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Abstract: In vegetated areas, soil pH impacts plant growth, soil properties, and spectral
characteristics. Remote sensing enables soil pH mapping by delivering detailed surface
data, and while high-resolution satellite images show great potential in complex terrains,
research in this area is still limited. This study evaluated PlanetScope (high-resolution) and
Sentinel-2 (medium-resolution) images in estimating soil pH across diverse land use types
in southwestern China’s hilly areas. It examined how spectral variables from four seasonal
images affect prediction accuracy. We integrated topographic and spectral variables at
seven spatial resolutions (3 m, 10 m, 20 m, 30 m, 40 m, 50 m, and 60 m), using extreme
gradient boosting (XGboost) for orchards, dry land, and paddy fields. We found that the
models developed with PlanetScope images tended to achieve better prediction accuracy
compared to those utilizing Sentinel-2 images. For each satellite, single-temporal images
showed greater predictive power under each land use type. In particular, the spring spectral
data showed desirable predictive performance for the orchards and the paddy fields, while
the autumn spectral data contributed more effectively to the models for the dry land.
Specifically, PlanetScope provided the best prediction accuracy for soil pH at 3 m resolution
(orchard: R2 = 0.72, MAE = 0.24, RMSE = 0.30, RPD = 1.91; dry land: R2 = 0.77, MAE = 0.37,
RMSE = 0.40, RPD = 2.09; paddy field: R2 = 0.66, MAE = 0.35, RMSE = 0.41, RPD = 1.71),
while Sentinel-2 performed better at 10 m resolution (orchard: R2 = 0.67, MAE = 0.29,
RMSE = 0.33, RPD = 1.75; dry land: R2 = 0.70, MAE = 0.39, RMSE = 0.47, RPD = 1.83;
paddy field: R2 = 0.64, MAE = 0.34, RMSE = 0.42, RPD = 1.66). Our findings demonstrate
that sensor selection, land use, temporal phases, and modeling resolution significantly
impact outputs. High-resolution PlanetScope images prove effective for predicting soil pH
in complex terrains.

Keywords: hilly topography; extreme gradient boosting; digital soil mapping; feature
importance; soil property prediction

1. Introduction
Soil pH plays a key role in determining soil fertility and evaluating acidification [1].

Soil acidity or alkalinity is integral to numerous chemical reactions that have a profound
impact on soil structure, nutrient availability, elemental migration during soil formation,
and microbial activity [2,3]. In recent years, there has been growing attention towards
discussions on food security and environmental concerns. As an important parameter for
evaluating land quality, soil pH influences the presence, transformation, and efficacy of soil
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nutrients by affecting various soil properties [4]. Understanding soil pH regional distribu-
tion is essential for sensible and effective land management and sustainable agricultural
development. Nevertheless, conventional approaches employed for field-scale soil pH mea-
surement are characterized by their time-consuming nature, labor-intensive requirements,
and substantial associated costs. They are also not suitable for large-scale monitoring and
do not capture the spatial variability of soil pH [5]. Therefore, it is imperative to explore
reliable and efficient approaches to monitoring soil pH.

At present, Digital Soil Mapping (DSM) is recognized as a highly effective method for
accurately mapping different soil properties [6–8]. In contrast to traditional approaches,
DSM provides numerous benefits, such as efficiency, cost-effectiveness, and the ability to
capture detailed spatial variations in soil properties [9–15]. DSM is the process of creating
models to predict soil properties by establishing quantitative correlations between these
variables and pertinent environmental conditions. Powerful and accurate machine learning
models have been created to achieve this goal, including Support Vector Machine (SVM),
Random Forest (RF), Multivariate Adaptive Regression Splines (MARSs), the Cubist model,
the Deep Learning Neural Network model, Gradient Boosting Regression Trees (GBRT),
and Extreme Gradient Boosting (XGboost) [16–19]. Of these, the XGboost algorithm is
preferred for its powerful processing abilities and strong resistance to overfitting, making it
highly suitable for predicting soil properties [20–22].

Earlier research on DSM has largely depended on observed indicators and a limited
set of environmental variables to predict soil pH levels. In regions with vegetation, pH
levels affect plant growth and the physicochemical properties of the soil, leading to unique
spectral patterns [23–25]. Leveraging remote sensing technology, numerous reliable spec-
tral variables derived from optical satellite data have been utilized to model soil–landscape
relationships and effectively predict soil pH. In recent years, the use of sensors such as
Sentinel-2, MODIS, and Landsat for soil pH prediction has gained widespread application
and achieved significant success [26–29]. However, the predictive performance of satellite
data for soil pH varies substantially at different levels of terrain complexity. In flat regions,
where geomorphological variability is minimal, optical sensors can accurately capture the
surface textures and vegetation growth patterns that indirectly reflect the chemical proper-
ties of the soils in the area. For example, Asa et al. conducted studies in four agricultural
zones in Prestavlky, using Sentinel-2 data. They demonstrated that incorporating spectral
indices further enhanced the robustness of medium-resolution imagery modeling [30]. Sim-
ilarly, Xia et al. utilized high-resolution Gaofen-2 data combined with vegetation indices,
such as the Normalized Difference Vegetation Index (NDVI), to generate pH distribution
maps in the North China Plain, achieving excellent model performance (R2 = 0.82) [26].
These studies indicate that in flat terrains, various satellite sensors can effectively model
soil pH by capturing vegetation cover and bare surface features. However, conditions
differ markedly in hilly or mountainous regions characterized by complex terrain. These
areas often involve steep slopes, increased shadow effects, and irregular distributions of
surface reflectance signals. Relying solely on single-source optical satellite data may not
adequately describe soil properties under such conditions; additional parameters, such as
the Digital Elevation Model (DEM), are often required, to improve predictions. For instance,
Zhang et al. investigated sloping areas on the Qinghai–Tibet Plateau, using Landsat 8
data integrated with DEM [31]. They demonstrated that incorporating variables like slope
aspect and elevation gradients significantly improved the ability of low-resolution imagery
to characterize large-scale soil pH gradients. In addition to DEMs, radar data have in-
creasingly emerged as a valuable supplement for addressing challenges posed by complex
terrains. Wang et al. proposed a fusion method combining Sentinel-1 radar intensity with
Sentinel-2 optical imagery to achieve more accurate DSM mapping in the hilly regions of
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eastern China. This multi-source integration not only compensated for information loss
from traditional optical data in forested areas but also captured micro-scale local variations,
enhancing prediction accuracy (R2 = 0.76, RMSE = 0.45) [21].

While traditional medium- and low-resolution sensors have played a significant role
in DSM, their inherent data limitations often restrict their effectiveness. In regions char-
acterized by complex terrain, rapid dynamic changes, or high small-scale heterogeneity,
such sensors struggle to capture sufficient detail. This leads to reduced model-prediction
accuracy and limits the ability to precisely identify and map soil properties. However,
advances in remote sensing technologies—particularly high-resolution satellite imagery
and Unmanned Aerial Vehicle (UAV)-based remote sensing—offer promising solutions to
these challenges. For instance, Zheng et al. employed UAV-based multispectral imagery
to map soil organic matter content in the hilly terrain of a national modern agricultural
industrial park in northern Cixi City, Zhejiang Province, China [32]. Their results demon-
strated that the high spatial resolution of UAV imagery significantly improves prediction
accuracy in areas with small-scale heterogeneity, enhancing the sensitivity of models to
spatial variability in soil properties. Similarly, Wang et al. investigated the synergistic
use of Sentinel-2 and PlanetScope data for soil property mapping in mountainous regions.
They found that PlanetScope’s ultra-high spatial resolution effectively compensates for
Sentinel-2’s limited temporal resolution, facilitating comprehensive dynamic monitor-
ing [33]. Furthermore, Webb et al. utilized hyperspectral data acquired from UAV-mounted
cameras combined with parent material and slope aspect information to accurately delin-
eate micro-topographic units and their associated soil properties on spring wheat slopes in
southwestern Montana, USA [34]. These findings underscore the substantial potential of
high-resolution imagery for predicting soil attributes in complex terrains. Notably, the re-
cent emergence of PlanetScope satellites has garnered increasing attention from researchers,
due to their superior temporal and spatial resolution [35–39]. Beyond generating ultra-fine-
grained remote sensing imagery, PlanetScope satellites feature spectral response curves
specifically optimized for agricultural land applications [40]. This design enables them
to extract core effective bands critical for identifying detailed soil characteristics within
farmland environments. In complex terrain settings, PlanetScope’s ultra-high-resolution
remote sensing imagery combined with auxiliary variables, such as DEM, may hold great
potential for distinguishing discontinuities between adjacent small units more precisely.
This capability could further enhance DSM model applicability under challenging en-
vironmental conditions by improving accuracy across diverse landscapes with intricate
topography and variable landforms.

The PlanetScope land observation mini-satellite system is deployed by Planet,
a renowned American commercial remote sensing satellite company. These advanced
satellites offer stable data transmission capabilities and can capture remote sensing images
daily, with spatial resolutions ranging from 3 to 5 m [40]. With their high spatial resolution,
spectral resolution, and coverage frequency characteristics, PlanetScope satellites can moni-
tor the entire globe once a day [40]. Compared to Sentinel-2, although PlanetScope satellites
are not available for free, their higher temporal and spatial resolutions provide significant
opportunities for analyzing soil information at different scales. Currently, PlanetScope satel-
lite data have shown dependable outcomes in areas like agricultural monitoring, marine
observation, and land cover classification [37–39,41,42]. However, the complete capabil-
ities of PlanetScope satellite sensors in forecasting soil pH remain underutilized. Prior
research has mainly focused on comparing different medium-resolution sensors’ impacts
on models predicting soil properties, seldom examining how high-spatial-resolution (<5 m)
and medium-spatial-resolution (10–30 m) satellite sensors affect these models. Specifically,
the widely applicable PlanetScope satellite’s potential has not been thoroughly investigated.
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Compared to other high-resolution sensors with sub-meter detail capabilities (such as
Gaofen-2), PlanetScope stands out not only for its excellent technical performance but also
for its broader acceptance, due to international market accessibility. On the other hand,
Sentinel-2 has become a favored choice among users because of its free availability and
strong adaptability. Although Sentinel-2 is slightly inferior in spatial resolution, with a
medium resolution of 10–20 m, it achieves an optimal balance between coverage area and
computational cost. Additionally, its 13 key spectral bands, particularly the red-edge bands,
provide valuable support for soil property prediction. A comparison of PlanetScope and
Sentinel-2 could help elucidate the specific roles and impacts of spatial resolution and
spectral characteristics in soil pH prediction within hilly regions.

In vegetated regions, spectral imagery can estimate soil pH by capturing surface
vegetation data. This ability may stem from the significant interactions between vegetation
variability and soil attributes [23,43]. However, remote sensing images capture only the
surface features at a specific moment, so features recorded at different times can vary sig-
nificantly. Different land use practices, due to their variations in vegetation cover, farming
methods, and water resource management, lead to dynamic changes in soil properties over
time. These dynamic changes manifest as different spectral characteristics at different time
points [21,36]. By analyzing these temporal differences, it is possible to more accurately
capture features related to soil pH.

Selecting the appropriate time for satellite image acquisition could reduce complex
interference caused by external environmental changes, better reflect the interactions be-
tween vegetation and soil, and enhance the accuracy of soil pH prediction by analyzing
spectral characteristic differences at different times. Generally speaking, acquiring satellite
images during spring, summer, autumn, and winter can enable assessment of how vegeta-
tion affects spectral features related to soil properties during stages of emergence, vigor,
senescence, and dormancy [33]. For example, in springtime new leaves strongly absorb red
light and reflect near-infrared light, while dense and active summer vegetation provides
information about health status—both potentially linked to soil pH. During autumn, leaves
change color due to environmental conditions, and their gradual yellowing or reddening
alters reflection characteristics across different spectral bands; data from this period reveal
potential changes in soil pH, due to nutrient retraction or degradation. In winter, with
plants reduced or absent, exposed bare surfaces become primary observation targets; di-
rectly obtaining reflection data from the exposed ground aids precise analysis of inherent
properties, including pH value. Moreover, comparing the predictive performance across
imagery acquired in different seasons enables a more comprehensive understanding of
how acquisition timing affects model accuracy. It also provides deeper insights into the
year-round dynamics of vegetation–soil interactions in varying environmental conditions.

The rugged topography of Southwest China, characterized by its hilly and mountain-
ous regions, poses challenges for accurate prediction of soil pH using remote sensing data,
including significant terrain fluctuations, diverse land use types, and fragmented land
parcels. Current research has shown that soil pH exhibits different variations depending
on the specific land use types, which are affected by factors such as vegetation [44,45]. Nev-
ertheless, accurate soil pH prediction across various land uses remains under-researched.
Although Zhang et al. and Xia et al.’s models included land use as a variable, its impact
on prediction accuracy was minimal [26,27]. Given the influence of land use on predic-
tion outcomes, exploring remote sensing for soil pH estimation in specific land uses is
highly valuable. We hypothesized that focusing remote sensing efforts on single land use
categories could improve model precision.

Hence, this study aimed to assess PlanetScope satellite’s capability in estimating soil
pH by comparing it with the widely used Sentinel-2 satellite. The specific goals were
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to (i) compare different models and determine the optimal one for mapping the spatial
distribution of soil pH; (ii) explore the influence of optical image acquisition time on
prediction accuracy; (iii) evaluate the prediction accuracy of soil pH under different land
use types. These objectives were achieved by obtaining satellite images of four seasons,
and using the XGboost algorithm to develop soil pH prediction models for different land
use types.

2. Material and Methods
2.1. Study Area

The study area is located in Ganning Town, Wanzhou District, Chongqing, China,
covering longitudes 108◦13′10′′–108◦17′40′′E and latitudes 30◦39′1′′–30◦41′30′′N. Covering
a vast expanse of approximately 1800 hectares, the study area boasts a subtropical monsoon
humid climate characterized by four distinct seasons. Based on observational data from
the Wanzhou District Meteorological Station, this region experiences an average yearly
temperature of 17 ◦C, receives about 1209.7 h of sunshine annually, and has an annual
precipitation of approximately 1293.3 mm. The relative humidity is around 75.4%. Regard-
ing geomorphology, the study area features the East Sichuan Tectonic Denudation Hills.
The Gannin River traverses through this region, contributing to its complex topographic
conditions. The study area includes a notable natural slope, with elevations spanning from
248 to 657 m. Additionally, the topographic slope ranges between 0 and 79 degrees.

The study area exhibits a diverse range of land use types, with orchard, dry land,
and paddy field standing out as the most significant ones. Spanning across 233.3 hectares
(14.67% of the total land area), the orchards are primarily cultivated with rose oranges,
mandarins, and loquats. Following closely is the expansive dry land covering 285.9 hectares
(17.98% of the total land area), where crops such as maize, wheat, soya beans, and rapeseed
flourish. Lastly, the paddy fields, covering a significant 394.11 hectares (24.78% of the total
land area), serves primarily for single-season rice cultivation from April to September,
while also functioning as an important water reservoir during the winter months.

2.2. Soil Sampling

In 2019, we conducted surveys within the study area, and we determined soil sam-
pling locations, using a “grid combined with plot” method, focusing on surface soils.
The core of this method lies in capturing the diversity and representativeness of surface
soils through a well-designed grid layout and plot configuration. Initially, the study area
was divided into several grids, to systematically cover the entire region. The grid size
was determined based on a comprehensive consideration of the terrain complexity and
land use types. For the agricultural areas, we selected a grid size with 4 to 6 sampling
points per square kilometer. This setup effectively captured the spatial variability of the soil
while providing sufficient data points for statistical analysis within a reasonable workload.
At each designated sampling point, using the GPS location as the center, we identified 4 to
6 subsampling points within a 30-to-50-m radius. These sub-samples were then combined
in equal parts, to form a composite sample. Each initial sample, weighing over 1.5 kg, was
placed in specialized bags. After collection, the samples were air-dried at room temperature
and passed through a 2 mm sieve before chemical analysis. Soil pH was measured with a
pH meter, using a 1:2.5 soil-to-water suspension ratio [46]. A total of 290 topsoil samples
were obtained from the study area, including 75 from the orchards, 67 from the dry land,
and 148 from the paddy fields (Figure 1).
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Figure 1. Overview of the study area. Notes: the red dot indicates the location of the study area
within China.

2.3. Environmental Data for Modeling

Recognizing the link between environmental conditions and soil characteristics, we
gathered remote sensing imagery and terrain data for use as environmental inputs in our
modeling analysis. These inputs were converted into raster layers with spatial resolutions
of 3 m, 10 m, 20 m, 30 m, 40 m, 50 m, and 60 m via bilinear interpolation using ArcGIS 10.8.
We then extracted the attribute values from each soil sample point to serve as input for the
model [47]. Below is a detailed explanation of how these environmental variables were
obtained and processed.

2.3.1. Satellite Images Collection and Processing
(1) PlanetScope Images

The PlanetScope satellite excels in ground monitoring, with its 3-meter resolution
and near-daily revisit cycle. For this study, we utilized L3B-level PSB-SD products from
PlanetScope, which feature four spectral bands: blue, green, red, and near-infrared (Table 1).
Four images were taken when the cloud cover was less than 5%, covering the four distinct
seasons within the study area: spring (17 April 2020), summer (3 August 2020), autumn
(14 November 2020), and winter (12 January 2021). All PlanetScope images were subjected
to geometric correction using 30 ground control points. This correction was performed by
applying an affine transformation, which was determined by the utilization of the least
squares registration characterization tool in ArcGIS 10.8. The FLAASH atmospheric model,
based on the MODTRAN 4 radiative transfer code created in ENVI 5.1 software, was then
used to radiometrically and atmospherically correct all the remote sensing datasets [48].
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Following the use of radiometric correction, the pixel values of the image were transformed
into spectral reflectance.

Table 1. Spectral bands and resolutions of the PlanetScope and Sentinel-2 sensors used in this study.

PlanetScope Sentinel-2

Band Wavelength
(nm)

Resolution
(m)

Band Wavelength
(nm)

Resolution
(m)

Blue (B) 457.5–522.5 3 Blue (B) 458–523 10
Green (G) 542–577.5 3 Green (G) 543–578 10
Red (R) 650–680 3 Red (R) 650–680 10

Near-infrared
(NIR) 855–875 3

Red Edge 1
(RE1)

698–713 20

Red Edge 2
(RE2)

733–748 20

Red Edge 3
(RE3)

773–793 20

Near-Infrared
(NIR)

785–900 10

Near-Infrared
Narrow (NIRn)

855–875 20

Shortwave
Infrared 1
(SWIR1)

1565–1655 20

Shortwave
Infrared 2
(SWIR2)

2100–2280 20

Figure 2a–d illustrate the NDVI values for the four different time periods of Plan-
etScope, which serve as an indicator of vegetation distribution during these specific periods.
In January, the study area exhibits a low vegetation cover, with many crops yet to be planted.
As spring arrives in April, cultivation activities commence, including rice transplantation
in the paddy fields and seedling planting in the dry land. Moreover, trees start to develop
and thrive in the orchards and woodlands. By August, the crops flourish, resulting in the
highest vegetation cover throughout the year. November marks the autumn harvest season,
when rice is harvested and oranges ripen in orchards. Additionally, other crops, such as
rapeseed, are being planted in dry land during this time period.

Figure 2. Images of Normalized Difference Vegetation Index (NDVI) taken by PlanetScope and
Sentinel-2, respectively, at different temporal phases over the study area. Notes: for PlanetScope,
the spring imagery is from 17 April 2020, the summer imagery is from 3 August 2020, the autumn
imagery is from 24 November 2020, and the winter imagery is from 12 January 2021; for Sentinel-2,
the spring imagery is from 28 April 2020, the summer imagery is from 26 August 2020, the autumn
imagery is from 14 November 2020, and the winter imagery is from 13 January 2021.
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(2) Sentinel-2 Images

We obtained four views of L1C-level images with clouds below 5% from ESA’s Sen-
tinel Science Data Centre (https://scihub.copernicus.eu, accessed on 20 April 2024) for
the years 2020 to 2021, all from Sentinel-2A satellite images, again covering four seasons:
spring (28 April 2020), summer (26 August 2020), autumn (14 November 2020), and winter
(13 January 2021). Each image independently covered the study area, and only the ten
higher-resolution bands were selected as potential predictors for modeling. These bands
included Blue (10 m), Green (10 m), Red (10 m), Red Edge 1 (20 m), Red Edge 2 (20 m), Red
Edge 3 (20 m), Near-Infrared (10 m), Near-Infrared Narrow (20 m), Shortwave Infrared
1 (20 m), and Shortwave Infrared 2 (20 m) (Table 1). For all Sentinel-2 images, we used
the same pre-processing methods as PlanetScope, including atmospheric correction and
radiometric calibration, to match the PlanetScope data. In addition, we performed geomet-
ric correction on the Sentinel-2 images by utilizing geometrically corrected PlanetScope
images, resulting in an RMSE below 0.5 pixels per control point. The study area was then
clipped from these Sentinel-2 images.

Figure 2e–h illustrate the NDVI values captured by Sentinel-2 at four specific time
points. Due to disparities in the ability of Sentinel-2 and PlanetScope to differentiate
between spatial scales of target features, there exist slight variations in both the values and
distribution of vegetation information obtained by these two instruments during similar
temporal phases. The April Sentinel-2 image was taken towards the end of the month,
coinciding with the full transplantation of rice into the fields. Consequently, the vegetation
cover during this period was slightly higher compared to mid-April (as shown in Figure 2e).
August represented the final month of summer, characterized by vigorous growth of
diverse plant species, intensified photosynthesis, heightened chlorophyll concentration,
and subsequently elevated NDVI values compared to other times of the year.

Since the conditions were similar during the PlanetScope and Sentinel-2 satellite image
collections, they met the comparative soil pH prediction criteria.

Compared to Sentinel-2, PlanetScope, with its high spatial resolution of 3 m and daily
imaging capability, provides more precise insights into local variations in soil pH at finer
scales [35]. This is particularly advantageous for areas with complex topography, such as
steep slopes, intertwined valleys, or small agricultural fields. Additionally, PlanetScope’s
spectral response curves are optimized for agricultural land use, and its narrower band-
widths help mitigate the mixed-pixel effect (i.e., a single pixel containing multiple distinct
surface features), thereby offering more accurate and effective spectral information [49].
However, its limited spectral range may restrict the detection of certain critical soil prop-
erties. In contrast, while Sentinel-2 has a lower spatial resolution of 10 m, it compensates
with broader spectral coverage across 13 bands, from visible to shortwave infrared re-
gions. This extensive spectral information provides robust support for identifying and
characterizing complex soil chemical attributes (e.g., organic matter content or mineral
composition). In modeling applications, PlanetScope’s high spatial resolution serves as
the primary factor driving accuracy improvements, whereas Sentinel-2 relies on its diverse
spectral information to enhance overall model performance.

2.3.2. Spectral Variables

At each time phase, the original satellite bands and their spectral indices were used as
variables to predict soil pH. The spectral indices encompassed four soil radiometric indices,
eight vegetation radiometric indices, and two soil salinity indices (Table 2). Based on the
association that exists between soil pH and soil organic carbon, the soil radiometric indices
and the vegetation radiometric indices were chosen as proxies for predicting the soil pH [50].
Numerous studies have shown a connection between soil salinity and pH levels [51,52].

https://scihub.copernicus.eu
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Since the loss of salt ions increases soil acidity and decreases soil pH, the spectral index
associated with soil salinity was selected as the spectral variable to predict the soil pH [53].

Table 2. Spectral indices selected as spectral variables for the soil pH prediction.

Type Spectral Index Calculation Formula Reference

Soil
radiometric

indices

Brightness Index (BI)
√

ρred
2+ρgreen 2

2
[54]

Second Brightness Index (BI2)
√

ρred
2+ρgreen 2+ρnir

2

3
[54]

Redness Index (RI) ρred
2

ρgreen 3
[55]

Color Index (CI) ρred −ρgreen
ρred +ρgreen

[55]

Vegetation
radiometric

indices

Soil-Adjusted Vegetation Index
(SAVI)

(ρnir −ρred )×(1+L)
ρnir +ρred +L

[56]

Modified Soil-Adjusted
Vegetation Index (MSAVI)

(1+M)×(ρnir −ρred )
ρnir +ρred +L

[57]

Second Modified Soil-Adjusted
Vegetation Index (MSAV12)

2ρnir +1−
√
(2ρnir +1)2−8(ρnir −ρred )

2
[58]

Difference Vegetation
Index (DVI)

ρnir − ρred [59]

Ratio Vegetation Index (RVI) ρnir
ρred

[60]
Weighted Difference
Vegetation Index (WDVI)

ρnir − S × ρred [61]

Perpendicular Vegetation
Index (PVI)

sin(b)× ρnir − cos(b)× ρred [62]

Normalized Difference
Vegetation Index (NDVI)

ρnir −ρred
ρnir +ρred

[63]

Soil salinity
indices

Soil salinity index1 (SSII) ρblue ×ρred
ρgreen

[51]

Soil salinity index2 (SSI2) ρgreen +ρred
2 [64]

Notes: L is a correction factor that varies from 0, indicating very high vegetation cover,
to 1, indicating very low vegetation cover. The parameter s represents the slope of the soil
line. M = 1 − 2 × s × NDVI × WDVI; b denotes the angle between the soil line and the
NIR axis, measured in degrees. In this paper, the values assigned to L, s, and b are 0.5, 0.5,
and 45, respectively.

2.3.3. Topographic and Land Use Data

To estimate the soil pH, topographic variables were incorporated, due to the hilly and
mountainous terrain having significant variations in elevation. Using the DEM data at
5-meter resolution provided by the Land Survey, we utilized ArcGIS 10.8 to derive three key
variables: altitude, aspect, and slope. These were subsequently incorporated as indicators
for predicting the soil pH.

The land use data included in this analysis were obtained from the Ministry of Natural
Resources of the People’s Republic of China (http://www.mnr.gov.cn, accessed on 6
January 2024). Specifically, the data mostly consisted of the 2019 edition of the land use
map scaled to a 1:10,000 scale for the Wanzhou District. The initial compilation of this map
relied on information from the Wanzhou District Land Use Database, originally established
in 2008 and updated every year by the local Ministry of Natural Resources [65].

2.4. Methods
2.4.1. Statistical Analysis

The Kolmogorov-Smirnov (K-S) test was employed to evaluate whether the soil pH
distribution followed a normal pattern. To investigate the differences in the soil pH across
the orchards, dry land, and paddy fields, a one-way ANOVA was conducted, with post

http://www.mnr.gov.cn
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hoc comparisons made using the Least Significant Difference (LSD) test. The significance
threshold was set at 0.05. All statistical procedures were carried out using the SPSS V.25
software package.

2.4.2. Extreme Gradient Boosting

In this study, we utilized the extreme gradient boosting (XGboost) method to ana-
lyze the association between soil pH and its influencing factors. XGboost, an optimized
variant of the Gradient Boosting Decision Tree (GBDT), introduces improvements in both
the algorithm’s structure and the system’s configuration [66]. This approach combines
the predictions of multiple weak models to build a more accurate one, using advanced
techniques. Unlike GBDT, XGboost leverages second-order derivatives to enhance the
objective function’s optimization, and it includes a regularization factor, which helps to
precisely establish the objective while reducing the potential for overfitting [67]. On the
algorithmic front, XGboost uses a weighted quantile sketching algorithm to pre-construct
candidate split nodes for each feature during tree creation, thereby decreasing computa-
tional demands and speeding up training. From a system architecture standpoint, XGboost
organizes the input features by sorting them into memory blocks to enable efficient re-use
in later iterations. Additionally, it allows for parallel computations during the training
phase, greatly enhancing performance [68]. For this research, we utilized Python 3.9 to
implement the XGboost model.

In XGboost, feature importance is evaluated using three key metrics: ‘gain’, ‘fre-
quency’, and ‘coverage’. ‘Gain’ quantifies how effectively a feature splits tree nodes, while
‘frequency’ denotes the occurrence rate of features within the model’s structure. Meanwhile,
‘coverage’ indicates the average impact of feature observations [69]. Features that are
repeatedly selected for essential splitting decisions receive higher scores [70]. ‘Gain’ is
particularly important for determining the relevance of features in branching. In our analy-
sis, we focused on feature importance, primarily through the ‘gain’ metric. For example,
the relative importance of feature j was calculated as follows:

Î2
j ( T) =

J−1

∑
t=1

i2t P(vt = j) (1)

Î2
j =

1
M

M

∑
m=1

Î2
j (Tm) (2)

Let T represent a tree with J branching nodes, where t refers to each node. The metric
it2 represents the reduction in squared error at node t, and Vt denotes the feature linked to
that node. M stands for the total number of trees in the forest.

The significance of feature j within a specific tree T was determined using Equation (1).
To assess the overall importance of feature j across all M trees, we computed the average
importance, using Equation (2).

As proxies for predicting the soil pH, we used raw bands, spectral indices, and topo-
graphic variables from each image over four temporal phases. Models were constructed
with seven different resolutions for PlanetScope and six different resolutions for Sentinel-2
(Table 3). A flowchart of the soil pH mapping process using these experimental models is
shown in Figure 3.
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Figure 3. Technical workflow.

Table 3. Model construction across different resolutions.

Model Modeling Resolution

PlanetScope Sentinel-2

Model A 3 m
Model B 10 m 10 m
Model C 20 m 20 m
Model D 30 m 30 m
Model E 40 m 40 m
Model F 50 m 50 m
Model G 60 m 60 m
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2.4.3. Model Validation

In the XGboost model, we focused on four key hyperparameters: learning rate, maxi-
mum tree depth, minimum child weight, and lambda for regularization. These parameters
were selected due to their significant influence on model performance: learning rate de-
termines the optimization step size, maximum tree depth controls model complexity to
balance underfitting and overfitting, minimum child weight prevents overfitting by setting
a threshold for node splitting, and lambda enhances robustness through L2 regularization.
To identify the optimal parameter combination within the predefined ranges (as detailed in
Table 4), we employed a systematic four-level nested loop approach. This method ensures
comprehensive exploration, exhaustively testing all potential parameter combinations
without overlooking any possibilities, while maintaining simplicity and clarity, as it is both
easy to implement and interpret with transparent parameter selection. After determining
the optimal hyperparameter combination, 80% of randomly selected samples from each
land use category were used as the training dataset, while the remaining 20% were reserved
as the validation dataset. This partitioning was designed to evaluate the model’s predictive
accuracy and generalization capability effectively.

Table 4. Parameters setting to determine the optimal parameters for the XGboost algorithm.

Parameters Threshold Intervals

Eta 0.01, 0.05, 0.1 -
Max_Depth 1–11 1

Min_Child_Weight 0–21 1
Lambda 0–11 1

Notes: Eta = learning rate; Max_Depth = maximum tree depth; Min_Child_Weight = minimum
child weight; Lambda = regression lambda.

To assess the predictive capacity and reliability of the soil pH prediction model, four
metrics were chosen to evaluate the model: Coefficient of Determination (R2), Mean
Absolute Error (MAE), Root Mean Square Error (RMSE), and Residual Prediction Deviation
(RPD), which were calculated as follows:

R2 = 1 − ∑m
i=1(yi − ŷi)

2

∑m
i=1(yi − ȳi)2 (3)

MAE =
1
m

m

∑
i=1

|yi − ŷi| (4)

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)
2 (5)

RPD =
1√

1 − R2
(6)

where m is the sample size, yi is the true value, ŷi is the predicted value, and ȳ is the mean
of yi.

The R2 score measures how well the model fits the data, with values approaching
1 indicating a stronger fit [71]; MAE and RMSE evaluate the robustness of the model,
and when the value is smaller, the lower the prediction error of the model [72]. The RPD
evaluates the predictive ability of the model. A higher RPD value suggests the better
effectiveness of the model. Specifically, when the RPD value exceeds 2, it implies a higher
level of effectiveness [73].
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3. Results
3.1. Descriptive Statistics and Difference Test of Soil pH

The descriptive statistics for the total area, orchards, dry land, and paddy fields soil
pH are displayed in Table 5. The soil pH values in the study area spanned a wide range,
from 4.63 to 8.43. The average soil pH was calculated to be 6.20, with a Coefficient of
Variation (CV) of 12.71%. These findings suggest a degree of variability in soil pH within
the study area. The mean soil pH in the orchards was lower than in the dry land and
paddy fields. This was due to the fact that the orchards sample sites were collected during
the post-harvest fertilization period of blood oranges, which may have resulted in a low
soil pH after fertilization. The Coefficient of Variation (CV) of the soil pH was higher in
the dry land compared to the orchards and the paddy fields. This may have been due
to the multi-crop rotation in the dry land, where different crops have different fertilizer
requirements, resulting in greater variation in soil pH across fields.

The soil pH data from the total area followed a normal distribution (the K-S test).
The ANalysis Of VAriance (ANOVA) and subsequent multiple comparisons revealed a
statistically significant difference (p < 0.05) in the soil pH across the orchards, dry land,
and paddy fields (Figure 4). These findings suggest that soil pH is affected to some extent
by land use types.

p = 0.026
p = 0.7367

p = 0.0029
Anova, p = 0.0095

3

6

9

12

Orchard Dry land Paddy field

S
oi

l p
H Orchard

Dry land

Paddy field

Figure 4. Soil pH Least Significant Difference (LSD) test results across orchards, dry land,
and paddy fields.

Table 5. The statistics of soil pH values for total area, orchards, dry land, and paddy fields.

Land Use Type N Min Max Mean SD CV (%) Skewness Kurtosis

Total area 290 4.63 8.43 6.20 0.79 12.71 0.52 −0.25
Orchard 75 4.73 8.11 5.96b 0.72 12.06 0.80 0.54
Dry land 67 4.84 8.24 6.25a 0.87 13.89 0.47 −0.70
Paddy field 148 4.63 8.43 6.29a 0.76 12.13 0.43 −0.16

Notes: N = number; Min = minimum; Max = maximum; SD = Standard Deviation;
CV = Coefficient of Variation. Different letters within the mean column indicate that the
difference in soil pH among land use types is significant at p < 0.05.
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3.2. Analysis of Soil pH Prediction Results

Seven soil pH prediction models were developed for the orchards, dry land, and paddy
fields, using the XGboost algorithm based on four temporal phases of PlanetScope and
Sentinel-2 images. The prediction accuracies are shown in Figure 5.

For each satellite, under the same modeling resolution, significant variations were
observed in the performance of the predictive models built using spectral variables from
different temporal phases. This indicates that the timing of spectral image acquisition can
influence soil pH prediction. The contribution of images taken at different times to the
models varied according to the type of land use (Figure 5). Specifically, for the orchards
and paddy fields, images taken during spring from both PlanetScope and Sentinel-2 had a
greater impact on the model, with lower error rates compared to other temporal phases.
This was consistent with the findings of Wang et al. [33] and Forkuor et al. [74], who also
found that satellite data acquired in spring made a significant contribution to soil property
predictions. However, in dry land areas, autumn spectral data exhibited a higher contribu-
tion to the predictive model. Notably, single-temporal images played a more substantial
role in modeling under specific land use types, while multi-temporal images dominated
when considering the entire area. Generally, remote sensing images captured diverse
information about features at different time points. Consequently, the temporal phase of
the remote sensing images could moderately affect the predicted soil property results.

A comparison of the performance between high-spatial-resolution PlanetScope and
medium-spatial-resolution Sentinel-2 images in predicting soil pH during the same tempo-
ral phase and modeling resolution revealed differences in accuracy. The prediction models
based on PlanetScope images demonstrated higher overall prediction accuracy, greater
robustness, and better predictive power compared to those based on Sentinel-2 images.
However, there was no substantial increase in model accuracy with the high-resolution
images. This was similar to the conclusions reached by Xia et al. [26] and Lu et al. [28]
regarding soil pH prediction. In addition, the prediction accuracy for the three land use
types showed a decreasing trend with different patterns as the modeling resolution de-
creased over the same time phases. It is worth highlighting that the change in prediction
accuracy was relatively substantial in the orchards and dry land, but not in the paddy fields.
The highest prediction accuracy was achieved at the original spatial resolution for all three
land use types.

For the models based on PlanetScope images, the highest prediction accuracies were
achieved for the orchards (R2 = 0.72, RPD = 1.91) and paddy fields (R2 = 0.66, RPD = 1.71)
in the spring model A and for the dry land (R2 = 0.77, RPD = 2.09) in the autumn model A.
For the models based on Sentinel-2 images, the optimal prediction accuracies were achieved
for the orchards (R2 = 0.67, RPD = 1.75) and paddy fields (R2 = 0.64, RPD = 1.66) in the
spring model B and for dry land (R2 = 0.70, RPD = 1.83) in the autumn model B.

Finally, we found that model performance differed with land use types at the optimal
time phase. Both the Sentinel-2 and PlanetScope image-based prediction models achieved
the highest prediction accuracy for the dry land (PlanetScope: R2 = 0.77; Sentinel-2:
R2 = 0.70), higher than for the paddy fields and orchards. This was consistent with
findings by Stenberg et al., who noted that model-prediction accuracy increases with
higher Coefficients of Variation (in this study, the dry land exhibited a higher Coefficient
of Variation compared to paddy fields and orchards) [75]. Additionally, modeling soil
sample sites separately for the orchards, dry land, and paddy fields showed a substantial
improvement in prediction accuracy compared to total area soil pH predictions, suggesting
that a single land use approach may enhance the performance of soil pH predictions. This
finding aligns with conclusions drawn by Samira et al. [76].
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Figure 5. Prediction results of models with different combinations of inputs. Performance indicators
include (a) R2, (b) MAE, (c) RMSE, and (d) RPD. Notes: For PlanetScope, Models A, B, C, D, E,
F, and G correspond to modeling resolutions of 3 m, 10 m, 20 m, 30 m, 40 m, 50 m, and 60 m,
respectively. T1 uses spring imagery acquired on 17 April 2020; T2 uses summer imagery acquired

on 3 August 2020; T3 uses autumn imagery acquired on 14 November 2020; T4 uses winter imagery

acquired on 12 January 2021; T5 uses all available temporal phases. For Sentinel-2, Models B, C, D, E,

F, and G correspond to modeling resolutions of 10 m, 20 m, 30 m, 40 m, 50 m, and 60 m, respectively.

T1 uses spring imagery acquired on 28 April 2020; T2 uses summer imagery acquired on 26 August

2020; T3 uses autumn imagery acquired on 14 November 2020; T4 uses winter imagery acquired on

13 January 2021; T5 uses all available temporal phases.

3.3. Importance of Predictor Variables

For each satellite, a permutation method was applied to identify the significance of
the top 10 spectral variables in the optimal XGboost model (Figure 6). In predicting soil pH
with the two satellite images, the model utilized a blend of original spectral bands, derived
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indices, and topographical variables as inputs. These factors showed differing degrees
of significance throughout the prediction process. In the orchards, for the PlanetScope
image, SSI1 (0.18), SSI2 (0.16), and MSAVI2 (0.11) were the three key variables; for the
Sentinel-2 image, Red band (0.14), SSI1 (0.10), and Red Edge 2 band (0.09) were the three
most influential variables. In the dry land, for the PlanetScope image, SSI1 (0.17) was a
key variable; for the Sentinel-2 image, SSI1 (0.14) and MSAVI (0.14) were two important
variables. In the paddy fields, for the PlanetScope image, SSI1 (0.10) and MSAVI (0.10) were
two major variables; for the Sentinel-2 image, Elevation (0.10) and SSI1 (0.09) were the two
principal variables. For all three land use types, it was evident that the Soil Salinity Index
SSI1 was highly significant for predicting soil pH using both satellite images.

Figure 6. Variable importance rankings produced by extreme gradient boosting based on the most
optimal model for each land use type (the abbreviations are listed in Table 2). Notes: For PlanetScope,
the optimal model for the orchards and paddy fields was Model A, based on spring imagery acquired
on 17 April 2020, while the optimal model for dry land was Model A, based on autumn imagery
acquired on 14 November 2020; For Sentinel-2, the optimal model for the orchards and paddy fields
was Model B, based on spring imagery acquired on 28 April, while the optimal model for dry land
was Model B, based on autumn imagery acquired on 14 November 2020.

3.4. Mapping Soil pH in the Study Area

To obtain the best predictive results, we used the spring and autumn PlanetScope
images with 3 m modeling resolution for mapping soil pH. Figure 7 shows the distribution
of soil pH across three land use types. Based on the “Specification of Land Quality Geo-
chemical Assessment (2016)”, soil pH was classified into five categories: strongly acidic
(pH < 5.0), acidic (5.0 ≤ pH < 6.5), neutral (6.5 ≤ pH < 7.5), alkaline (7.5 ≤ pH < 8.5),
and strongly alkaline (pH ≥ 8.5). Additionally, descriptive statistical analyses of soil pH
for the orchards, dry land, and paddy fields were conducted.

The prediction results indicate that no strongly alkaline areas existed within the study
region; instead, the soils in the northern regions were mainly neutral-to-alkaline, while
the other areas showed acidic or strongly acidic characteristics. For the orchards located
primarily in the central and southern parts of the region, the average soil pH was 5.93,
primarily due to the cultivation of blood oranges, which are well-suited to soils with a
pH range of 5.5 to 7.0. Paddy fields and dry land were distributed around the periphery
of the study area, with the soil pH characteristics showing an alkaline tendency in the
northern regions, while acidic or strongly acidic conditions prevailed on the eastern and
western sides.
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Figure 7. Soil pH prediction map for cultivated land in the study area, generated from the best
optimal model using PlanetScope data with 3 m spatial resolution (white color: non-cultivated land):
(a) soil pH prediction map for the orchards; (b) soil pH prediction map for the dry land; (c) soil pH
prediction map for the paddy fields.

4. Discussion
4.1. Effects of Spectral Image Acquisition Time

The effectiveness of the soil prediction models was significantly impacted by the
choice of optical satellite image acquisition timing, as revealed through comparative anal-
ysis (Figure 5). For each satellite, we found that images from different temporal phases
contributed differently to the prediction, depending on the land use types. Specifically,
spring spectral data demonstrated desirable predictive performance for the orchards and
the paddy fields, while autumn spectral data contributed more effectively to models for the
dry land. The observed variability in the study area may have been strongly associated with
factors such as crop residue cover, soil moisture, surface roughness, and cloud cover [43,77].

In this study, the spectral variables from spring and autumn were most effective for
predicting the soil pH, which can be attributed to several factors. For the orchards, spring is
characterized by a higher proportion of exposed soil, as it occurs after the pruning of spring
buds but before the sprouting of summer buds. This period of increased soil exposure
enhances the correlation between spectral variables and soil pH. For the paddy fields, spring
coincides with the rice-sowing season, during which field preparations, such as plowing
and leveling, reduce surface roughness and crop residues. This allows spectral signals to
more directly reflect soil properties. For the dry land, autumn marks a critical growth stage
for rapeseed crops, during which vegetation coverage increases significantly. Research has
shown that satellite-derived spectral variables obtained during active vegetative growth
stages tend to exhibit stronger relationships with soil properties [78]. These agricultural
practices and management activities directly influence factors such as soil exposure, surface
roughness, and vegetation coverage, making spectral variables in spring and autumn
particularly effective for predicting soil pH. Studies from other regions further support the
notion that “soil exposure” and “vegetation absorption dynamics” are key determinants
of remote sensing signal accuracy. For instance, Boloorani et al., through their study of
the Jajrud and Karaj river basins on the Iranian Plateau, demonstrated that the interaction
between bare soil and other soil characteristics (such as soil type, geomorphology, and land
use) significantly influences the interpretability of remote sensing data [79]. Particularly
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during spring, when vegetation has not yet fully developed, the properties of bare soil
provide clear information about the soil surface, thereby enhancing the correlation between
remote sensing variables and soil attributes. Similarly, in paddy cultivation areas of Dehui
City, Jilin Province, China, Li et al. observed a significant improvement in remote sensing
signals following rice field tillage [80]. Additionally, limited rainfall during both spring
and autumn results in relatively stable shallow-layer moisture conditions, thereby reducing
water interference and providing reliable data for spectral analysis [81].

It is worth noting that single-temporal images of specific land use types achieve higher
predictive accuracy. This may be due to the consistency of crop types and growth cy-
cles within a single land use type, allowing images captured during specific periods to
effectively highlight the most crucial information about these crops. Conversely, in larger
regions with diverse crop types and varying growth conditions, multi-temporal satel-
lite images are necessary, to comprehensively reveal all relevant information about crop
growth [82]. Generally, the spectral characteristics of feature targets change over time. Since
remote sensing images record instantaneous information, understanding the process and
range of spectral changes through dynamic monitoring can help identify optimal times for
target identification.

4.2. Effects of Different Optical Satellites

From an application standpoint, high-resolution satellite remote sensing can more
clearly express the spatial structure characteristics and surface texture of the feature target
and distinguish the finer composition inside the feature, which provides the conditions
and basis for effective visual interpretation and has undoubted application prospects in
agriculture, forestry, resource, and environment monitoring and management, etc. [83,84].
A key aim of this study was to investigate whether employing high-spectral-resolution
satellite imagery could enhance the accuracy of soil pH predictions. The findings indicate
that the prediction model of PlanetScope images has higher prediction accuracy compared
to the popular Sentinel-2 images over the same temporal phases for the same land use type.
This aligns with the research conducted by Xia et al. and Guo et al. [26,85]. The reason for
this could possibly be that high-resolution remote sensing images serve as a viable data
source for extracting fine land cover information, which enhances the prediction accuracy of
soil pH, to some extent [83]. However, using satellite images with high spectral resolution
did not make the soil pH predictions much more accurate. The reasons for this may be due
to the different data characteristics of the two satellites. Although PlanetScope has a higher
spatial resolution, it has a narrower spectral range and a smaller number of bands, while
Sentinel-2 images have a relatively lower spatial resolution but a larger number of spectra.
On the other hand, due to the hilly terrain and complex topography of the study area, the
satellite images are affected by topographic factors and the validity of their data may have
been reduced.

For each satellite, we also found that as the modeling resolution decreased, the pre-
diction accuracy gradually decreased for the orchards and dry land, while it remained
essentially unchanged for the paddy fields in the same time phase. The reasons for this
may be related to topography and vegetation growth [86]. Even though the orchards
were in the middle part of the study area at lower elevations, the natural slopes were
more variable, and the dry land was in the higher areas around the study area with more
topographic relief. These topographic factors made the topography and vegetation growth
of the orchards and dry areas more variable in a small area, and it was difficult to capture
such detailed information as the image elements became bigger. In the context of the paddy
fields, the presence of water helped mitigate the errors in the spectral information of the
optical data arising from the complex ground environment. Therefore, the variability in
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prediction accuracy became less as the image elements became larger and the spectral
information became less variable.

4.3. Effects of a Single Land Use Type

The variability in soil pH can differ across various land use types, due to the influence
of factors like vegetation cover and other environmental conditions [87]. These land use
types significantly impact the accuracy of soil pH predictions, with noticeable differences in
accuracy observed among dry land, orchard, and paddy field, where dry land shows higher
prediction accuracy compared to the other two. The aforementioned statement aligns with
the findings presented in the study conducted by Wang et al. [21]. Stenberg et al. have
shown that a rise in the Coefficient of Variation corresponds to better model-prediction
accuracy [75]. The study found that the Coefficient of Variation for pH in dry land soil was
greater than that observed in orchard and paddy field soil. This disparity in variability
may contribute to the superior predictive performance of the model in dry land areas.
Additionally, errors in spectral information caused by complex crop types are avoided in
the November dry season, when the ground is relatively flat, due to autumn harvesting,
and most of the surface is bare.

It should be noted that the accuracy of soil pH prediction can be substantially enhanced
by building prediction models under a single land use approach. Variations in soil and
vegetation characteristics across different land use types might explain this occurrence.
The accuracy of the prediction model is improved by its ability to limit the heterogeneity to
a more precise regional scale through the use of sub-regions [88]. Given the limited scope
of our research area, it is possible that these findings are specific to this particular region.
To ensure more reliable findings, future studies may validate these observations across
various land use categories and over a broader geographical extent.

4.4. Effects of Predictor Variables

In this work, we used a variety of new proxies to estimate soil pH levels. These
models were mostly composed of spectral variables and topographic variables, including
the raw bands of two satellite images, different spectral indices derived from the raw bands,
and elevation, slope, and aspect. The XGboost model combined soil pH predictions, to
assess each proxy’s contribution. The importance and contribution of various indices in soil
pH prediction models differs among the three land use types. This variation arises mainly
from the distinct ways in which these indices affect soil pH across varying environmental
settings [89,90].

Each land use type exhibits unique environmental characteristics that determine the
varying significance and contribution of each index in predicting soil pH. Among all land
use types, Soil Salinity Index 1 (SSI1) consistently emerges as a key predictor, highlighting
the strong correlation between soil salinity and pH. SSI1 reflects overall soil salinity levels,
which directly influence the chemical, physical, and biological properties of soil—including
cation exchange capacity and nutrient availability—thereby playing a crucial role in reg-
ulating soil pH [91,92]. This finding aligns with the study by Xia et al., which used GF-2
images to predict soil pH [26].

Specifically, in orchards SSI1 demonstrates significant predictive power, due to its
critical role in modulating local chemical balance. Simultaneously, the red band may also
contribute to pH prediction by indirectly capturing variations in vegetation cover and bare
soil reflectance. The red band exhibits high spectral responsiveness, enabling it to detect
differences between orchard vegetation health and surface physical characteristics, thereby
providing supplementary insights into pH prediction.
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For dry land, where evaporation rates are high and precipitation is limited, Brightness
Index 2 (BI2) stands out as another important factor alongside SSI1. BI2 captures changes
in surface brightness that are closely related to mineral weathering of exposed soils and
organic matter content. In dry environments with limited biological activity, soil properties
are more dominantly influenced by physical processes such as mineral weathering, salt
accumulation, and organic matter decomposition. These processes directly govern the
dynamic variations in soil acidity or alkalinity. Consequently, BI2 becomes vital for precisely
assessing and predicting soil pH in arid regions by monitoring bare soil characteristics
under such conditions.

In contrast, within paddy fields characterized by unique agricultural practices and
prolonged waterlogging conditions, elevation emerges as another significant variable
influencing pH beyond SSI1. Elevation directly determines localized water depth and
drainage efficiency while further impacting oxygen availability and redox conditions [93,94].
Even minor elevation differences can lead to substantial variations in water depth, oxygen
accessibility, and redox dynamics. For instance, higher elevations typically facilitate faster
drainage under irrigation or rainfall scenarios. This promotes aerobic decomposition of
organic matter under well-aerated conditions, to produce alkaline substances that raise pH
levels. Conversely, lower elevations with poor drainage tend to remain waterlogged over
extended periods; these anoxic (anaerobic) conditions enhance microbial fermentation or
iron oxide reduction processes that increase acidity and lower pH values.

However, our study did not identify a statistically significant effect of NDVI on pH
prediction, diverging from the findings reported by Qi et al. This discrepancy may be
attributed to the use of imagery data from April and November, when vegetation coverage
in the study area was relatively low [95]. Since NDVI primarily relies on vegetation spectral
reflectance for its calculation, reduced vegetation coverage significantly diminishes the
informational value related to plant–soil interactions. Consequently, its ability to capture
indicators such as plant health status and canopy cover is directly limited. In summary,
across all land use types, SSI1 emerges as a universal driving factor that links salinity with
pH through its strong influence over fundamental soil chemical processes. Conversely,
other indices—such as the red band in orchards, BI2 in dry lands, and elevation in paddy
fields—reflect distinct environmental dynamics unique to their respective land use contexts.

4.5. Application Potential and Limitations

This study compared the performance of high-spatial-resolution (PlanetScope) and
medium-spatial-resolution (Sentinel-2) remote sensing images in predicting soil pH across
different temporal phases and land use types. The results highlight the potential of high-
resolution satellite data for constructing soil pH prediction models in complex mountainous
terrains. Additionally, this work provides valuable insights into the selection of remote
sensing datasets, the timing of image acquisition, and the role of land use in spatial
modeling of soil properties.

However, despite its significant contributions, this study had certain limitations re-
garding its applicability. The research was specifically focused on hilly and mountainous
regions where the intricate topography, diverse vegetation cover, and varied land use
patterns strongly influenced the soil pH variability. Consequently, the findings may only
be applicable to areas with similar natural conditions and may not be directly extrapolated
to other ecosystems, such as plains, wetlands, or arid regions. For example, in plain areas,
soil heterogeneity is typically driven more by human activities than natural factors [96],
whereas in wetlands hydrological conditions predominantly govern soil physicochemical
properties, leading to mechanisms of pH variation that differ substantially from those ob-
served in hilly regions [97,98]. Furthermore, because this study primarily relied on optical
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remote sensing data from the PlanetScope and Sentinel-2 platforms, discrepancies between
sensors—such as variations in spectral resolution, band configurations, and processing
workflows—may have affected the result consistency and limited broader applicability.

To improve the generalizability of this approach, future efforts should focus on con-
ducting cross-regional validation experiments covering a wider range of climatic zones,
ecosystems, and diversified land use patterns. Incorporating additional data sources, such
as radar imagery, hyperspectral data, or long-term time series monitoring could further
enhance model robustness and support greater transferability across regions.

Despite these limitations, this study represents a significant step forward in exploring
new methodologies for digital soil mapping using high-resolution remote sensing imagery.
It addresses key knowledge gaps related to complex environmental conditions in moun-
tainous areas while offering a foundation for future advancements aimed at expanding
applicability through broader sampling frameworks and multi-scale validations.

5. Conclusions
This study conducted a comparison of the performance between high-spatial-

resolution PlanetScope and medium-spatial-resolution Sentinel-2 for predicting soil pH
under different temporal and land use types, and it selected the most suitable model for
mapping soil pH in hilly mountainous areas. The main results are summarized below:

(1) The comparative analysis of the results suggests that by conducting a quantitative
evaluation of satellite sensor selection, spectral image acquisition time, land use types,
and modeling resolution, it is feasible to enhance the prediction accuracy of soil pH.

(2) Overall, the models built from PlanetScope images were more accurate than those
built using Sentinel-2 images. The best model was obtained using PlanetScope images with
a modeling resolution of 3 m. These findings indicate that high-spatial-resolution satellite
images (PlanetScope) hold significant potential for improving the accuracy of digital soil
pH mapping in mountainous and hilly regions.

(3) The effect of spectral image acquisition time on the accuracy of soil pH prediction
differed by land use type. Spring images contributed more to the soil pH prediction for the
orchards and paddy fields, and autumn images contributed more to the soil pH prediction
for the dry land.

(4) The spatial heterogeneity of vegetation was limited to specific subregions, due to
the presence of a single land use type. Constructing soil prediction models based on a
single land use pattern may help to enhance the accuracy of predictions.

(5) The prediction map of the soil pH exhibited spatial heterogeneity. Overall, acidic
soil was mainly concentrated in orchard areas with lower altitudes and steeper terrain.

(6) According to the feature importance ranking obtained from the XGboost algorithm,
the Soil Salinity Index played a pivotal role in predicting the soil pH.
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