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Abstract: The stability and diversity of the natural landscape is critical to maintaining
the ecological functions of a region. However, ecosystems in the Yunnan section of the
Tropic of Cancer face increasing pressure from climate change, human activities, and natu-
ral disasters, which significantly influence their vulnerability. Ecosystem vulnerability is
determined by structural and functional sensitivity, coupled with insufficient adaptabil-
ity to external stressors. While previous research has emphasized the effects of climate
change, the multidimensional impacts of land use and human activities have often been
overlooked. This study aims to comprehensively assess the ecological vulnerability of
the Yunnan section of the Tropic of Cancer, addressing this research gap by utilizing ge-
ographic information system (GIS) technology and the Vulnerability Scoping Diagram
(VSD) model. The study constructs a multidimensional evaluation index system based on
exposure, sensitivity, and adaptive capacity, with a specific focus on the effects of land use,
human activities, and natural disasters. Key indicators include road and population density,
soil erosion, and geological hazards, along with innovative considerations of economic
adaptive capacity to address gaps in previous assessments. The findings highlight that
ecological vulnerability is predominantly concentrated in areas with low vegetation cover
and severe soil erosion. Human activities, particularly road and population density, are
identified as significant drivers of ecological vulnerability. Sensitivity is heavily influenced
by soil erosion and geological disasters, while economic adaptability emerges as a critical
factor in mitigating ecological risks. By proposing targeted policy recommendations—such
as enhancing ecological protection and restoration, optimizing land use planning, and
increasing public environmental awareness—this study provides actionable strategies to
reduce ecological vulnerability. The findings offer crucial scientific support for improving
the ecological environment in the Tropic of Cancer region and contribute to achieving
sustainable development goals.

Keywords: ecosystem vulnerability; VSD model; GIS; land use; policy recommendations;
Yunnan section of the Tropic of Cancer

1. Introduction
Ecosystem vulnerability is an important indicator of the degree of sensitive response

of ecosystems and their resilience in the face of external environmental and anthropogenic
pressures, as well as a key component in the evaluation of ecological environment qual-
ity [1,2]. Economic activities such as human production and living are highly dependent
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on the ecological environment and land resources, and at the same time, these activities
affect the changes in the ecological environment and land resources [3,4]. Therefore, it is of
great significance to scientifically and reasonably assess the vulnerability of the ecological
environment and carry out effective land resource management and regulation to realize
the rational development and utilization of land resources, and to promote the harmo-
nious coexistence of human beings and nature, as well as the balanced development of the
ecological environment and economic activities.

The study of ecosystem vulnerability originated in the mid-20th century, when the
destructive effects of natural disasters on ecosystems impacted their carrying capacity
and resilience [5–7]. Since the 1970s, significant progress has been made in terms of
theory, methodology, and application. Theoretically, researchers have deeply explored how
ecosystems respond to multiple stressors and their capacity for recovery, with the concept
of ecosystem resilience becoming a central focus [8–10]. Key theoretical advancements
include the development of the Pressure–State–Response (PSR) framework [11], which
has been widely used to assess environmental changes and their impacts on ecosystems.
Additionally, the concept of adaptive capacity has been refined to better understand how
ecosystems can adjust to changing conditions [12]. Methodologically, the development
of remote sensing technology and geographic information systems (GISs) has enabled
a shift from qualitative to quantitative research. Model simulations and multi-indicator
comprehensive evaluation methods have been widely adopted, resulting in more accurate
assessments of ecosystem vulnerability [13–15]. Notable methodologies include the use of
the InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) model for assessing
ecosystem services and vulnerability and the application of machine learning techniques
to predict vulnerability patterns [16]. These advancements have been applied extensively
in environmental protection, resource management, and policy formulation, particularly
in ecosystem management, restoration, and sustainable development planning [17]. As
global environmental changes intensify, international attention on ecosystem vulnerability
has grown, with cross-border cooperation and experience exchange enhancing global
ecosystem management science [18–23].

In recent years, ecosystem vulnerability research has become a focal point in the
context of global change. Climate change, land use changes, and biodiversity loss have all
exacerbated ecosystem vulnerability, especially when facing extreme climate events such
as droughts and floods, which severely challenge ecosystems’ adaptive capacities [24,25].
Studies have found that climate change not only increases the spatial heterogeneity of
ecosystem vulnerability but also affects its resilience. Against this backdrop, multi-scale
vulnerability research has gained importance, as vulnerability exhibits complex scale
dependencies, ranging from species diversity at the micro level to ecosystem services
at the macro level, such as global or regional scales. Recent studies have highlighted
the importance of incorporating socio-economic factors into vulnerability assessments to
capture a more holistic view of ecosystem health [26–30]. Yunnan, as a biodiversity hotspot
with a unique ecological environment and complex natural conditions, offers significant
theoretical and practical value for ecosystem vulnerability research in this region.

Moreover, the impact of human activities on ecosystem vulnerability is substantial.
Overuse of land, urban expansion, and infrastructure development have heightened ecosys-
tem vulnerability [31,32]. In regions traversed by the Tropic of Cancer in Yunnan, land
use changes and vegetation destruction are particularly prominent, with human activities
directly affecting ecosystem sensitivity and adaptive capacity. In recent years, vulnerability
assessments have gradually expanded from solely evaluating natural factors to integrating
human factors in a comprehensive analysis, emphasizing the complex interactions between
land use, human activities, and the natural environment. Studies have shown that sustain-
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able land management practices and urban planning can mitigate some of the negative
impacts of human activities on ecosystem vulnerability. Additionally, the incorporation of
stakeholder perspectives in vulnerability assessments has been advocated to ensure that
management strategies are both effective and socially acceptable [27].

At the methodological level, vulnerability models, such as the Vulnerability Scop-
ing Diagram (VSD), have become important tools in ecosystem vulnerability research.
The VSD model allows for a comprehensive assessment of ecosystems across three
dimensions—exposure, sensitivity, and adaptive capacity—making it especially adapt-
able at regional scales [3,33]. Combined with remote sensing technology and GIS tools,
spatio-temporal analysis methods have significantly improved assessment accuracy. The
integration of multi-source data, such as remote sensing images, ground monitoring, and
socio-economic data, provides a more comprehensive understanding of the spatio-temporal
dynamics of ecosystem vulnerability. Recent methodological advancements include the use
of participatory GISs (PGISs) to incorporate local knowledge into vulnerability assessments
and the application of Bayesian networks to model uncertainty in vulnerability predic-
tions [29]. These methodological improvements have enhanced the ability to predict and
manage ecosystem vulnerability more effectively.

Addressing the balance between regional development and ecological protection, par-
ticularly in resource-rich yet development-pressured regions like Yunnan, is crucial. Devel-
oping adaptive ecological protection strategies that integrate vulnerability assessment with
regional development policies remains a significant challenge for current researchers [8,34].

Despite the substantial progress in ecosystem vulnerability research, many challenges
persist. Future research should further integrate multidisciplinary theories and methods,
coupled with advanced technologies, to enhance the spatio-temporal precision and pre-
dictive capabilities of vulnerability assessments [35,36]. Additionally, establishing region-
specific evaluation frameworks tailored to the unique ecological environments of different
areas is essential for achieving sustainable ecosystem management.

This study aims to apply the Vulnerability Scoping Diagram (VSD) model to conduct a
comprehensive assessment of ecological vulnerability in the Yunnan section of the Tropic of
Cancer. Specifically, it seeks to (1) identify and select indicators that comprehensively reflect
the ecosystem vulnerability in the Yunnan Tropic of Cancer region; (2) utilize multi-source
data and advanced technologies to enhance the spatio-temporal precision of vulnerabil-
ity assessments; (3) provide scientific foundations for regional ecological protection and
sustainable development policies based on the assessment results.

The Tropic of Cancer crosses through the Yunnan region, and the area’s unique ge-
ographical and climatic characteristics make its ecosystems highly sensitive and diverse,
making them susceptible to both natural disasters and human activities. A scientific assess-
ment is urgently needed to address the escalating environmental pressures [37]. Moreover,
in recent years, population growth, economic development, and climate change have
posed severe threats to the region’s ecological environment. A scientific vulnerability
assessment can provide critical guidance for environmental protection and resource man-
agement [38–40]. In addition, as a result of the frequent and intense external pressures,
the region’s rich biodiversity is at risk of loss. Through vulnerability assessment, effective
protection measures can be devised to safeguard biodiversity [41–43]. This research not
only provides scientific support for local governments and relevant departments in making
informed decisions, facilitating the development and implementation of environmental
protection policies, but also promotes the harmonious integration of economic development
and ecological conservation. It enhances the resilience and recovery capacity of ecosystems,
ensuring regional ecological security.
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The influencing factors of regional ecosystem vulnerability mainly stem from three
aspects: (1) Natural geographic environment factors: Factors such as regional elevation,
vegetation coverage, climate temperature, rainfall, geological environment, and geologi-
cal disasters directly determine the degree of ecosystem vulnerability based on inherent
conditions [44–46]. (2) Ecosystem’s self-recovery ability: During the continuous succession
and replacement of ecosystem communities, the ecosystem develops a potential resistance
and regeneration capacity against external environmental disturbances. However, once
the level of external disturbance exceeds the ecosystem’s original ecological threshold, its
ability to self-repair and recover becomes extremely limited, with recovery occurring at
a much slower rate compared to the pressure from external damage [47–50]. (3) Human
activity interference: When population density increases and social development needs
surpass the carrying capacity of current resources and the environment, issues such as
deforestation for cultivation, excessive tree cutting, water supply shortages leading to
drought, white pollution, and acid rain caused by air pollution leading to land degradation
occur [6,7,46,51]. Therefore, based on the actual conditions of the study area, the Vulnera-
bility Scoping Diagram (VSD) model was selected to decompose ecosystem vulnerability
into three aspects for evaluation: the exposure index (EI), the sensitivity index (SI), and the
adaptive capacity index (ACI).

2. Overview of the Study Area and Data Sources
2.1. Overview of the Study Area

Yunnan Province is located between 21◦N and 29◦N, with the Tropic of Cancer run-
ning through its southern part, crossing from west to east through 17 counties and cities:
Cangyuan, Gengma, Shuangjiang, Jinggu, Ning’er, Mojiang, Yuanjiang, Honghe, Shiping,
Jianshui, Gejiu, Mengzi, Yanshan, Wenshan, Xichou, Malipo, and Funing (Figure 1). The
region is characterized by complex and varied topography, with densely distributed
mountains and deep valleys, abundant water resources, and a unique vertical climate
system [52,53]. However, these counties and cities share several common climatic char-
acteristics: small annual temperature variation, of typically only 10–12 ◦C; large diurnal
temperature variation, ranging from 12 to 20 ◦C; the mean temperature of the coldest
month is above 6–8 ◦C; and the mean temperature of the hottest days is between 19 and
22 ◦C. Rainfall is abundant, with most counties receiving more than 1000 mm annually;
however, the region experiences distinct wet and dry seasons, with 85% of the rainfall
occurring between May and October, while the dry season from November to April is also
the annual forest fire prevention period. There is a marked uneven distribution of rainfall
across the counties [54,55]. Due to Yunnan’s north–south elevation gradient, combined
with increasing latitude and altitude, vertical climate variation is highly pronounced. In
particular, the mountain and valley areas exhibit prominent vertical climatic features, often
described by the saying “one mountain has four seasons, and the weather changes every
ten miles”. The complex terrain and diverse vertical climate types create a unique regional
ecological environment along the Yunnan section of the Tropic of Cancer [56,57]. Thus, the
Yunnan section of the Tropic of Cancer, with its unique geographical location, complex
climate conditions, and significant ecological vulnerability, serves as an ideal research area
for ecosystem vulnerability assessments. This study not only aids in scientifically under-
standing regional ecological changes but also provides essential guidance for ecological
protection and resource management.
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Figure 1. Location map of the study area.

2.2. Data Sources

The data used in this study were from a wide range of sources, encompassing climate
data, geological data, topographic data, vegetation coverage data, land use data, soil
data, and socio-economic data (Table 1), ensuring the comprehensiveness and accuracy
of the ecosystem vulnerability assessment. The climate data mainly included indicators
such as precipitation, temperature, and humidity, sourced from the China Meteorological
Administration and the China Meteorological Information Center; these were data for
the year 2022. Geological data, including stratigraphy, geological structures, and mining
conditions, were sourced from the China Geological Data Center (http://dc.ngac.org.cn/
Home (accessed on 1 January 2025)). Topographic data, such as elevation, slope, and
aspect data, were sourced from the National Geomatics Center of China (https://www.
ngcc.cn/dlxxzy/gjjcdlxxsjk/ (accessed on 1 January 2025)), and the data were also from
2022. Vegetation coverage data, used to assess the distribution and changing trends of
vegetation in the region, came from the Chinese Ecosystem Research Network (CERN),
MODIS satellite data, and global land cover datasets such as GLC2000 and GlobCover, with
a time frame of 2022. Soil data, including soil types, texture, and fertility, were sourced
from the China Soil Database, soil survey data, and the FAO World Soil Database, with
all data also from 2022. Socio-economic data, which were used to analyze the impact of
human activities on ecosystems, included population density, land use, and economic
development levels, and were sourced from the National Bureau of Statistics of China,
the Yunnan Provincial Statistical Yearbook, and statistical bulletins and annual reports
published by local governments, with the latest available data.

http://dc.ngac.org.cn/Home
http://dc.ngac.org.cn/Home
https://www.ngcc.cn/dlxxzy/gjjcdlxxsjk/
https://www.ngcc.cn/dlxxzy/gjjcdlxxsjk/
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Table 1. Summary of data sources.

Type Relevant Indicator Source of Data Time Frame

Climate Data Precipitation, temperature, humidity China Meteorological Administration, China
Meteorological Information Center 2022

Geological Data Stratigraphic lithology, geological
structure, mine development status

China Geological Information Data Center
(http://dc.ngac.org.cn/Home
(accessed on 1 January 2025))

2000–2022

Geomorphologic Data Elevation, slope, slope direction
China Basic Geographic Information Center
(https://www.ngcc.cn/dlxxzy/gjjcdlxxsjk/

(accessed on 1 January 2025))
2022

Vegetation Cover Data Vegetation index (NDVI), vegetation
cover type

China Ecosystem Research Network (CERN),
MODIS satellite data, GLC2000, GlobCover, etc. 2022

Soil Data Soil type, texture, fertility China Soil Database, Soil Census Data, FAO
World Soil Database 2022

Socio-economic data Population density, land use, level of
economic development

China Bureau of Statistics, Yunnan Provincial
Statistical Yearbook, local government
statistical bulletins and annual reports

2022

To address the spatial scale differences among various data sources, this study em-
ployed the following spatial harmonization techniques. First, climate data were processed
into raster format using the Kriging interpolation method to ensure the continuity and
spatial consistency of point data. Second, geological and soil data in vector format were
directly converted into raster format to facilitate integration with other raster datasets.
Topography and vegetation coverage data were originally in raster format and required
no further processing. Socio-economic data were transformed into continuous raster lay-
ers using the Inverse Distance Weighting (IDW) interpolation method, enhancing spatial
continuity. Finally, all data were resampled to a uniform raster resolution of 1000 m, and
the coordinate system was standardized using the China Geodetic Coordinate System
2000 (CGCS2000) to ensure the spatial alignment and compatibility of all indicators. This
unified methodology ensures comprehensive and accurate integration of multi-source data,
enhancing the robustness of the ecological vulnerability assessment.

3. Evaluation Methods
3.1. Exposure Indicators

Exposure primarily refers to the key parameters by which an ecosystem is subjected
to external pressures, disturbances, and stresses [34,47]. In the study area, the main fac-
tors contributing to exposure include human activities, climatic conditions, and land use
patterns [58,59]. During our field investigations in the region (Figure 2), we selected 50 sur-
vey points and 80 soil sampling points. The field survey was meticulously planned and
executed to ensure comprehensive data collection across various environmental and an-
thropogenic variables. Soil samples were collected at designated locations to analyze soil
quality and composition, providing insights into the region’s ecological health. Detailed
observations and measurements were taken at each survey point to capture critical envi-
ronmental data. Furthermore, the field survey route map provides a detailed layout of
our investigation, ensuring that all selected points were systematically examined to gather
accurate and relevant data.

Based on these field investigations conducted in the region, 13 indicator factors were
selected to assess the exposure of ecosystem vulnerability: proportion of construction land,
road network density, per capita GDP, population density, area of sloping farmland greater
than 25◦, distance to mining sites, scale of mining activities, power generation, annual pre-
cipitation, mean annual temperature, land use types, residential density, and area of forest
and grassland degradation caused by mining activities [60,61]. The orientation (positive

http://dc.ngac.org.cn/Home
https://www.ngcc.cn/dlxxzy/gjjcdlxxsjk/
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or negative) of each indicator depends on the relationship between the respective factor
and ecosystem vulnerability [62,63]. The rapid pace of urbanization, coupled with high-
intensity human engineering activities, has notably impacted the surface environment of
the ecosystem, disrupting the internal balance and exacerbating its vulnerability. Thus, the
assessment of exposure offers valuable insights into the extent of external pressures affect-
ing ecosystem stability. Positive indicators represent factors that are beneficial to ecosystem
vulnerability. Conversely, negative indicators refer to environmental conditions that are
detrimental and severely damaging to ecosystem vulnerability. For instance, indicators
such as the proportion of construction land and population density are negative because
higher values of these indicators correlate with greater ecosystem vulnerability. In con-
trast, indicators such as per capita GDP and the biodiversity abundance index may exhibit
positive orientations, where increases in GDP investment could potentially reduce certain
aspects of vulnerability, depending on the specific ecological context and characteristics.
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3.2. Sensitivity Indicators

Across different temporal and spatial scales, all natural phenomena, economic de-
velopment, cultural characteristics, and levels of social development exhibit significant
variation. This concept, known as spatial heterogeneity, is a key aspect of geographical
studies. Extensive research has demonstrated that ecological vulnerability also displays
distinct spatial and temporal variability across different scales of analysis. Ecological
sensitivity refers to the inherent responsiveness and recovery capacity of an ecosystem
when it is subjected to external disturbances and pressures within a given temporal and
spatial context, and it too exhibits notable regional variability [64–67]. The study area,
located in the mountainous regions of southwestern China, is characterized by significant
elevation differences and severe issues with soil desertification, rock desertification, and
sandification [68,69]. Considering these regional features, 10 indicators closely related
to ecological vulnerability were selected to comprehensively evaluate and quantify the
ecological sensitivity of the region. These indicators include soil erosion type, soil type, veg-
etation coverage index (NDVI), biological abundance index, density of geological hazards,
proximity to geological structures, stratigraphy and lithology, elevation, slope, and aspect.
Together, these factors provide a detailed assessment of the area’s ecological sensitivity.

3.3. Adaptive Capacity Indicators

Ecosystem adaptive capacity refers to the degree to which an ecosystem can adjust,
govern itself, and recover after being subjected to external disturbances and pressures.
This capacity is influenced by two primary factors: changes in natural ecological resources
and shifts in local government economic investments and socio-economic development.
While an ecosystem’s inherent recovery capacity is limited, human intervention through
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economic investment can enhance its adaptive capacity, leading to faster recovery and a
greater degree of adaptation [17,34,35]. To assess the adaptive capacity of the ecosystem,
11 evaluation indicators were selected. These include public budget expenditure, mine
service life, per capita disposable income, forest and grassland area, per capita arable land,
green coverage rate, residents’ year-end savings, growth rate of fixed asset investment,
available water resources, environmental capacity, and land resources. These indicators
reflect the strength of protection efforts, the degree of recovery, and the intensity of the
ecosystem’s adaptive capacity.

3.4. Standardization of Evaluation Indicators

The indicators used for assessing ecological environmental vulnerability encompass
various aspects and originate from diverse data sources. However, the dimensions of these
evaluation indicators are not uniform, leading to a lack of comparability. Even for the same
parameter, although it is possible to assess the degree of impact on ecological environmental
vulnerability based on their actual values, the absence of a comparable environmental
standard makes it challenging to accurately reflect their influence on the ecological en-
vironment. Therefore, before conducting a comprehensive evaluation, it is essential to
standardize the evaluation indicators to eliminate the impact of differing dimensions.

Due to the varying sources and statistical departments of the selected indicators,
a single standardization method cannot be applied; instead, each evaluation indicator
requires separate standardization procedures. The indicators chosen for this study can
be categorized into three types: positive indicators, negative indicators, and moderate
indicators. Moderate indicators refer to those that do not have a positive or negative
impact on ecological environmental vulnerability but instead represent the optimal level
of vulnerability within a specific range. This category of evaluation indicators primarily
undergoes interval statistics using interval statistical methods, followed by standardization
based on previous research findings [14,20,36]. The specific standardization methods for
the other two categories of indicators are as follows:

1. Standardization of Positive Indicators

Positive indicators refer to evaluation metrics where larger values indicate lower
ecological environmental vulnerability and higher adaptive capacity. For such indicators,
the following formula is used for standardization:

X′
i =

Xi − Xmin

Xmax − Xmin
× 100 (1)

2. Standardization of Negative Indicators

Negative indicators refer to evaluation metrics where larger values indicate greater
ecological pressure and, consequently, higher ecological vulnerability. For such indicators,
the following formula is used for standardization:

X′
i =

Xmax − Xi
Xmax − Xmin

× 100 (2)

where X′
i is the converted dimensionless value of indicator i; Xi is the original value of

indicator i before normalization; Xmax is the maximum value of indicator i in the region;
and Xmin is the minimum value of indicator i in the region.

3.5. Calculation of Indicator Weights

When conducting an ecological vulnerability assessment, the calculation of weights
for various indicator factors is crucial to the evaluation process and its results. Accurately
determining these weights ensures that each indicator appropriately reflects its significance
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in assessing ecosystem vulnerability. Currently, methods for calculating and assigning
weights can be broadly categorized into two types: subjective weighting and objective
weighting methods. Among the subjective methods, the Analytic Hierarchy Process (AHP)
is widely used due to its effectiveness in handling evaluations involving numerous indicator
factors through relatively straightforward computational procedures. The AHP method
involves structuring a hierarchy that includes the overall goal, criteria, and sub-criteria,
followed by pairwise comparisons of indicators within each criterion to establish their
relative importance. Experts assign numerical values based on a predefined scale to
indicate the degree of preference between each pair of indicators. These comparisons are
organized into a judgment matrix, from which the principal eigenvalue and corresponding
eigenvector are calculated to derive the weights for each indicator. A consistency ratio (CR)
is then computed to ensure the reliability of the pairwise comparisons; if the CR is below
a certain threshold (commonly 0.1), the judgments are considered consistent. Despite its
effectiveness, the AHP approach is susceptible to subjective influences, as the weights are
heavily reliant on expert judgments and perceptions [11,36].

To mitigate the subjectivity inherent in the AHP method, the entropy value method is
employed as an objective weighting technique. This method primarily reflects the degree of
variability or dispersion among the indicator factors, providing an unbiased determination
of weights based on the inherent information within the data. First, the raw data for each
indicator are standardized using Equations (1) and (2) to ensure comparability among
different indicators. Second, for each standardized indicator, the proportion of each data
point relative to the total is calculated, forming a proportion matrix P = [Pij], where Pij

represents the proportion of the j-th data point of the i-th indicator. Then, Equation (3) is
used to calculate the entropy value for each indicator. Next, the degree of divergence for
each indicator is obtained by subtracting the entropy value from 1 (Equation (4)). Finally,
the degree of divergence for each indicator is normalized using Equation (5) to determine
the weight of each indicator. The entropy value method objectively determines weights
based on the variability of the data, free from subjective biases, and thus effectively captures
the intrinsic information and the relationship among indicator factors.

Ej = −k
n

∑
i=1

Pijln
(

pij
)

(3)

where k = 1
ln(n) is a constant to ensure that Ej ranges between 0 and 1.

dj = 1 − Ej (4)

wj =
dj

∑m
j=1 dj

(5)

where m is the total number of indicators.
To leverage the strengths of both subjective and objective weighting methods, this

study employs a combined approach, integrating the weights derived from the AHP and
entropy value methods. This hybrid method capitalizes on the complementary advantages
of subjectivity (expert knowledge) and objectivity (data-driven insights), resulting in a
more balanced and robust weighting scheme.

The combined weight Wj for each indicator is calculated using the following formula:

Wj = µ·WAHP
j + (1 − µ) · WEntropy

j (6)

where
WAHP

j is the weight obtained from the AHP method.

WEntropy
j is the weight obtained from the entropy value method.
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µ is the preference coefficient, set to 0.5 in this study to equally emphasize both methods.
This approach ensures that the final weights encapsulate both expert judgments

and objective data characteristics, enhancing the reliability and validity of the ecological
vulnerability assessment [70]. The resulting weights for the ecological vulnerability factors
of the Yunnan section of the Tropic of Cancer are presented in (Table 2).

Table 2. Weights of ecological vulnerability evaluation index system of Yunnan section of Tropic of
Cancer. * Represents disaggregated indicators.

Goal Level Criterion
Level Indicator Level Indicator

Orientation

Hierarchical
Analysis
Weights

Entropy
Weighting

Combined
Weights

Assessment of
Ecosystem

Vulnerability in
the Yunnan

Section of the
Tropic of
Cancer

Exposure
Index (EI)

0.3157

Percentage of built-up land
area (E01) − 0.1101 0.1313 0.1207

Road network density (E02) − 0.0952 0.0635 0.0794
GDP per capita (E03) + 0.0951 0.1109 0.1030

Population density (E04) − 0.0853 0.1128 0.0991
Area of cultivated land on >25◦

slope (E05) − 0.1201 0.0649 0.0925

Distance to mining surface (E06) − 0.1325 0.0421 0.0873
Power generation (E07) − 0.0857 0.0319 0.0588

Mining scale (E08) − 0.1025 0.1473 0.1249
Annual rainfall (E09) + 0.0312 0.0137 0.0225

Annual average
temperature (E10) + 0.0127 0.0109 0.0118

Land use type (E11) + 0.0102 0.0571 0.0337
Density of settlements (E12) − 0.0902 0.1209 0.1056
Area of forest and grassland
damaged by the mine (E13) − 0.0292 0.0927 0.0610

Sensitivity
Index (SI)

0.3319

Geologic hazard density (S01) − 0.1322 0.1039 0.1181
Distance to geologic

formations (S02) − 0.1103 0.0912 0.1008

Stratigraphic lithology
type (S03) * 0.1508 0.0881 0.1195

Elevation (S04) * 0.0152 0.1566 0.0859
Slope direction (S05) * 0.0206 0.0397 0.0302
Slope gradient (S06) − 0.0315 0.1058 0.0687

Biological abundance
index (S07) + 0.1121 0.1132 0.1127

Soil type (S08) * 0.1008 0.0996 0.1002
Soil erosion type (S09) − 0.1433 0.1026 0.1230

Vegetation cover index (S10) − 0.1832 0.0993 0.1413

Adaptive
Capacity

Index (ACI)
0.3524

Public budget
expenditures (A01) + 0.0792 0.0813 0.0803

Years of mine service (A02) − 0.0846 0.0998 0.0922
Per capita disposable

income (A03) + 0.0656 0.0729 0.0693

Area of forest and
grassland (A04) + 0.0921 0.0756 0.0839

Cultivated land area per
capita (A05) + 0.0638 0.0711 0.0675

Green coverage rate (A06) + 0.1205 0.1133 0.1169
Residents’ year-end

deposits (A07) + 0.0618 0.0804 0.0711

Growth rate of fixed asset
investment (A08) − 0.0794 0.0811 0.0803

Utilizable water resources (A09) + 0.1218 0.1107 0.1163
Environmental capacity (A10) + 0.1165 0.1037 0.1101

Amount of land resources (A11) + 0.1147 0.1101 0.1124
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3.6. Ecosystem Vulnerability Assessment

Ecosystem vulnerability is the result of the integrated effect of multiple factors through-
out the whole ecosystem. According to the characteristics of its own influencing factors,
and through the comprehensive analysis of the existing research results on the evaluation
of ecosystem vulnerability, this paper selected the integrated weighted summation model
and the integrated index method based on the ArcGIS 10.8.1 software platform’s raster
calculator and the superposition analysis function to evaluate the ecosystem exposure
degree of the Yunnan section of the Tropic of Cancer, sensitivity and adaptive capacity, and
then cited the ecosystem vulnerability model constructed by previous scholars to evaluate
the vulnerability of ecosystems in the study area, in order to better show the functional
relationship between ecosystem exposure, sensitivity and adaptive capacity [7,36]. The
calculation formula is as follows:

1. Comprehensive Weighted Sum Model

Ecosystem vulnerability is a comprehensive decision-making system affected by multi-
objective factors. Combining regional characteristics and the degree of data availability,
ecosystem vulnerability was decomposed into three dimensions: ecosystem exposure,
ecosystem sensitivity, and ecosystem adaptive capacity, and then the corresponding eval-
uation index factors were selected, and the comprehensive weighted summation model
was used to calculate exposure (EI), sensitivity (SI), and adaptive capacity (ACI) indices,
respectively. (EI), sensitivity (SI) and adaptive capacity (ACI) indices were calculated using
a comprehensive weighted summing model, and are presented as follows:

EI = ∑n
i=1 WijXij (7)

SI = ∑n
i=1 WijXij (8)

ACI = ∑n
i=1 WijXij (9)

where EI is the ecosystem exposure index, SI is the ecosystem sensitivity index, ACI is the
ecosystem resilience index, Wij denotes the weight of the jth indicator factor, Xij denotes the
value of the jth indicator factor after normalization, and n denotes the number of indicators.

2. Vulnerability Model

To comprehensively explore and analyze the internal functional relationships among
ecosystem exposure, sensitivity, and adaptive capacity, we employed an ecosystem vul-
nerability model based on existing research findings. This model integrates the three key
dimensions—exposure, sensitivity, and adaptive capacity—to evaluate the overall vulnera-
bility of ecosystems. Specifically, higher values of ecosystem exposure (EI) and sensitivity
(SI) are associated with lower ecosystem vulnerability, whereas higher values of ecosystem
adaptive capacity index (ACI) indicate greater ecosystem resilience and thus lower vulnera-
bility. Conversely, lower adaptive capacity increases ecosystem vulnerability [1,6,20]. The
ecosystem vulnerability index (VI) is calculated using the following formula:

VI = EI × SI
ACI2 (10)

where VI is the ecosystem vulnerability index, EI is the ecosystem exposure index, SI
is the ecosystem sensitivity index, ACI is the ecosystem adaptive capacity index, and
higher ecosystem exposure (EI) and sensitivity (SI) values are associated with higher
ecosystem vulnerability.

The squaring of the ACI in the denominator emphasizes the diminishing returns
of adaptive capacity in reducing vulnerability. This adjustment ensures that variations
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in adaptive capacity have a more pronounced effect on the vulnerability index, thereby
enhancing the model’s sensitivity to changes in adaptive capacity.

3.7. Results Grading and Spatial Autocorrelation

According to the ecological vulnerability evaluation index system and ecological vul-
nerability calculation formula of the Yunnan section of the Tropic of Cancer, the data layers
after the rasterization of all the evaluation indexes were calculated in ArcGIS software
platform, and the spatial distribution characteristics of the ecosystem exposure index,
the ecosystem sensitivity index, the ecosystem adaptive capacity index, and the ecosys-
tem vulnerability index of the Yunnan section of the Tropic of Cancer were obtained,
respectively. The ecosystem exposure index of the Yunnan section of the Tropic of Can-
cer ranged from 0.30 to 0.66, the ecosystem sensitivity index ranged from 0.28 to 0.77,
the ecosystem resilience index ranged from 0.24 to 0.86, and the ecosystem vulnerability
index ranged from 0.36 to 0.66. Then, the Natural Breaks (Jenks) method in ArcGIS soft-
ware was applied to classify the exposure and sensitivity index values. Areas with index
values between 0.24 and 0.41 were classified as the lowest-vulnerability zones, values be-
tween 0.42 and 0.46 were classified as moderately low-vulnerability zones, values between
0.47 and 0.51 were classified as moderate-vulnerability zones, values between 0.52 and 0.56
were classified moderately high-vulnerability zones, and values between 0.57 and 0.86 were
classified as the highest-vulnerability zones. In contrast, for ecosystem adaptive capacity,
the higher the adaptive capacity, the lower the vulnerability. This process resulted in the
distribution map of ecosystem vulnerability in the Yunnan section of the Tropic of Cancer.

In order to explore the spatial distribution characteristics of ecological vulnerability
and its heterogeneity in the Yunnan section of the Tropic of Cancer, this study was based on
the global spatial autocorrelation analysis tool of the ArcGIS software, which was used to
carry out spatial autocorrelation analysis on the ecological vulnerability evaluation results
of the Yunnan section of the Tropic of Cancer, to calculate the global Moran’s I index, the
Z-value and the p-value of the regional ecological vulnerability, and to organize the global
spatial autocorrelation distribution pattern of the regional ecological vulnerability.

4. Results and Analysis
4.1. Results of Ecosystem Vulnerability Assessment

Based on the spatial distribution map of ecological vulnerability of the Yunnan section
of the Tropic of Cancer (Figure 3), combined with the spatial statistical analysis function of
ArcGIS software, the administrative boundaries of the 17 counties in the study area were
superimposed and analyzed through the area tabulation tool. The area status and spatial
distribution characteristics of ecological vulnerability in each county were counted, and the
main spatial distribution characteristics of ecological vulnerability in the Yunnan section of
the Tropic of Cancer were obtained.

Lowest-vulnerability zone: The ecological lowest-vulnerability area of the Yunnan
section of the Tropic of Cancer accounted for 13.99% of the total area of the study area,
amounting to 7839.07 km2, and it was mainly distributed in the whole of Yanshan County,
the area outside of the central part of Wenshan City, the southern and eastern parts of
Jinggu County, and the southern part of Mengzi City. These areas are mostly distributed in
areas with high vegetation cover, abundant water and gas resources, and low construction
indexes, and have not suffered too much external environmental damage and human
interference, so the original ecological environment is well protected and maintained, and
there are few geologic disasters occurring at the same time.
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Moderately low-vulnerability zone: The moderately low-vulnerability area was the
one with the largest area share of the five ecological fragile types, occupying 30.99% of
the total area of the study area, with an area of 17,366.53 km2, and was mainly distributed
in the whole of Jinggu County, outside the central part of Funing County, and in the
southern and eastern parts of Gengma County and Jianshui County. Compared with the
lowest-vulnerability area, there were a small amount of man-made mining phenomena
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such as farming and mineral resources mining areas in the moderately low ecological
vulnerability area. Due to the farming and mineral resources mining for the vegetation
cover and forest resources have caused some damage, which led to a certain amount of soil
erosion phenomenon under the effect of rainfall.

Moderate vulnerability zone: The moderate-vulnerability area covered an area of
13,887.24 km2, accounting for 24.79% of the total area of the study area, and was mainly
distributed in the northern and southern parts of Mojiang County, the central part of Funing
County, the northern and southern parts of Ning’er County, and Cangyuan and Yuanjiang
Counties. In the study area, 80% of the exposed bedrock was dominated by limestone,
and the karst phenomenon, desertification and desertification were more serious in the
areas where limestone was developed, and the moderately vulnerable areas were mainly
distributed in the mountainous areas where the phenomenon of rocky desertification was
serious, and the terrain in these areas was steeper and the vegetation coverage was lower,
and the soil erosion was extremely serious under the erosion and weathering of the rainfall
in the long term.

Moderately high-vulnerability zone: The moderately high-vulnerability areas were
mainly located in the central part of Mojiang County, Shiping County, central part of Ning’er
County, Malipo County and Shuangjiang County, accounting for 23.85% of the total area of
the study area, comprising an area of 13,363.40 km2. The moderately high-vulnerability
areas were mainly located in the periphery of the cities of the counties, the township
centers with a high density of buildings and the areas with frequent human engineering
activities, where soil erosion, soil sanding, and rock desertification are common. Soil
erosion, soil sanding, and rock desertification are common in these areas, and frequent
human engineering activities have caused a certain number of geologic disasters, destroying
the stability and shape of the original land surface.

Highest-vulnerability zone: The overall ecological vulnerability of the study area
was low, so the highest-vulnerability area was the smallest, only accounting for 6.38% of
the total area of the study area, 3574.06 km2; Honghe County occupies 51.82%, with the
majority of the rest being distributed across the central and southern areas of of Ma Lipo
County, the middle of Xichou County, the east of Shuangjiang County, and the middle of
Shiping County. The main influencing factors for high-vulnerability areas in the ecological
environment include mineral resource extraction, engineering geological activities, human
cultivation of land, and soil erosion. The highest-vulnerability areas were primarily located
on both sides of newly constructed roads within the past three years and within the
range of mineral resource extraction zones. Extensive and high-intensity extraction and
construction activities led to the loss of the original mechanical stability of the surface
bedrock, which in turn triggered a series of disasters that increased the vulnerability of the
ecological environment.

4.2. Spatial Autocorrelation Analysis

The results showed that the global Moran’s I index of regional ecological vulnerability
of the Yunnan section of the Tropic of Cancer (Figure 4) was positive and greater than 0.9,
indicating that the regional ecological vulnerability of the study area had a high degree
of positive correlation in the spatial distribution characteristics. The highest-vulnerability
areas had a significant impact on the stability of the surrounding ecological environment,
and also led to an increase in the ecological vulnerability of the surrounding areas, while
areas with lower ecological vulnerability had a positive impact on the surrounding areas.
The Z-score was greater than 303, which was much higher than the reference value of 2.58,
which further verified that the regional ecological vulnerability was highly aggregated in
the spatial distribution pattern. Without the intervention of external management factors,
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the spatial distribution of the highly vulnerable areas will continue to expand over time,
and it is difficult to rely on the ecosystem’s own restoration capacity to achieve a high
degree of restoration and have a sustained impact on the neighboring areas. In addition,
the p-value of ecological vulnerability of the Yunnan section of the Tropic of Cancer was
0, which was smaller than the reference value of 0.01, reflecting that the confidence level
of the ecological vulnerability evaluation results was higher than 99%, indicating that
the probability of random generation was less than 1%. These results not only reflect
the precision and credibility of the evaluation results, but also confirm that the regional
ecological vulnerability has obvious spatial clustering characteristics, which is consistent
with the reality.
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Figure 4. Spatial autocorrelation characteristics of regional ecological vulnerability of the Yunnan
section of the Tropic of Cancer.

By analyzing the results of the ecosystem vulnerability assessment along the Yunnan
section of the Tropic of Cancer, it is found that there are obvious differences in the spatial
distribution of vulnerability in the region. Overall, the areas with higher exposure are
mainly concentrated in areas with intensive economic activities, high population density,
and high land use intensity, such as the periphery of major cities and along the main
transportation routes. This indicates that human activities are exerting significant pressure
on the ecosystem, especially in areas where infrastructure is being built and agriculture
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and livestock are expanding. In addition, climate change also significantly affects exposure,
especially in areas with uneven precipitation distribution.

In terms of sensitivity, areas with low vegetation cover and serious soil erosion show
higher vulnerability. Geohazard-prone areas, especially counties and districts located in
mountains and river valleys, are significantly more sensitive due to both geological and
climatic conditions. Reduction in vegetation cover and soil erosion are the main factors
leading to increased vulnerability of ecosystems in these areas.

The regions with relatively low adaptive capacity are mainly concentrated in counties
and districts with insufficient economic inputs, limited land resources and low environ-
mental carrying capacity. The lack of adequate financial support and infrastructure devel-
opment in these areas makes them less able to adapt in the face of environmental change
and ecosystem degradation. Therefore, increasing economic investment and improving
resource management in these areas is the key to enhancing their adaptive capacity.

Overall, the results show that regions with high exposure and sensitivity tend to have
weaker adaptive capacity, which exacerbates the vulnerability of ecosystems. Therefore,
these highly vulnerable areas should be prioritized for regional ecological conservation
and targeted conservation and restoration measures should be implemented.

5. Discussion
5.1. Analysis of Technical Methods

In this study, a comprehensive ecosystem vulnerability assessment framework was
constructed by using the VSD model combined with GIS technology, and the practice
proved the efficiency and applicability of this method in regional ecological assessment.
The introduction of GIS technology, and exploration of its advantages in spatial analy-
sis and data integration, enables us to realize multidimensional and multi-scale vulner-
ability assessment, which not only improves the accuracy of the assessment, but also
intuitively demonstrates the spatial distribution characteristics. Recent studies have high-
lighted the superiority of integrated models like VSD-GIS over traditional methods, noting
their enhanced ability to capture complex spatial patterns and interactions within ecosys-
tems [71,72]. Compared with the traditional single-factor assessment, this study provides a
comprehensive understanding of the vulnerability of regional ecosystems by integrating
the three dimensions of exposure, sensitivity, and adaptive capacity.

In the exposure assessment, the study specifically considered mining activities and the
area of damaged forests and grasslands, an innovation that is consistent with the ecological
context of the region and provides a more targeted assessment basis for this type of human-
intensive area. Mining not only has a direct impact on land use, but also may increase
the vulnerability of ecosystems, and this integrated consideration of the scale of mining
activities and their impact on vulnerability has strong practical and theoretical value in the
field of ecological assessment [49]. Furthermore, incorporating specific human activities
like mining aligns with recent advancements in vulnerability assessments, which advocate
for context-specific indicators to improve the relevance and accuracy of evaluations [73].

In terms of sensitivity, this study added factors such as geological disasters and soil
erosion to the indicator system, which made up for the lack of attention to environmental
sensitivity in previous studies by refining the impact of these natural disasters on ecosys-
tem stability. This approach is supported by the findings of Martinez and Gonzalez [74],
who emphasized the importance of including geophysical factors to enhance the sensi-
tivity analysis in vulnerability assessments. In the assessment of adaptive capacity, we
comprehensively considered indicators such as mine service life, greening coverage, and
environmental capacity, which not only improved the model’s ability to assess the adaptive
capacity of regional economic activities, but also provided an important basis for future
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ecological restoration and management decisions [1]. Integrating socio-economic indicators,
as shown in this study, has been shown to provide a more holistic view of adaptive capacity,
aligning with recommendations from recent literature [75].

Overall, the technical approach of this study demonstrates promising feasibility and
versatility, suggesting potential applicability to other ecological vulnerability assessment
projects. Comparative analyses in the literature indicate that frameworks combining VSD
with GIS can offer greater flexibility and precision in diverse ecological contexts compared
to isolated methodologies [76,77]. In this study, our data processing flow and model se-
lection process illustrate a method for constructing an assessment framework tailored
to regional characteristics through the integrated analysis of multi-source data. This in-
tegrated approach aligns with contemporary best practices, which advocate for the use
of multi-source data to enhance the robustness and applicability of vulnerability assess-
ments [78,79]. However, it is important to note that while these findings are encouraging,
further validation is necessary to establish the generalizability and effectiveness of this
framework across different ecological settings.

5.2. Comparative Analysis of Results

In order to further verify the reliability of the results of this study, we compared it
with other similar studies and ecological vulnerability studies on the Yunnan section of
the Tropic of Cancer region. Overall, this study was significantly different from previous
studies, especially with regard to its fine-grained assessment of exposure, sensitivity, and
adaptive capacity.

By comparing with the study of Yajun and Lifang [28], this study included more
indicators directly related to human activities in the exposure assessment, such as mining
activities and damaged forest and grassland areas. The introduction of these indicators
made our assessment results more precise in revealing the impacts of human activities
on ecological vulnerability, especially in areas with intensive human activities, where the
effects of these factors were particularly significant.

In addition, compared with the study by He, Shen and Zhang [61], we focused more
on the impacts of geohazards, soil erosion, and biological abundance in the sensitivity
assessment. This adjustment not only improved the applicability of the model, but also
strengthened the reflection of the impacts of regional natural hazards, making the assess-
ment results more realistic. For example, the weights of vegetation cover and soil type
were increased in this study, highlighting the role of these natural elements in regulating
ecological vulnerability.

In terms of adaptive capacity, new socio-economic indicators such as mine service life,
greening coverage, and environmental capacity were introduced in this study, which made
up for the lack of attention to economic adaptive capacity in previous studies, especially in
the assessment of economic investment in rural areas, providing a more comprehensive
perspective. This not only enhanced the comprehensiveness of the assessment, but also
highlighted the influence of economic factors on ecological resilience.

We also compared our results with those of Hui Ye et al. [53], and this study further
refined the impacts of human activities on ecosystem vulnerability, especially in terms of
mineral resource extraction and environmental capacity, which made our findings more
relevant and valuable for application in the assessment of regional ecological vulnerability.

These comparative analyses suggest that this study offers unique contributions in
terms of the assessment framework, indicator selection, and interpretation of results. The
initial findings support the accuracy and scientific validity of our approach, indicating po-
tential new perspectives and methodological innovations in the field. However, additional
validation is needed to fully confirm these results.
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5.3. Limitations and Future Prospects

Although this study has improved the science and applicability of ecological vul-
nerability assessment by introducing a multidimensional indicator system, there are still
some shortcomings. First, due to the complexity of the ecosystems in the study area, the
precision and timeliness of the data affected the accuracy of the assessment results to some
extent. For example, indicators such as land use and population density in the exposure
are not fully represented in the time dynamic changes. In addition, long-term factors
such as climate change are not fully integrated into the sensitivity and adaptive capacity
assessment; in particular, the impacts of microclimate changes on regional ecosystems are
not fully reflected. This limits the model’s ability to simulate complex ecological processes,
resulting in some local ecological features not being fully captured [38].

Secondly, the model is more reliant on macro data during the assessment of adaptive
capacity and lacks sufficient field research and validation, especially in the ecosystem
resilience of mining and rural areas, which is not supported by dynamic data at the micro
level. Therefore, future research should focus on improving the timeliness and accuracy of
data, and increasing the frequency and depth of field research, especially in regions with
frequent human activities and significant climate change. Meanwhile, interdisciplinary
cooperative research will be an important direction to enhance the capacity of ecological
vulnerability assessment in the future. By combining more socio-economic and climate
change factors, the vulnerability assessment system can be further improved to provide
a more comprehensive and accurate scientific basis for the sustainable development of
regional ecological environment.

In conclusion, this study innovatively describes the impacts of mining, human activi-
ties, and natural disasters on the vulnerability of ecosystems in the Yunnan section of the
Tropic of Cancer by comprehensively considering multidimensional factors, which provides
new ideas and methods for ecosystem vulnerability assessment. However, future research
still needs to be further strengthened in terms of data accuracy, model optimization, and
interdisciplinary collaboration to achieve more timely and accurate assessment results.

5.4. Recommendations

To address the ecosystem vulnerability in the Yunnan section of the Tropic of Cancer,
targeted policy measures are proposed based on the specific characteristics of vulnerabil-
ity zones.

(1) In the lowest-vulnerability zone, covering areas such as Yanshan County, the outskirts
of Wenshan City, southern Jinggu County, and southern Mengzi City, efforts should
focus on vegetation restoration projects like reforestation and grassland rehabilita-
tion to enhance ecological resilience and safeguard water and gas resources. In the
moderately low-vulnerability zone, which includes Jinggu County, the outskirts of
Funing County, and southern Gengma and Jianshui Counties, measures such as soil
erosion control and sustainable land management should be implemented to mitigate
the impacts of agriculture and mining on vegetation and soil stability.

(2) In the moderate-vulnerability zone, spanning northern and southern Mojiang, central
Funing, Ning’er, Cangyuan, and Yuanjiang Counties, land use planning should prior-
itize strict zoning regulations to limit construction and mining activities in erosion-
prone karst areas. Similarly, in the moderately high-vulnerability zone, covering
central Mojiang, Shiping, Ning’er, Malipo, and Shuangjiang Counties, urban develop-
ment should adopt sustainable practices to minimize soil erosion and desertification
while restricting high-density building projects in vulnerable areas.

(3) To improve adaptive capacity, the moderately high-vulnerability zone should receive
increased funding for ecological infrastructure and community education programs
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to raise awareness of ecological protection and encourage sustainable practices. In
the highest-vulnerability zone, which includes Honghe, Malipo, Xichou, eastern
Shuangjiang, and Shiping Counties, advanced ecological protection measures, such
as disaster-resistant land management and erosion control systems, should be imple-
mented. Public awareness initiatives should also address the risks associated with
resource extraction and unsustainable land practices.

These recommendations, tailored to the unique conditions of each vulnerability zone,
aim to strengthen ecological protection, optimize land use, and enhance adaptive capac-
ity. By balancing ecological sustainability with economic development, these measures
provide a solid foundation for the long-term resilience of ecosystems in the region. Regu-
lar monitoring and evaluation will ensure the effectiveness of these policies and support
ongoing improvements.

6. Conclusions
In this study, based on the technical guidelines for dual evaluation of territorial spatial

planning, we evaluated the vulnerability of ecosystems in the Yunnan section of the Tropic
of Cancer from an ecological point of view and constructed an evaluation index system
by selecting the evaluation index factors that have a greater impact on the ecological
environment based on the three aspects of exposure, sensitivity, and adaptive capacity in
conjunction with the GIS technology, and came to the following main conclusions:

1. The spatial distribution of ecosystem vulnerability exhibited significant regional
differences. Through the assessment of ecosystem vulnerability in the Yunnan section
of the Tropic of Cancer, the results indicated that the ecological vulnerability in this
area showed significant spatial distribution differences. Regions with high exposure
concentrated in areas with frequent human activities, such as counties with high
population density and dense road networks, while regions with high sensitivity
mainly existed in mountainous and valley areas with low vegetation coverage and
severe soil erosion.

2. Exposure, sensitivity, and adaptive capacity jointly influenced ecological vulnerability.
This study assessed ecological vulnerability through the dimensions of exposure,
sensitivity, and adaptive capacity, and found that these factors collectively determined
the vulnerability level of the regional ecosystem. Exposure and sensitivity were the
primary factors leading to ecosystem vulnerability, while the level of adaptive capacity
determined the region’s ability to withstand and recover from ecological pressures.

3. Regions with strong adaptive capacity exhibited relatively low ecological vulnerabil-
ity. Counties with stronger adaptive capacity, such as those with higher economic
investment and better environmental carrying capacity, showed lower ecological
vulnerability. These areas were capable of effectively reducing the negative impacts
of ecological pressures on the system due to their better resource utilization and man-
agement capabilities, thereby enhancing the stability and resilience of the ecosystem.

4. Future climate change and human activities were expected to further exacerbate eco-
logical vulnerability. The research results indicated that as climate change intensified
and human activities continued to increase, the ecosystem in the Yunnan section of
the Tropic of Cancer faced greater challenges, particularly in areas with high exposure.
Therefore, it is particularly important to enhance the adaptive capacity of these regions
and implement targeted ecological protection measures.
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