇௜[𝑥, 𝑦] represents the tensor values in the spatial domain. H and 
W are the resolutions of the input tensor, while 𝑢௜ and 𝑣௜ are the frequency coordinates, 
defined as follows: 𝑢௜ =  𝑓𝑟𝑒𝑞௫௜  (2) 𝑣௜ =  𝑓𝑟𝑒𝑞௬௜  (3) 𝜆(𝑢௜) and 𝜆(𝑣௜) are the regularization coefficients, and their definitions are shown 
in Equations (4) to (5). 

𝜆(𝑢௜) =
⎩⎪⎨
⎪⎧ඨ1𝐻 , 𝑢௜ = 0

ඨ2𝐻 , else  (4) 

𝜆(𝑣௜) =
⎩⎪⎨
⎪⎧ඨ 1𝑊 , 𝑣௜ = 0

ඨ 2𝑊 , else  (5) 

Subsequently, the 3 × 3 convolutional layer combined with the Sigmoid function dy-
namically produces the frequency-attention weight maps. They are then employed to 
combine and aggregate with the reconstructed feature maps, culminating in the path out-
puts 𝑋௖௙. 

The process is advanced by utilizing weight fusion to integrate the outputs from both 
attention paths. 𝑋௖௦௛ and 𝑋௖௦௪ are concatenated as 𝑋௖௦, and then the Sigmoid function 
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is employed to adjust features of 𝑋௖௦ and 𝑋௖௙ to derive the new weights of attention 𝜇 
after the space-frequency interaction. The recalibrated weights 𝜇  are then split into 
weights 𝜇ଵ  and 𝜇ଶ  corresponding to the channel-space and channel-frequency, and a 
dot-multiplication operation is performed with the feature maps 𝑋௖௦, 𝑋௖௙ by element, re-
spectively. The resultant weighted feature maps 𝑋௜ᇱ are produced. The feature maps that 
have been subjected to the DSFA mechanism exhibit an enhanced representation of multi-
scale information. This multidimensional feature fusion capability allows DSFA-SwinNet 
to concentrate on and capitalize on key features more effectively, while filtering out irrel-
evant background noise. 

2.2.3. Pyramid Attention Refinement 

Previous research [57] frequently connects the output from the full Swin-Transformer 
encoder directly to the decoder, neglecting the integration of intermediate features. This 
may cause disruptions in the continuous alignment of PV array features or lead to smaller 
PV panels being overlooked in the imagery. 

To bolster the capacity of the model to assimilate the intrinsic details within feature 
maps, as depicted by the box called Pyramid Attention Refinement in Figure 4, this study 
incorporates the PAR bottleneck structure, which draws inspiration from the ASPP mod-
ule. The feature fusion technology of the PAR bottleneck structure is elucidated in Figure 
8, showcasing the integration of the output feature maps from the final two layers of the 
encoder ( ுଵ଺×ௐଵ଺, ுଷଶ×ௐଷଶ) via upsampling and concatenation. Pyramidal parallel pathways 
are established by employing 1 × 1 convolutional layers intertwined with 3 × 3 convolu-
tional layers possessing diverse dilation rates [2,4,8], thereby encompassing a spectrum of 
receptive field sizes to capture multi-scale contextual insights of the input features. There-
after, the conjoined features are steered into the DSFA mechanism designed to distill the 
intrinsic spatial and frequency bi-dimensional information. The PAR bottleneck structure 
mitigates the erosion of profound feature information and guarantees the accuracy of PV 
area extraction throughout the sampling phase on DSFA-SwinNet. 

 

Figure 8. Structure of PAR bottleneck structure. 

2.2.4. Refined Skip Connection Strategy 

As delineated by the box called Refined Skip Connection Strategy in Figure 4, three 
intermediary units are introduced into the network architecture, designed to nurture the 
interplay and conveyance of information between multi-scale features via dense 
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interconnections, including not only the traditional skip connections but also the integra-
tion of cross-layer features. 

Within the encoder, the output feature maps (ுସ×ௐସ , ு଼×ௐ଼, ுଵ଺×ௐଵ଺) of each downsampled 
layer except the last layer of the encoder are temporarily stored, which are denoted as 𝑋଴,଴, 𝑋ଵ,଴, and 𝑋ଶ,଴, respectively, and the intermediate feature maps, 𝑋଴,ଵ, 𝑋ଵ,ଵ, and 𝑋଴,ଶ, are ac-
quired through the dense connectivity paths of the intermediate units. For the feature 
maps emanating from the deeper layers, an initial upsampling operation is requisite, fol-
lowed by a serial connection of feature maps of equivalent resolution. The connectivity 
(6)–(8) for the intermediate feature maps are as follows: 𝑋଴,ଵ = 𝑋଴,଴ ⊕ Upsample൫𝑋ଵ,଴൯ (6) 𝑋ଵ,ଵ = 𝑋ଵ,଴ ⊕ Upsample൫𝑋ଶ,଴൯ (7) 𝑋଴,ଶ = 𝑋଴,ଵ ⊕ Upsample൫𝑋ଵ,ଵ൯ (8) 

The output feature maps processed by the PAR bottleneck structure are denoted as 𝑋ଷ,଴ᇱ , and the skip-connections (9)–(11) of the decoder are as follows: 𝑋ଶ,ଵ = 𝑋ଶ,଴ ⊕ 𝑋ଷ,଴ᇱ  (9) 𝑋ଵ,ଶ = 𝑋ଵ,ଵ ⊕ 𝑋ଵ,଴ ⊕ 𝑋ଶ,ଵᇱ  (10) 𝑋଴,ଷ = 𝑋଴,଴ ⊕ 𝑋଴,ଵ ⊕ 𝑋଴,ଶ ⊕ 𝑋ଵ,ଶᇱ  (11) 

where 𝑋ଶ,ଵᇱ , 𝑋ଵ,ଶᇱ  are the feature maps of 𝑋ଶ,ଵ, 𝑋ଵ,ଶ, respectively after processing by the 
sampling module on the decoder. 

2.2.5. Loss Function 

In DSFA-SwinNet, the PV area detection task is framed as a binary classification 
problem, with the goal of categorizing each pixel in the image as either “PV area” or “non-
PV area”. However, this task is characterized by a significant imbalance in the proportion 
of positive to negative samples within the labeling. Table 1 presents the sample ratios for 
the BDAPPV Rooftop PV dataset and the Jiangsu PV dataset. 

Table 1. Ratio of PV area pixels to non-PV area pixels in the experimental dataset. 

Dataset Ratio (PV:Not PV) 
BDAPPV (Google) 1:23.09 

BDAPPV (IGN) 1:75.43 
PV01 1:1.32 
PV03 1:0.89 

To tackle the issues arising from imbalanced samples, this study comprehensively 
considers three different loss functions: the Weighted Binary Cross-Entropy loss (WBCE), 
the Dice loss, and the Lovasz-Softmax loss [58]. The optimal weights for these functions 
are determined through theoretical analysis and experiments. 

The function equations of WBCE loss are shown in (12)–(14): 

𝐿ௐ஻஼ா = − 1𝑁 ෍(𝜔଴𝑦௡ log 𝑦ො௡ + 𝜔ଵ(1 − 𝑦௡) log(1 − 𝑦ො௡))ே
௡ୀଵ  (12) 
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where 𝑦௡ is the actual value of the nth pixel, 𝑦ො௡ is the predicted value of the nth pixel, N 
is the total number of pixels, 𝜔଴ and 𝜔ଵ are the weights of the positive and negative 
classes, respectively, and the calculation expressions are as follows: 𝜔଴ = 𝑁𝑦௡ (13) 

𝜔ଵ = 𝑁𝑁 − 𝑦௡ (14) 

The function equation of Dice loss is shown in (15): 𝐿஽௜௖௘ = 1 − 2|𝑦 ∩ 𝑦ො||𝑦| + |𝑦ො| (15) 

where y represents the actual value of the nth pixel and 𝑦ො denotes the predicted value of 
the nth pixel. 

For the feature map 𝑆௜ (i = 1, 2, 3, 4, 5) produced by the bottleneck structure and the 
decoder, the loss function is expressed as: 𝐿𝑜𝑠𝑠௜ = 𝛼𝐿ௐ஻஼ா + 𝛽𝐿஽௜௖௘ + 𝛾𝐿௅ௌ (16) 

where α, β, and γ represent the weight parameters for 𝐿ௐ஻஼ா, 𝐿஽௜௖௘, and 𝐿௅௦, respectively. 
The overall loss function for DSFA-SwinNet training is as follows: 𝐿𝑜𝑠𝑠 = ෍ 𝑊௜ × 𝐿𝑜𝑠𝑠௜ (17) 

where 𝑊௜ (i = 1,2,3,4,5) corresponds to 𝑓௜ (i = 1,2,3,4,5) in Figure 4, respectively. 

3. Results 
3.1. Experimental Setup 

All experiments are conducted on a server equipped with 32 GB of RAM and an 
NVIDIA Quadro P6000 GPU with 16 GB of memory. 

3.2. Evaluation Metrics 

This study utilizes Recall, Precision, F1 Score, and IoU as evaluation metrics, which 
are defined as shown in Equations (18) to (21) below. 𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃𝑇𝑃 + 𝐹𝑁 (18) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃𝑇𝑃 + 𝐹𝑃 (19) 

𝐹1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 = 2𝑇𝑃2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 (20) 

𝐼𝑜𝑈 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 (21) 

where TP represents the proportion of PV area pixels that are accurately detected, TN 
indicates the proportion of background pixels that are accurately classified, FP corre-
sponds to the proportion of background pixels mistakenly identified as PV area, and FN 
indicates the proportion of PV area pixels misclassified as background. 

  



Remote Sens. 2025, 17, 332 13 of 33 
 

 

3.3. Preprocessing and Parameterization 

3.3.1. Data Preprocessing 

The experimental models accept inputs of sizes that are powers of 2. Considering the 
original data sizes of the two datasets, a 256 × 256 resolution is chosen as the image input 
size. The HRSI data preprocessing involves standardizing the PV area labels, cropping the 
images, and filtering out samples with background pixel counts below 10% or above 90%. 
For the Google subset, images are directly cropped at the center point. For the PV03 subset, 
1024 × 1024 images are cropped into 16 non-overlapping patches. This study applies hor-
izontal and vertical flips for data augmentation and divides the datasets into training, val-
idation, and testing sets in the ratios of 60%, 20%, and 20%, respectively. Detailed infor-
mation is given in Table 2. 

Table 2. Division of the datasets. 

Dataset Input Size Original Data Processed Data Training Set Validation Set Test Set 
BDAPPV (Google) 256 × 256 13,303 13,302 7981 2660 2661 

PV03 256 × 256 2308 11,593 6955 2318 2320 

3.3.2. Hyperparameter Optimization 

This study employs the Ray Tune automated tuning tool [59], combined with Grid 
Search and Bayesian Optimization, to hyperparameter tune DSFA-SwinNet. Based on the 
initial values, the hyperparameters are fine-tuned, including training batch (batchsize), 
learning rate (lr, momentum), and loss function weights (flooding, α, β, γ, and loss weights 
of the feature maps produced by the bottleneck structure and each layer of the decoder 
[𝑊ଵ, 𝑊ଶ, 𝑊ଷ, 𝑊ସ, 𝑊ହ]) in turn. Among them, flooding comes from the study of Ishida et 
al. [60], which aims to prevent training overfitting. 

The search space for hyperparameters is shown in Table 3. A total of 1250 instances 
are randomly selected from the training set of the Google subset to create a small dataset 
for hyperparameter search experiments. The dataset is subsequently split into training 
and validation sets in a 75%/25% ratio, resulting in 1000 instances for training and 250 for 
validation. To ensure the adequacy of parameter exploration and optimization effect, the 
number of rounds of each search is set to 30 epochs based on the results of the pre-exper-
imental runs of the experimental dataset. The convergence speed and IoU are comprehen-
sively considered to select the optimal hyperparameters, and the initial values are up-
dated. 

Table 3. Hyperparameter search initial values, algorithms, and search space definitions. Grid search 
is denoted as GS and Bayesian optimization is denoted as BO. 

Param Search Space Algorithm Initial Values 
batchsize {2,4,8,16} GS 4 
flooding [0,1] BO 0.4 

[𝑊ଵ, 𝑊ଶ, 𝑊ଷ, 𝑊ସ, 𝑊ହ] [0,1] BO {1,1,1,1,1} 
α, β, γ [0,1] BO {1,1,1} 

lr [0.0001,0.1] BO 0.0001 
momentum [0.1,0.9] BO 0.9 

Figure 9 presents the correlation between different values of hyperparameters and 
IoU during the training process. Additionally, variance analysis evaluates the sensitivity 
of IoU to each hyperparameter, with the results shown in Figure 10. Among the 12 hy-
perparameters of interest, 𝑊ସ, 𝑊ଵ, lr, and 𝑊ହ are ranked by their significant impact on 
IoU, indicating that the deeply supervised training method effectively enhances the ability 
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of the model to learn multi-scale features. Figure 9d–g further demonstrate that although 
flooding, α, β, and γ do not have a significant direct impact on IoU, their adjustments help 
accelerate the convergence speed of the model, and in some cases, there are local optimal 
intervals. 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

   
(j) (k) (l) 

Figure 9. Heat map of hyperparameter optimization experiment. The horizontal axis represents 
epoch, the vertical axis represents the hyperparameter value, and the color bar from purple to red 
represents the size of IoU. (a) training batch (batchsize), (b,c) learning rate (lr, momentum), (d–g) loss 
function weights (α, β, γ, flooding), and (h–l) loss weights of the feature maps (𝑊ଵ, 𝑊ଶ, 𝑊ଷ, 𝑊ସ, 𝑊ହ). 
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Figure 10. Sensitivity of IoU to Each Hyperparameter Based on Variance Analysis. The left vertical 
axis represents PR(>F), which is the p-value indicating the probability of obtaining an F-statistic at 
least as extreme as the one observed, under the null hypothesis. A lower PR(>F) value suggests a 
stronger relationship between the hyperparameter and IoU. The right vertical axis represents the 
corresponding F values, which measure the ratio of variance explained by each hyperparameter 
relative to the residual variance. The red dashed line marks PR(>F) = 0.05, serving as a threshold for 
statistical significance. Values below this threshold indicate that the corresponding hyperparameter 
has a significant impact on IoU. 

3.3.3. Experimental Parameter Settings 

During training, the Stochastic Gradient Descent (SGD) optimizer is utilized along 
with Cosine Annealing and Label Smoothing techniques, and the model is trained for 100 
epochs to obtain the best parameters. Table 4 shows the hyperparameters of the training 
process. 

Table 4. Training hyperparameters. 

Param Value 
batchsize 16 

lr 0.0030 
flooding 0.0528 

momentum 0.8000 
weight_decay 0.0001 

α 0.0419 
β 0.6464 
γ 0.6866 𝑊ଵ 0.0000 𝑊ଶ 0.6626 𝑊ଷ 0.4180 𝑊ସ 1.0000 𝑊ହ 1.0000 

  



Remote Sens. 2025, 17, 332 16 of 33 
 

 

3.4. Comparison Evaluation 

To further validate the effectiveness and practicality of DSFA-SwinNet for PV area 
extraction, this study compares it with several well-known segmentation methods, includ-
ing Swin-Unet [61], TransUnet [62], ACCoNet [63], Unet [35], MP-ResNet [64], 
DeepLabV3+ [33], MAResU-Net [65], CMTFNet [66], LETNet [67], PIDNet-L [68] and 
BASNet [69]. Both DSFA-SwinNet and Swin-Unet utilize the Swin Transformer as their 
backbone encoder, and they are similar to TransUnet, which combines Transformer and 
CNN. All three architectures can effectively handle long-term dependencies. Unet and 
DeepLabV3+ have been employed for architectural segmentation in HRSI, and their per-
formance and robustness have been well proven in complex environments. MP-ResNet 
utilizes parallel multiscale branches to capture semantic context effectively, significantly 
expanding its valid receptive fields and enhancing the embedding of locally discrimina-
tive features. ACCoNet and MAResU-Net enhance the segmentation performance of the 
model in complex remote sensing scenes by integrating an attention mechanism to capture 
contextual information. CMTFNet specializes in leveraging multiscale features and graph 
structures to improve segmentation accuracy while maintaining high computational effi-
ciency. BASNet improves the accuracy of edge segmentation by designing a bilateral self-
attention module to effectively capture global contextual information. LETNet constructs 
the Lightweight Dilated Bottleneck (LDB) module and the Feature Enhancement (FE) 
module to enhance the ability to capture local feature details. PIDNet-L is a novel three-
branch network that efficiently parses detailed, contextual, and boundary information, 
leveraging boundary attention to guide the fusion of detailed and context branches. 
Through comparison with these established methods, the performance and potential of 
DSFA-SwinNet in extracting PV areas from HRSI will be further assessed, while offering 
valuable insights and guidance for both research and practical applications in this domain. 
To ensure a fair comparison, each model is configured with identical training hyperpa-
rameters and the same loss function as DSFA-SwinNet. Table 5 provides the specific pa-
rameter configurations for each model. 

Table 5. Model parameter setting. Number of Classification Head refers to the number of prediction 
results from different layers or branches of the model that are involved in the loss function calcula-
tion during training. 

Model Input Size Number of Classification Head 
Swin-Unet 256 × 256 1 
TransUnet 256 × 256 1 
ACCoNet 256 × 256 5 

Unet 256 × 256 1 
MP-ResNet 256 × 256 2 

DeepLabV3+ 256 × 256 2 
MAResU-Net 256 × 256 1 

CMTFNet 256 × 256 1 
BASNet 256 × 256 3 
LETNet 256 × 256 1 

PIDNet-L 256 × 256 3 
DSFA-SwinNet 256 × 256 5 

Table 6 displays the quantitative comparison results on the Google subset. BASNet 
achieves the highest Precision (86.99%) with its multi-scale residual refinement module 
(RRM) and ranks second in F1 (90.32%) and IoU (83.41%). Compared to BASNet, DSFA-
SwinNet has higher F1 and IoU values of 0.12% and 0.09%, respectively. ACCoNet, de-
spite recording the top Recall value of 98.47% through its adjacent context coordination 
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modules (ACCoM), lags behind the other models in Precision (44.34%), F1 (58.48%), and 
IoU (43.95%). Compared to other models, DSFA-SwinNet excels in PV area segmentation, 
ranking as the best performer in F1 (90.44%) and IoU (83.50%), and is only 1.91% lower 
than ACCoNet in Recall (96.56%). 

Figure 11 provides an example extraction on the Google subset. In Figure 11a, under 
various lighting conditions, Swin-Unet, TransUnet, ACCoNet, MP-ResNet, LETNet, and 
CMTFNet struggle to precisely delineate the PV areas within shadows. When the color of 
the PV areas is similar to the background, in Figure 11b, all models except DeepLabV3+ 
and DSFA-SwinNet exhibit varying degrees of missed detections. In Figure 11c–f, where 
the PV areas are darker than the surroundings, Swin-Unet, ACCoNet, and CMTFNet fre-
quently misclassify roofs, walls, and glass as PV areas. Moreover, when addressing the 
scenario in Figure 11f with narrow gaps, DSFA-SwinNet displays superior boundary seg-
mentation capabilities compared to the comparatively high-performing TransUnet, 
DeepLabV3+, and MAResU-Net. Overall, DSFA-SwinNet shows better robustness and ac-
curacy in segmenting diverse PV shapes. 

Table 6. Quantitative comparison (%) of the BDAPPV (Google) dataset.  

Model Precision Recall F1 IoU 
Swin-Unet 72.91 89.23 78.64 67.05 
TransUnet 86.73 1 94.67 89.8 82.81 
ACCoNet 44.34 98.47 58.48 43.95 

Unet 82.31 95.45 87.62 79.47 
MP-ResNet 81.52 94.48 86.62 78.03 

DeepLabV3+ 86.24 95.82 90.28 83.25 
MAResU-Net 84.91 95.42 89.86 82.55 

CMTFNet 80.80 94.56 86.04 77.33 
BASNet 86.99 2 95.26 90.32 83.41 
LETNet 82.50 95.45 87.73 79.40 

PIDNet-L 78.69 94.58 84.83 75.25 
DSFA-SwinNet 85.97 96.56 90.44 83.50 

1 Underlined text highlights the second-best value in each column. 2 Bold text marks the highest 
value in each column. 

Table 7 displays the quantitative comparison results on the PV03 subset. On the PV03 
subset with more balanced positive and negative samples, DSFA-SwinNet ranks the top 
metrics for F1 (95.57%) and IoU (92.00%), places second for Recall (96.42%), and is third 
for Precision (95.24%). In addition, compared to the quantitative results on the BDAPPV 
dataset, ACCoNet shows a significant improvement in performance on the PV03 subset, 
which contains a balanced combination of positive and negative samples. This suggests 
that the impact of sample proportion on the performance of ACCoNet may be more pro-
nounced than that on the performance of DSFA-SwinNet. 
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Figure 11. Example of BDAPPV (Google) subset detection. False positives and false negatives are 
shown in red and blue, respectively. (a–f) represent the results of different test cases. 
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Table 7. Quantitative comparison (%) of the Jiangsu PV dataset (PV03). 

Model Precision Recall F1 IoU 
Swin-Unet 94.10 94.67 94.00 89.43 
TransUnet 95.15 96.36 95.52 91.84 
ACCoNet 95.74 1 95.65 95.43 91.72 

Unet 95.17 96.14 95.37 91.64 
MP-ResNet 94.86 96.12 95.48 91.76 

DeepLabV3+ 94.69 96.81 95.52 91.81 
MAResU-Net 95.27 96.25 95.55 91.89 

CMTFNet 94.57 96.05 94.95 91.02 
BASNet 95.83 2 95.69 95.56 91.92 
LETNet 94.85 95.94 95.39 91.62 

PIDNet-L 94.52 95.62 94.68 90.65 
DSFA-SwinNet 95.24 96.42 95.57 92.00 

1 Underlined text highlights the second-best value in each column. 2 Bold text marks the highest 
value in each column. 

Figure 12 provides an example of the extraction on the PV03 subset. In Figure 12b, all 
models except DeepLabV3+, MAResU-Net, and DSFA-SwinNet incorrectly classify plants 
and roofs with colors similar to the PV areas as PV panels. In Figure 12d, DSFA-SwinNet 
is the only one, apart from the others, that accurately identifies the PV gaps between the 
panels. Furthermore, DSFA-SwinNet also excels over other models in segmenting bound-
aries, as demonstrated in Figure 12a,c,e. These results collectively indicate that DSFA-
SwinNet possesses higher accuracy and refinement in the task of segmenting diverse 
types of PV samples. 
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Figure 12. Example of PV03 subset detection. False positives and false negatives are shown in red 
and blue, respectively. (a–f) represent the results of different test cases. 

3.5. Complexity Analysis 

The time complexity of DSFA-SwinNet depends on the time complexity of the Win-
dow Multi-Head Self-Attention in the backbone network. After incorporating the DWA 
mechanism, assuming the input tensor format is (C, H, W), where 𝑀௜ (i = 0, 1, …, K) rep-
resents the size of the ith window, the time complexity of self-attention for each window 
size in each encoder layer is 𝑂(𝑀௜ଶ ஼మ௄ ). Therefore, the time complexity within each win-
dow is: 

෍ 𝑂 ൭൬ 𝐻𝑀௜ × 𝑊𝑀௜൰ × 𝑀௜ଶ 𝐶ଶ𝐾 ൱௄ିଵ
௜ୀ଴ = ෍ 𝑂 ቆ𝐻𝑊𝑀௜ଶ × 𝑀௜ଶ 𝐶ଶ𝐾 ቇ௄ିଵ

௜ୀ଴ = 𝑂(𝐻𝑊𝐶ଶ) (22) 

The time complexity for cross-window computation is: 

෍ 𝑂(( 𝐻𝑀௜ × 𝑊𝑀௜) × 𝑀௜ସ 𝐶ଶ𝐾 )௄ିଵ
௜ୀ଴ = ෍ 𝑂(𝐻𝑊𝑀௜ଶ × 𝑀௜ସ 𝐶ଶ𝐾 )௄ିଵ

௜ୀ଴ = ෍ 𝑂(𝑀௜ଶ 𝐻𝑊𝐶ଶ𝐾 )௄ିଵ
௜ୀ଴  (23) 

Therefore, the overall time complexity of DSFA-SwinNet is: 

𝑂 = 4𝑂(𝐻𝑊𝐶ଶ) + 2 ෍ 𝑂 ቆ𝑀௜ଶ 𝐻𝑊𝐶ଶ𝐾 ቇ௄ିଵ
௜ୀ଴ = 4𝐻𝑊𝐶ଶ + 2 𝐻𝑊𝐶ଶ𝐾 ෍ 𝑀௜ଶ௄ିଵ

଴  (24) 

In the complexity analysis experiments, this study assesses key performance indica-
tors including training duration, inference efficiency, parameters, and the count of float-
ing-point operations (FLOPs). Training duration is the average time required to complete 
a full training epoch on the specific dataset. Inference efficiency indicates the average time 
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required for the model to generate predictions for the given dataset. FLOPs are deter-
mined based on the model input tensor dimensions (1,3,256,256) to gauge the computa-
tional intensity of the model. The PV03 dataset is selected as the experimental dataset and 
all experiments are executed on identical hardware to ensure comparable and reliable out-
comes. 

As depicted in Table 8, Swin-Unet possesses the lowest FLOPs value (0.031Gps). LET-
Net has the lowest number of parameters (0.95 M). BASNet is the fastest to train, while 
UNet has the fastest inference. Compared to the baseline model, DSFA-SwinNet utilizes 
the vision Transformer property to obtain the second highest FLOPs value (0.99 Gps) after 
Swin-Unet without a substantial increase in the parameter count (25.88 M). On the PV03 
dataset, DSFA-SwinNet places second in training time after BASNet and third in inference 
speed after UNet and BASNet. Compared with Swin-Unet, which employs Swin-Trans-
former with a fixed window as the backbone network, DSFA-SwinNet improves the train-
ing time and inference speed by 67.60 s and 5.86 s, respectively, despite incorporating 
additional convolutional operations. 

Table 8. Complexity study on the PV03 dataset. 

Model 
Training Duration 

(s) 
Inference Efficiency 

(s) 
Parameters 

(M) 
Flops 
(Gps) 

Swin-Unet 236.38 114.24 41.39 0.031 
TransUnet 317.59 135.06 105.32 3.88 
ACCoNet 2498.21 139.02 127.02 13.30 

Unet 235.00 83.50 13.40 10.68 
MP-ResNet 299.2 104.29 55.03 8.12 

DeepLabV3+ 195.92 112.28 46.62 3.99 
MAResU-Net 300.00 121.90 26.28 2.61 

CMTFNet 206.70 116.21 30.07 2.56 
BASNet 145.71 1 83.66 12. 57 1.18 
LETNet 295.8 300.04 0.95 1.08 

PIDNet-L 224.46 309.87 37.30 2.16 
DSFA-SwinNet 168.78 2 108.38 25.88 0.99 

1 Bold text highlights the smallest value in each column. 2 Underlined text denotes the second 
smallest value in each column. 

3.6. Ablation Experiments 

3.6.1. Ablation Experiments on Model Components 

To assess the efficacy of DSFA-SwinNet, this section examines how various compo-
nents influence its performance, including the PAR bottleneck structure, DSFA mecha-
nism, refined skip connection approach, MLUH module, and DWA mechanism, through 
ablation experiments and analyses conducted on the Google subset. 

Table 9 presents the quantitative evaluation results from the ablation experiments of 
DSFA-SwinNet. Tests 1 through 5 utilize Swin-Transformer with the window size of 7 as 
the encoder. The model in Test 1 ranks the lowest in Precision (76.23%), Recall (89.04%), 
F1 (80.95%), and IoU (69.58%) metrics. Compared to Test 1, Test 2 achieves an improve-
ment of 3.18%, 4.98%, 3.92%, and 5.81% in Precision, Recall, F1, and IoU, respectively, 
attributed to the cross-tier feature fusion of the refined skip connection strategy. In com-
parison with Test 2, Test 3 fuses the concatenation results of skip-connections from both 
spatial and frequency dimensions by incorporating the DSFA mechanism into the refined 
skip connection strategy, leading to model enhancements of 3.61%, 0.04%, 3.32%, and 
3.68% in Precision, Recall, F1, and IoU, respectively. The PAR introduced in Test 4 en-
riches the internal information of the encoder output features by merging the last two 



Remote Sens. 2025, 17, 332 22 of 33 
 

 

layers of encoder features through a pyramidal structure, resulting in model improve-
ments of 0.35%, 0.65%, 0.48%, and 1.36% in Precision, Recall, F1, and IoU, respectively, 
over Test 3. Test 4 exhibits a more gradual ascent in Precision and F1 compared to the 
other tests, primarily due to the inherently small size of high-level features when extracted 
at multiple scales, which restricts the potential for enhancing model accuracy. Consider-
ing that the output feature dimension of the final encoder layer is 8 × 8 based on the ex-
perimental dataset, the accuracy improvement for the model is relatively modest. In Test 
5, DSFA-SwinNet with the MLUH module enhances PV areas extraction precision by in-
tegrating decoder feature maps through the deeply supervised approach during training. 
Contrasted with Test 4, Test 5 realizes improvements of 1.17%, 0.66%, 0.96%, and 2.26% 
in Precision, Recall, F1, and IoU, respectively, with notable advancements in Precision, F1, 
and IoU. Test 6 broadens the scope of single window constraints on PV feature extraction 
based on Test 5 through the DWA mechanism. Compared with Test 5, the Precision, Re-
call, F1 and IoU metrics of Test 6 are improved by 1.43%, 1.19%, 0.81% and 0.81%, respec-
tively. 

Table 9. Ablation experiment results on model components for DSFA-SwinNet on the Google sub-
set. 

Test Skip  
Connection 

DSFA PAR MLUH DWA Precision Recall F1 IoU 

1 - - - - - 76.23 89.04 80.95 69.58 
2 √ - - - - 79.41 94.02 84.87 75.39 
3 √ √ - - - 83.02 94.06 88.19 79.07 
4 √ √ √ - - 83.37 94.71 88.67 80.43 
5 √ √ √ √ - 84.54 95.37 89.63 82.69 
6 √ √ √ √ √ 85.97 1 96.56 90.44 83.50 

1 Bold text marks the highest value in each column. 

The results of the sample ablation experiment are shown in Figure 13. Since Swin-
Transformer is originally designed for medical imaging tasks, the detection of PV areas 
fails to outline the boundary accurately, and the phenomenon of misdetection of other 
objects into PV areas occurs in example (c). The incorporation of the refined skip connec-
tion strategy notably ameliorates segmentation precision, yet instances of misdetection 
persist, such as in example (b). Subsequently, as shown in example (c), the integration of 
the DSFA mechanism renders the feature capturing ability of the model. However, the 
high-level features from the encoder are not optimally leveraged. To address this, the PAR 
bottleneck structure is introduced, as evident in example (e), which mitigates the missed 
detection problem. In example (a), Tests 1–5 inaccurately identify roof glazing as a PV 
areas. In example (b), Tests 1–5 mistakenly interpret the background roofs as PV areas to 
varying extents due to the elongated shape and color similarity with the background. The 
addition of the DWA mechanism bolsters the capability of the model to learn multi-scale 
representations of PV, leading to marked enhancements in resolving these misclassifica-
tions. 

To more intuitively observe the learning process of PV features by DSFA-SwinNet, 
this study visualizes the features of a PV panel sample from the Google subset and a PV 
array sample from the PV03 subset based on Test 6. These samples represent two typical 
spatial distribution forms of PV scenes, with the results presented in Figures 14 and 15, 
respectively. 
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Figure 13. Example of ablation experiment. False positives and false negatives are shown in red and 
blue, respectively. (a–e) represent the results of different test cases in the Google subset. 
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Figure 14. Visualization of PV panel sample from the Google subset. The colors from red to blue 
represent the probability of being predicted as PV pixels. The (1) row presents feature maps with a 
resolution of ( ுଵ଺, ௐଵ଺); the (2) row corresponds to a resolution of ( ுଷଶ, ௐଷଶ); and the (3) row corresponds 

to a resolution of ( ு଺ସ, ௐଷଶ). The (a) column shows the feature maps input to the DSFA mechanism, 

where (1, a) represents the output feature map of the PAR bottleneck structure. The (b) column 
presents the feature maps processed by the spatial attention within the DSFA mechanism. The (c) 
column shows the feature maps processed by the frequency attention within the DSFA mechanism. 
The (d) column presents the feature maps generated by dynamically fusing spatial and frequency 
attention within the DSFA mechanism, representing the output feature maps of the DSFA mecha-
nism. 
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Figure 15. Visualization of PV array samples from the PV03 subset. The colors from red to blue 
represent the probability of being predicted as PV pixels. The (1) row presents feature maps with a 
resolution of ( ுଵ଺, ௐଵ଺); the (2) row corresponds to a resolution of ( ுଷଶ, ௐଷଶ); and the (3) row corresponds 

to a resolution of ( ு଺ସ, ௐଷଶ). The (a) column shows the feature maps input to the DSFA mechanism, 

where (1, a) represents the output feature map of the PAR bottleneck structure. The (b) column 
presents the feature maps processed by the spatial attention within the DSFA mechanism. The (c) 
column shows the feature maps processed by the frequency attention within the DSFA mechanism. 
The (d) column presents the feature maps generated by dynamically fusing spatial and frequency 
attention within the DSFA mechanism, representing the output feature maps of the DSFA mecha-
nism. 
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Vertically, the high-resolution feature maps emphasize fine-grained texture features, 
while the low-resolution feature maps capture broader spatial patterns related to PV 
structures. Horizontally, the attention regions of spatial attention and frequency attention 
differ, and dynamic weighted fusion effectively integrates both regions through pixel-
wise adaptive weighting. 

In the PV panel sample, there is a large background area, and narrow gaps exist be-
tween the PV panels. As shown in Figure 14 (1, a), the output feature map of the PAR 
bottleneck structure performs fusion and multi-scale processing of the high-dimensional 
features from the last two layers of the encoder, preliminarily defining the probability 
distribution of the PV areas. By analyzing Figure 14 (1, b) and (1, c), as well as Figure 14 
(2, b) and (2, c), it can be observed that spatial attention significantly enhances the expan-
sion of PV features, while frequency attention focuses more on removing background 
noise and clearly defining the boundaries of the PV areas. In the high-resolution feature 
maps, such as Figure 14 (3, b) and (3, c), both attention mechanisms capture subtle texture 
variations in the PV areas and complement the PV features that are not predicted. Com-
paring Figure 14a,d, after processing with the DSFA mechanism, PV detail features are 
further enhanced, and background noise is significantly reduced. Additionally, by com-
paring Figure 14 (1, d) and (2, a), as well as Figure 14 (2, d) and (3, a), it is evident that in 
the refined skip connection strategy, after fusion with the higher-level features from the 
encoder, the distribution of the PV areas becomes more centralized, and the PV texture 
features become clearer. 

In the PV array sample, Figure 15 (1, b) and (1, c), as well as Figure 15 (2, b) and (2, 
c), show that the attention regions of spatial attention and frequency attention focus on 
different aspects. It is worth noting that the annotation data for this sample contains some 
errors, as the serrated boundaries of the PV array are not annotated in detail. However, 
from Figure 15 (2, b) and (3, b), as well as Figure 15 (2, c) and (3, c), it can be observed that 
the striped texture of the PV array becomes clearer. In Figure 15 (3, d) and the final pre-
diction result, DSFA-SwinNet model successfully focuses on the gaps between the PV 
panels and the serrated boundaries in the PV array, demonstrating its excellent ability to 
recognize the fine details of the PV structure. 

In conclusion, the PAR bottleneck structure, DSFA mechanism, refined skip connec-
tion strategy, MLUH module, and DWA mechanism collectively refine extraction preci-
sion, segmentation accuracy, and overall robustness of DSFA-SwinNet model for the PV 
areas extraction task. They diminish the interference of complex background with PV ar-
eas detection and empower DSFA-SwinNet to adeptly discern the PV areas within HRSI. 
DSFA-SwinNet is fully capable of meeting the stringent requirements for PV areas detec-
tion in HRSI. 

3.6.2. Ablation Experiments on Loss Functions 

To alleviate the imbalance between positive and negative samples, optimize different 
model objectives, and learn diverse features at different levels, this study designs a 
weighted combination of hybrid loss functions. For each feature map, the computation 
involves three loss functions: WBCE Loss, Dice Loss, and Lovasz-Softmax Loss. N denotes 
the number of pixels in the image. The time complexity for calculating each loss term is 𝑂(𝑁). Thus, the total time complexity for the three loss functions is: 𝑂(3 × 𝑁)  =  𝑂(𝑁) (25) 

Assuming there are k feature maps, the time complexity of the computation process 
is 𝑂(𝑘 × 𝑁). Since backpropagation requires the weighted values of all feature maps, let 
the time complexity of backpropagation be M, then the overall time complexity is 𝑂(𝑘 × 𝑁 + 𝑀). In this study, the hybrid loss function contains 15 terms, but to make it 
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more focused on the key objectives and avoid unnecessary redundant terms, 8 hyperpa-
rameters (α, β, γ, and loss weights of the feature maps produced by the bottleneck struc-
ture and each layer of the decoder [𝑊ଵ, 𝑊ଶ, 𝑊ଷ, 𝑊ସ, 𝑊ହ]) are tuned. In the resulting hy-
perparameter combination, 𝑊ଵ  is 0, with 𝑊ସ  and 𝑊ହ  are 1, implying that during the 
training process, the focus is placed on 𝑊ସ and 𝑊ହ. 

Table 10 presents the results of DSFA-SwinNet segmentation efficiency and perfor-
mance on the Google subset for different loss functions and varying numbers of classifi-
cation heads. Compared to Test 1, Test 3 exhibits an increase in training duration of 7.98 s 
after incorporating Dice Loss and Lovasz-Softmax Loss. However, this leads to significant 
improvements in Precision, Recall, F1, and IoU, which increase by 11.58%, 0.37%, 8.10%, 
and 11.40%, respectively. This result suggests that the weighted combination of these 
three losses effectively enhances ability of the model to capture PV features. Building on 
this, Test 3, by incorporating 5 classification heads in the loss function, results in an in-
crease in training duration of 9.98 s compared to Test 2. The Precision, Recall, F1, and IoU 
improve by 1.39%, 0.71%, 1.32%, and 1.88%, respectively. This change implies that the use 
of deep supervision in the training process significantly enhances understanding of PV 
details by the model. The above results indicate that, in practical training, the increase in 
training time caused by the addition of different loss functions and classification heads is 
acceptable. 

Table 10. Ablation experiment results on loss functions for DSFA-SwinNet on the Google subset. W 
denotes WBCE Loss, D denotes Dice Loss, and L denotes Lovasz-Softmax Loss, while α, β, and γ 
represent the corresponding weights. “Number of Classification Head = 1” indicates that the output 
feature maps from the top decoder layer are used in the loss calculation. Training duration is the 
average time required to complete a full training epoch.  

Test Loss Function 
Number of 

Classification 
Head 

Training 
Duration 

(s) 
Precision Recall F1 IoU 

1 αW 5 177.15 74.39 96.19 82.34 72.10 
2 αW + βD + γL 1 175.15 1 84.58 95.85 89.12 81.62 
3 αW + βD + γL 5 185.13 85.97 96.56 90.44 83.50 

1 Bold text highlights the optimal value in each column. 

3.7. Cross-Subset Testing 

The Google subset is sampled from Europe, while the PV03 subset is sampled from 
Jiangsu, China. Therefore, two sets of tests were designed in this section: 

• Training on the Google subset and predicting the test set from the PV03 subset; 
• Training on the PV03 subset and predicting the test set from the Google subset. 

Cross-testing on datasets sampled from different environments aims to evaluate the 
ability of DSFA-SwinNet model to understand PV features. The segmentation results are 
shown in Table 11, with sample results presented in Figure 16. 

Table 11. Cross-Subset Testing Results. 

Test 
Training 

Set 
Validation 

Set Test Set Precision Recall F1 IoU 

1 Google Google PV03 74.32 81.73 74.87 67.04 
2 PV03 PV03 Google 68.91 94.40 79.67 66.21 

In Test 1, DSFA-SwinNet model trained on the Google subset demonstrates more 
precise detail capture of the PV panels. As shown in Figure 16b, although there is a gap 
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error in the sample label, the model focuses on the gaps between the PV arrays, indicating 
that the model segments more based on PV panel features. In Test 2, Figure 16d–f reveal 
that DSFA-SwinNet model trained on the PV03 subset accurately identifies PV panels of 
varying scales and shapes. The above experiments demonstrate that DSFA-SwinNet 
model can effectively cope with environmental interference and learn to extract PV fea-
tures. 

  
    

 

  TN FP TP FN  

Images 

      

Labels 

      

Result 

      
 (a) (b) (c) (d) (e) (f) 

 Test1 Test2 

Figure 16. Samples of Cross-Subset Testing. False positives and false negatives are shown in red 
and blue, respectively. (a–c) represent the results of different test cases in the PV03 subset. (d–f) 
represent the results of different test cases in the Google subset. 

4. Discussion 
As highlighted in Table 1, this study employs two open-source PV datasets with sig-

nificantly imbalanced positive-to-negative sample ratios for comparative experiments. 
The quantitative results presented in Tables 6 and 7 show that models such as Swin-Unet, 
ACCoNet, MP-ResNet, and PIDNet-L perform better on the PV03 dataset, where the pos-
itive-to-negative sample ratio is more balanced. This indicates that these models still face 
limitations when generalizing to multi-scale PV area extraction in HRSI. 

The proposed DSFA-SwinNet excels in extracting both PV panels and arrays, achiev-
ing the best performance on two datasets. The DWA mechanism, by incorporating multi-
ple window sizes within the window intervals for patch cutting, enables DSFA-SwinNet 
encoder to capture multi-scale contextual information at each layer, overcoming the limi-
tations of single window approach of the traditional Swin-Transformer. The Refined Skip 
Connection Strategy and PAR bottleneck structure optimize the feature propagation 
paths, ensuring that features at different scales are uniformly captured. The combined 
features are fed into the DSFA mechanism, where spatial and frequency domain feature 
information is decoupled, and background noise is filtered through dynamically gener-
ated weights. As illustrated in the heatmaps of hyperparameters flooding, α, β, and γ in 
Figure 9, these hyperparameters exhibit an optimal selection range. The sensitivity analy-
sis results in Figure 10 indicate that 𝑊ସ, 𝑊ଵ, lr, and 𝑊ହ have a significant impact on the 
IoU metric. Researchers are encouraged to adjust hyperparameters with notable effects on 
IoU based on the characteristics of different datasets, while selectively tuning those influ-
encing convergence speed of the model as needed. This integration of the training strategy 
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with hyperparameter optimization leads to substantial improvements in both model per-
formance and training efficiency. 

However, there are still failure cases in complex scenes within the PV areas detection 
task. As shown in Figure 17a, in samples with occlusions from trees and buildings, almost 
all models fail to detect the occluded photovoltaics. In Figure 17b, glass that is similar in 
color and texture to photovoltaics is misclassified as PV by all models. Although DSFA-
SwinNet outperforms other models, failure may still occur in certain complex scenes. In 
the future, the synergistic relationship between PV textures and the surrounding environ-
ment will be further analyzed and refined, and an attempt will be made to integrate multi-
source data fusion to improve the recognition of PV areas in such complex environments. 

   
    

 

   TN FP TP FN  

(a) 
       

Images Labels Swin-Unet TransUnet ACCoNet Unet MP-ResNet 

       
 DeepLabV3+ MAResU-Net CMTFNet BASNet LETNet PIDNet-L DSFA-SwinNet 

        

(b) 
       

Images Labels Swin-Unet TransUnet ACCoNet Unet MP-ResNet 

       
 DeepLabV3+ MAResU-Net CMTFNet BASNet LETNet PIDNet-L DSFA-SwinNet 

Figure 17. Failure cases analysis. False positives and false negatives are shown in red and blue, 
respectively. (a) represents a case where PV areas are covered by tree shade. (b) represents a case 
with glass similar to PV areas. 

In the hyperparameter optimization experiment, Grid Search and Bayesian Optimi-
zation algorithms are used to select training batch, learning rate, and loss function 
weights. However, other hyperparameters, such as the size and stride of the convolution 
kernel, as well as the window size range selected by DWA, may also impact the final re-
sults, and their effects are not analyzed. Additionally, as shown in Table 8, the proposed 
DSFA-SwinNet still has potential for improvement in training duration and inference 
speed. Future work will focus on further refining hyperparameter tuning and considering 
the integration of advanced models like VMamba to enable optimal extraction of PV areas 
in a shorter time. 
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5. Conclusions 
Detection of PV areas from HRSI is a crucial research focus within the domain of 

remote sensing image segmentation. However, the diversity of viewpoints of PV built-up 
areas poses a challenge for effective extraction of PV built-up areas. 

In this study, a multi-scale PV areas extraction method (DSFA-SwinNet) is intro-
duced that dynamically decouples the spatial and frequency domains. The refined skip 
connection strategy is designed that integrates the proposed DSFA mechanism, PAR bot-
tleneck structure, and MLUH module to achieve fine-grained PV areas detection by per-
forming multiscale representation learning from both spatial and frequency domain di-
mensions. In addition, the physical element constraints are combined with the dynamic 
window size adjustment mechanism to lift the restriction of fixed window size on Swin-
Transformer backbone network, thereby enhancing computational efficiency and main-
taining better extraction accuracy. To address the issue of extreme sample imbalance, a 
hybrid loss function is designed and an automated parameter tuning tool is applied to 
perform meticulous hyperparameter tuning by combining Grid Search and Bayesian Op-
timization, which provides a programmatic idea of the parameter ratio of the hybrid loss 
function for related research. Finally, rigorous and extensive performance evaluation ex-
periments are conducted on the Google subset of the BDAPPV dataset and the PV03 sub-
set of the Jiangsu PV dataset. DSFA-SwinNet performs well in PV segmentation while 
maintaining a low computational footprint (0.99 Gps) and a moderate number of param-
eters (25.88 M). Specifically, DSFA-SwinNet achieves 83.50% and 92.00% in IoU, as well 
as 90.44% and 95.57% in F1 Score, respectively, outperforming other models in the com-
parative experiments. 

DSFA-SwinNet provides an efficient, cost-effective, and reliable method for dynamic 
PV areas detection based on HRSI providing more comprehensive data support for urban 
PV planning. Moving forward, the robustness of the model will be further enhanced, and 
lightweight detection networks for PV areas will be explored, contributing to the promo-
tion of sustainable energy development. 
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