SAR-PATT: A Physical Adversarial Attack for SAR Image Automatic Target Recognition
Abstract
:1. Introduction
- To the best of our knowledge, we are the first to design an end-to-end physical adversarial attack pipeline for SAR images that achieves adversarial attacks by changing the surface texture parameters of 3D targets in the physical world, thereby converting adversarial perturbations from the digital space to the physical space.
- We propose a new adversarial attack method for SAR ATRs based on the SAR imaging mechanism, which can generate adversarial examples that conform to SAR imaging characteristics. In the digital part, we use an optimization method to generate adversarial perturbations in the SAR geometric output data. In the physical part, we establish a digital–physical mapping module so that the perturbations ultimately act in physical space. Through the SAR imaging simulation process, the perturbations are converted into perturbations in the SAR images, making the attack stealthy.
- Our method has the potential to be implemented in the real world. Experiments show that in the physical world, our method achieves an average fooling rate of up to 97.87%. In addition, the digital and physical attacks we propose have certain transferability to different network architectures. The adversarial examples generated based on VGG-16 have an average fooling rate of 77.5% for the other five black-box models. Moreover, the physical attack is robust under different azimuths.
2. Related Works
2.1. SAR Automatic Target Recognition
2.2. Adversarial Attacks on SAR ATR
2.2.1. Attacks in the Computer Vision Field
2.2.2. Attacks Designed for SAR ATR
2.3. SAR Simulation
3. Method
3.1. Preliminaries
3.2. The SAR-PATT Framework
Algorithm 1 SAR-PATT |
Input: 3D model , camera parameter , ground truth label Output: Adversarial texture
|
3.3. Generating Adversarial Perturbations in the Digital Domain (GaPD)
3.4. Mapping Adversarial Perturbations from the Digital Domain to the Physical Domain (MaPP)
- Coordinate transformation: Transformation is established from the coordinate system of the scattering points in to the coordinate system of the 3D model.
- Point correspondence to triangular faces: The basic units of the intensity values in are scattering points, while the basic units affected by the texture parameters of the 3D model are triangular faces. Thus, a correspondence needs to be established.
- Intensity values to texture parameters: The changes in intensity values in SAR geometry data correspond to changes in texture parameters in the 3D model.
4. Experiments and Results
4.1. Dataset
4.2. Experimental Setup
4.3. Results
4.3.1. Digital Attack
4.3.2. Physical Attack
4.3.3. Transferability of the SAR-PATT
4.3.4. Robust Attack on Different Azimuths
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, X.; Montazeri, S.; Ali, M.; Hua, Y.; Wang, Y.; Mou, L.; Shi, Y.; Xu, F.; Bamler, R. Deep Learning Meets SAR: Concepts, Models, Pitfalls, and Perspectives. IEEE Geosci. Remote Sens. Mag. 2021, 9, 143–172. [Google Scholar] [CrossRef]
- Kechagias-Stamatis, O.; Aouf, N. Automatic Target Recognition on Synthetic Aperture Radar Imagery: A Survey. IEEE Aerosp. Electron. Syst. Mag. 2021, 36, 56–81. [Google Scholar] [CrossRef]
- Li, J.; Yu, Z.; Yu, L.; Cheng, P.; Chen, J.; Chi, C. A Comprehensive Survey on SAR ATR in Deep-Learning Era. Remote Sens. 2023, 15, 1454. [Google Scholar] [CrossRef]
- Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing Properties of Neural Networks. arXiv 2013, arXiv:1312.6199. [Google Scholar]
- Yuan, X.; He, P.; Zhu, Q.; Li, X. Adversarial Examples: Attacks and Defenses for Deep Learning. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 2805–2824. [Google Scholar] [CrossRef]
- Zhang, J.; Li, C. Adversarial Examples: Opportunities and Challenges. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 2578–2593. [Google Scholar] [CrossRef]
- Akhtar, N.; Mian, A. Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey. IEEE Access 2018, 6, 14410–14430. [Google Scholar] [CrossRef]
- Czaja, W.; Fendley, N.; Pekala, M.; Ratto, C.; Wang, I.J. Adversarial Examples in Remote Sensing. In Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Seattle, WA, USA, 6–9 November 2018; pp. 408–411. [Google Scholar] [CrossRef]
- Chen, L.; Xu, Z.; Li, Q.; Peng, J.; Wang, S.; Li, H. An Empirical Study of Adversarial Examples on Remote Sensing Image Scene Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 7419–7433. [Google Scholar] [CrossRef]
- Li, H.; Huang, H.; Chen, L.; Peng, J.; Huang, H.; Cui, Z.; Mei, X.; Wu, G. Adversarial Examples for CNN-Based SAR Image Classification: An Experience Study. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 1333–1347. [Google Scholar] [CrossRef]
- Huang, T.; Zhang, Q.; Liu, J.; Hou, R.; Wang, X.; Li, Y. Adversarial Attacks on Deep-Learning-Based SAR Image Target Recognition. J. Netw. Comput. Appl. 2020, 162, 102632. [Google Scholar] [CrossRef]
- Sun, H.; Xu, Y.; Kuang, G.; Chen, J. Adversarial Robustness Evaluation of Deep Convolutional Neural Network Based SAR ATR Algorithm. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 5263–5266. [Google Scholar]
- Wang, L.; Wang, X.; Ma, S.; Zhang, Y. Universal Adversarial Perturbation of SAR Images for Deep Learning Based Target Classification. In Proceedings of the 2021 IEEE 4th International Conference on Electronics Technology (ICET), Chengdu, China, 7–10 May 2021; pp. 1272–1276. [Google Scholar] [CrossRef]
- Meng, T.; Zhang, F.; Ma, F. A Target-region-based SAR ATR Adversarial Deception Method. In Proceedings of the 2022 7th International Conference on Signal and Image Processing (ICSIP), Suzhou, China, 20–22 July 2022; pp. 142–146. [Google Scholar]
- Zhang, F.; Meng, T.; Xiang, D.; Ma, F.; Sun, X.; Zhou, Y. Adversarial Deception against SAR Target Recognition Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 4507–4520. [Google Scholar] [CrossRef]
- Wei, H.; Tang, H.; Jia, X.; Yu, H.; Li, Z.; Wang, Z.; Satoh, S.; Wang, Z. Physical Adversarial Attack Meets Computer Vision: A Decade Survey. arXiv 2022, arXiv:2209.15179. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Yao, W.; Jiang, T.; Tang, G.; Chen, X. A Survey on Physical Adversarial Attack in Computer Vision. arXiv 2023, arXiv:2209.14262. [Google Scholar]
- Brown, T.B.; Mané, D.; Roy, A.; Abadi, M.; Gilmer, J. Adversarial Patch. arXiv 2018, arXiv:1712.09665. [Google Scholar]
- Zeng, X.; Liu, C.; Wang, Y.S.; Qiu, W.; Xie, L.; Tai, Y.W.; Tang, C.K.; Yuille, A.L. Adversarial Attacks beyond the Image Space. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2019; pp. 4302–4311. [Google Scholar]
- Auer, S.J. 3D Synthetic Aperture Radar Simulation for Interpreting Complex Urban Reflection Scenarios. Ph.D. Thesis, Technische Universität München, München, Germany, 2011. [Google Scholar]
- Yu, Y.; Takeuchi, W. Analysis of SAR Backscatter Intensity Characteristics for Inverse Estimation of Earthquake-Damaged Buildings. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 350–353. [Google Scholar] [CrossRef]
- Keydel, E.R.; Lee, S.W.; Moore, J.T. MSTAR Extended Operating Conditions: A Tutorial. Algorithms Synth. Aperture Radar Imag. III 1996, 2757, 228–242. [Google Scholar]
- Li, H.; Cao, J.; Zhu, J.; Liu, Y.; Zhu, Q.; Wu, G. Curvature graph neural network. Inf. Sci. 2022, 592, 50–66. [Google Scholar] [CrossRef]
- Zhu, J.; Han, X.; Deng, H.; Tao, C.; Zhao, L.; Wang, P. KST-GCN: A Knowledge-Driven Spatial-Temporal Graph Convolutional Network for Traffic Forecasting. IEEE Trans. Intell. Transp. Syst. 2022, 23, 15055–15065. [Google Scholar] [CrossRef]
- Peng, J.; Ye, D.; Tang, B.; Lei, Y.; Liu, Y.; Li, H. Lifelong Learning With Cycle Memory Networks. IEEE Trans. Neural Netw. Learn. Syst. 2023, 35, 16439–16452. [Google Scholar] [CrossRef]
- Zhang, Z.; Ren, Z.; Tao, c.; Zhang, Y.; Peng, C.; Li, H. GraSS: Contrastive Learning With Gradient-Guided Sampling Strategy for Remote Sensing Image Semantic Segmentation. IEEE Trans. Geosci. Remote. Sens. 2023, 61, 5626814. [Google Scholar] [CrossRef]
- Li, H.; Cao, J.; Zhu, J.; Luo, Q.; He, S.; Wang, X. Augmentation-Free Graph Contrastive Learning of Invariant-Discriminative Representations. IEEE Trans. Neural Netw. Learn. Syst. 2024, 35, 11157–11167. [Google Scholar] [CrossRef]
- Shao, J.; Qu, C.; Li, J. A Performance Analysis of Convolutional Neural Network Models in SAR Target Recognition. In Proceedings of the 2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA), Beijing, China, 13–19 November 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Soldin, R.J. SAR Target Recognition with Deep Learning. In Proceedings of the 2018 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), Washington, DC, USA, 9–11 October 2018; pp. 1–8. [Google Scholar]
- Xu, Y.; Liu, K.; Ying, Z.; Shang, L.; Liu, J.; Zhai, Y.; Piuri, V.; Scotti, F. SAR Automatic Target Recognition Based on Deep Convolutional Neural Network. In Proceedings of the Image and Graphics: 9th International Conference, ICIG 2017, Shanghai, China, 13–15 September 2017, Revised Selected Papers, Part III 9; Zhao, Y., Kong, X., Taubman, D., Eds.; Springer: Cham, Switzerland, 2017; Volume 10668, pp. 656–667. [Google Scholar] [CrossRef]
- Zhai, Y.; Ma, H.; Cao, H.; Deng, W.; Liu, J.; Zhang, Z.; Guan, H.; Zhi, Y.; Wang, J.; Zhou, J. MF-SarNet: Effective CNN with Data Augmentation for SAR Automatic Target Recognition. J. Eng. 2019, 2019, 5813–5818. [Google Scholar] [CrossRef]
- Shang, R.; Wang, J.; Jiao, L.; Stolkin, R.; Hou, B.; Li, Y. SAR Targets Classification Based on Deep Memory Convolution Neural Networks and Transfer Parameters. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2834–2846. [Google Scholar] [CrossRef]
- Pang, L.; Wang, L.; Zhang, Y.; Li, H. Adversarial Examples of SAR Images for Deep Learning Based Automatic Target Recognition. In Proceedings of the 2021 IEEE 6th International Conference on Signal and Image Processing (ICSIP), Nanjing, China, 22–24 October 2021; pp. 24–27. [Google Scholar] [CrossRef]
- Zhou, J.; Peng, B.; Peng, B. Adversarial Attacks on Radar Target Recognition Based on Deep Learning. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 2646–2649. [Google Scholar] [CrossRef]
- Peng, B.; Peng, B.; Yong, S.; Liu, L. An Empirical Study of Fully Black-Box and Universal Adversarial Attack for SAR Target Recognition. Remote Sens. 2022, 14, 4017. [Google Scholar] [CrossRef]
- Peng, B.; Peng, B.; Zhou, J.; Xia, J.; Liu, L. Speckle-Variant Attack: Toward Transferable Adversarial Attack to SAR Target Recognition. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Xia, W.; Liu, Z.; Li, Y. SAR-PeGA: A Generation Method of Adversarial Examples for SAR Image Target Recognition Network. IEEE Trans. Aerosp. Electron. Syst. 2022, 52, 1910–1920. [Google Scholar] [CrossRef]
- Peng, B.; Peng, B.; Zhou, J.; Xie, J.; Liu, L. Scattering Model Guided Adversarial Examples for SAR Target Recognition: Attack and Defense. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [Google Scholar] [CrossRef]
- Zhou, J.; Feng, S.; Sun, H.; Zhang, L.; Kuang, G. Attributed Scattering Center Guided Adversarial Attack for DCNN SAR Target Recognition. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, L.; Pei, J.; Huo, W.; Zhang, Y.; Huang, Y.; Yang, J. Target Partial-Occlusion: An Adversarial Examples Generation Approach Against SAR Target Recognition Networks. In Proceedings of the IGARSS 2023—2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 7054–7057. [Google Scholar] [CrossRef]
- Cui, J.; Shao, R.; Li, H. Physics-Oriented Adversarial Attacks on SAR Image Target Recognition. In Proceedings of the The Second Workshop on New Frontiers in Adversarial Machine Learning, Honolulu, HI, USA, 23–29 July 2023. [Google Scholar]
- Xie, J.; Peng, B.; Lu, Z.; Zhou, J.; Peng, B. MIGAA: A Physical Adversarial Attack Method against SAR Recognition Models. In Proceedings of the 2024 9th International Conference on Computer and Communication Systems (ICCCS), Xi’an, China, 19–22 July 2024; pp. 309–314. [Google Scholar] [CrossRef]
- Zhang, F.; Yu, Y.; Ma, F.; Zhou, Y. A Physically Realizable Adversarial Attack Method Against SAR Target Recognition Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 11943–11957. [Google Scholar] [CrossRef]
- Ma, Y.; Pei, J.; Huo, W.; Zhang, Y.; Huang, Y.; Chen, K.; Yang, J. SAR-PAA: A Physically Adversarial Attack Approach Against SAR Intelligent Target Recognition. IEEE Trans. Aerosp. Electron. Syst. 2024, 1–18. [Google Scholar] [CrossRef]
- Auer, S.; Hinz, S.; Bamler, R. Ray-Tracing Simulation Techniques for Understanding High-Resolution SAR Images. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1445–1456. [Google Scholar] [CrossRef]
- Hammer, H.; Schulz, K. Coherent Simulation of SAR Images. In Proceedings of the Image and Signal Processing for Remote Sensing XV, Berlin, Germany, 31 August–2 September 2009; Volume 7477, pp. 406–414. [Google Scholar] [CrossRef]
- Balz, T.; Stilla, U. Hybrid GPU-based Single-and Double-Bounce SAR Simulation. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3519–3529. [Google Scholar] [CrossRef]
- Tao, J.; Auer, S.; Palubinskas, G.; Reinartz, P.; Bamler, R. Automatic SAR Simulation Technique for Object Identification in Complex Urban Scenarios. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 7, 994–1003. [Google Scholar] [CrossRef]
- Mason, D.C.; Dance, S.L.; Vetra-Carvalho, S.; Cloke, H.L. Robust Algorithm for Detecting Floodwater in Urban Areas Using Synthetic Aperture Radar Images. J. Appl. Remote Sens. 2018, 12, 04501. [Google Scholar] [CrossRef]
- Niu, S.; Qiu, X.; Lei, B.; Ding, C.; Fu, K. Parameter Extraction Based on Deep Neural Network for SAR Target Simulation. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4901–4914. [Google Scholar] [CrossRef]
- Jia, H.; Yang, P.; Wu, R. Comparative Study of Sentinel-1-Focused and Simulated SAR Images Using LiDAR Point Cloud Modeling for Coastal Areas. Electronics 2023, 12, 4312. [Google Scholar] [CrossRef]
- Boyoğlu, C.S.; Balz, T.; Sultanbekova, A. SAR Simulation of Looting Holes for Better Image Understanding. In Proceedings of the IGARSS 2024—2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 7–12 July 2024; pp. 3337–3340. [Google Scholar] [CrossRef]
- Carlini, N.; Wagner, D. Towards Evaluating the Robustness of Neural Networks. In Proceedings of the 2017 IEEE Symposium on Security and Privacy (Sp), San Jose, CA, USA, 22–24 May 2017; pp. 39–57. [Google Scholar]
- Brent, R.P. Algorithms for Minimization Without Derivatives; Courier Corporation: San Francisco, CA, USA, 2013. [Google Scholar]
- Ruiz-Perez, F.; López-Estrada, S.M.; Tolentino-Hernández, R.V.; Caballero-Briones, F. Carbon-Based Radar Absorbing Materials: A Critical Review. J. Sci. Adv. Mater. Devices 2022, 7, 100454. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level Accuracy with 50x Fewer Parameters and <0.5MB Model Size. arXiv 2016, arXiv:1602.07360. [Google Scholar]
- Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. Shufflenet v2: Practical Guidelines for Efficient Cnn Architecture Design. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 116–131. [Google Scholar]
Notations | Description | Notations | Description |
---|---|---|---|
Mesh information | Texture information | ||
Imaging parameters | Ray-tracing renderer | ||
SAR geometry data | SAR image | ||
Reprocessing module | Reprocessing parameters | ||
SAR ATR classifier | y | Label of prediction | |
Adversarial SAR geometry data | Loss function | ||
Ground truth label | Mapping module | ||
Adversarial texture information |
3D Model | CAR | JEEP | VAN |
---|---|---|---|
vertices | 116,929 | 50,651 | 76,214 |
triangles | 207,830 | 93,927 | 139,097 |
Class | Training Set | Test Set |
---|---|---|
2S1 | 233 | 274 |
BMP2 | 233 | 195 |
BRDM_2 | 233 | 274 |
BTR60 | 233 | 195 |
D7 | 233 | 274 |
SLICY | 233 | 274 |
T62 | 233 | 273 |
T72 | 232 | 196 |
ZIL131 | 233 | 274 |
ZSU_23_4 | 233 | 274 |
CAR | 360 | 360 |
JEEP | 360 | 360 |
VAN | 360 | 360 |
Method | Full Physical Simulation | Based on | Perturbation at |
---|---|---|---|
SVA [36] | × | Gradient | Image pixel |
SAR-PeGA [37] | × | Optimization | SAR echo signal |
SMGAA [38] | × | Gradient | Adversarial scatterer |
SAR-PATT(Ours) | ✔ | Optimization | 3D model texture |
ResNet-50 | VGG-16 | DenseNet-121 | MobileNetV2 | SqueezeNet | ShuffleNetV2 | |
---|---|---|---|---|---|---|
test accuracy | 98.6603% | 98.2138% | 92.4365% | 98.4092% | 93.8878% | 97.2370% |
ResNet-50 | VGG-16 | DenseNet-121 | MobileNetV2 | SqueezeNet | ShuffleNetV2 | Avg. | |
---|---|---|---|---|---|---|---|
CAR | 100% | 94.12% | 100% | 100% | 100% | 100% | 99.02% |
JEEP | 63.89% | 85.24% | 100% | 59.17% | 57.50% | 97.02% | 77.14% |
VAN | 77.42% | 95.52% | 83.61% | 100% | 99.58% | 99.37% | 92.58% |
ResNet-50 | VGG-16 | DenseNet-121 | MobileNetV2 | SqueezeNet | ShuffleNetV2 | Avg. | |
---|---|---|---|---|---|---|---|
CAR | 100% ↓ 0% | 88.39% ↓ 5.73% | 100% ↓ 0% | 100% ↓ 0% | 100% ↓ 0% | 98.85% ↓ 1.15% | 97.87% ↓ 1.15% |
JEEP | 59.57% ↓ 4.32% | 66.34% ↓ 18.90% | 100% ↓ 0% | 41.18% ↓ 17.99% | 44.25% ↓ 13.25% | 90.80% ↓ 6.22% | 67.02% ↓ 10.12% |
VAN | 81.67% ↑ 4.25% | 26.39% ↓ 69.13% | 78.64% ↓ 4.97% | 96.31% ↓ 3.69% | 84.81% ↓ 14.77% | 91.77% ↓ 7.60% | 76.60% ↓ 15.98% |
Source\Target | ResNet-50 | VGG-16 | DenseNet-121 | MobileNetV2 | SqueezeNet | ShuffleNetV2 | Avg. |
---|---|---|---|---|---|---|---|
ResNet-50 | – | 0% | 62.12% | 59.85% | 72.73% | 3.79% | 39.70% |
VGG-16 | 96.13% | – | 86.61% | 92.56% | 83.04% | 29.17% | 77.50% |
DenseNet-121 | 73.44% | 0% | – | 69.53% | 46.09% | 10.94% | 40.00% |
MobileNetV2 | 56.03% | 0% | 62.07% | – | 70.69% | 5.17% | 38.79% |
SqueezeNet | 90.78% | 2.13% | 68.79% | 86.52% | – | 22.70% | 54.18% |
ShuffleNetV2 | 84.15% | 3.46% | 88.18% | 84.44% | 74.93% | – | 67.03% |
Avg. | 80.11% | 1.12% | 73.55% | 78.58% | 69.50% | 14.35% | – |
Source\Target | ResNet-50 | VGG-16 | DenseNet-121 | MobileNetV2 | SqueezeNet | ShuffleNetV2 | Avg. |
---|---|---|---|---|---|---|---|
ResNet-50 | – | 0% | 61.36% | 62.88% | 72.73% | 3.79% | 40.15% |
VGG-16 | 96.13% | – | 87.50% | 93.15% | 78.87% | 28.57% | 76.84% |
DenseNet-121 | 73.44% | 0.78% | – | 71.09% | 47.66% | 10.94% | 40.78% |
MobileNetV2 | 60.34% | 0% | 64.66% | – | 72.41% | 5.17% | 40.52% |
SqueezeNet | 92.20% | 2.13% | 72.34% | 88.65% | – | 22.70% | 55.60% |
ShuffleNetV2 | 87.32% | 4.90% | 87.90% | 84.44% | 75.79% | – | 68.07% |
Avg. | 81.89% | 1.56% | 74.75% | 80.04% | 69.49% | 14.23% | – |
Azimuth | |||||
---|---|---|---|---|---|
CAR | 100% | 100% | 100% | 100% | 99.32% |
JEEP | 51.94% | 53.33% | 58.77% | 55.43% | 57.50% |
VAN | 98.91% | 100% | 99.39% | 100% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, B.; Cao, H.; Cui, J.; Lv, X.; He, J.; Li, H.; Peng, C. SAR-PATT: A Physical Adversarial Attack for SAR Image Automatic Target Recognition. Remote Sens. 2025, 17, 21. https://doi.org/10.3390/rs17010021
Luo B, Cao H, Cui J, Lv X, He J, Li H, Peng C. SAR-PATT: A Physical Adversarial Attack for SAR Image Automatic Target Recognition. Remote Sensing. 2025; 17(1):21. https://doi.org/10.3390/rs17010021
Chicago/Turabian StyleLuo, Binyan, Hang Cao, Jiahao Cui, Xun Lv, Jinqiang He, Haifeng Li, and Chengli Peng. 2025. "SAR-PATT: A Physical Adversarial Attack for SAR Image Automatic Target Recognition" Remote Sensing 17, no. 1: 21. https://doi.org/10.3390/rs17010021
APA StyleLuo, B., Cao, H., Cui, J., Lv, X., He, J., Li, H., & Peng, C. (2025). SAR-PATT: A Physical Adversarial Attack for SAR Image Automatic Target Recognition. Remote Sensing, 17(1), 21. https://doi.org/10.3390/rs17010021