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Abstract: Evapotranspiration (ET) plays a crucial role in the hydrological cycle, signifi-
cantly impacting agricultural productivity and water resource management, particularly in
water-scarce areas. This study explores the effects of key climate variables temperature,
precipitation, solar radiation, wind speed, and humidity on ET from 2000 to 2020, with fore-
casts extended to 2030. Advanced data preprocessing techniques, including Yeo-Johnson
and Box-Cox transformations, Savitzky–Golay smoothing, and outlier elimination, were
applied to improve data quality. Datasets from MODIS, TRMM, GLDAS, and ERA5 were
utilized to enhance model accuracy. The predictive performance of various time series fore-
casting models, including Prophet, SARIMA, STL + ARIMA, TBATS, ARIMAX, and ETS,
was systematically evaluated. This study also introduces novel algorithms for Explainable
AI (XAI) and SHAP (SHapley Additive exPlanations), enhancing the interpretability of
model predictions and improving understanding of how climate variables affect ET. This
comprehensive methodology not only accurately forecasts ET but also offers a transparent
approach to understanding climatic effects on ET. The results indicate that Prophet and
ETS models demonstrate superior prediction accuracy compared to other models. The ETS
model achieved the lowest Mean Absolute Error (MAE) values of 0.60 for precipitation,
0.51 for wind speed, and 0.48 for solar radiation. Prophet excelled with the lowest Root
Mean Squared Error (RMSE) values of 0.62 for solar radiation, 0.67 for wind speed, and
0.74 for precipitation. SHAP analysis indicates that temperature has the strongest impact
on ET predictions, with SHAP values ranging from −1.5 to 1.0, followed by wind speed
(−0.75 to 0.75) and solar radiation (−0.5 to 0.5).

Keywords: evapotranspiration; machine learning; climate variables; explainable AI; inter-
pretability; Yellow River Basin China

1. Introduction
Evapotranspiration (ET) is a critical component of the hydrological cycle, as it com-

bines the processes of water evaporation from soil and other surfaces and transpiration
from plants. ET has a direct impact on agricultural productivity, water resource man-
agement, and climate modeling, notably in regions that are susceptible to water scarcity,
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such as the Yellow River Basin China (YRBC), as a critical component in the water balance
equation [1]. Often referred to as the “cradle of Chinese civilization”, the YRBC holds
immense agricultural significance. However, climate variability and fluctuating water
availability pose substantial challenges [2]. Therefore, it is of the utmost significance to
accurately predict ET in this region to guarantee sustainable agricultural planning and
water resource management.

In the past, empirical models or basic regression techniques were the primary methods
of ET forecasting. However, these methods, while useful, frequently lack the sophistication
necessary to capture the intricate interactions between climate variables and ET [3]. In
recent years, the emergence of advanced time series models has equipped researchers with
more comprehensive tools to accurately predict ET [4]. Models such as Prophet, the Expo-
nential Smoothing State Space Model (ETS), and the Seasonal Autoregressive Integrated
Moving Average (SARIMA) have successfully modeled time series data that exhibit sea-
sonal patterns and trends [5,6]. In previous research, descriptive methods and time series
models, including SARIMA and ETS, have been employed to conduct a comprehensive
analysis of ET trends and their variability in the YRBC. However, these methods frequently
failed to provide a clear understanding of the impact of critical climate variables (Table 1).
A valid solution to bridge this gap is provided by recent advancements in Explainable AI
(XAI) techniques, such as SHapley Additive Explanations (SHAPs), which enable inter-
pretable ET forecasting. Nevertheless, these models frequently function as “black boxes”,
which means that they provide precise predictions but lack transparency in disclosing how
input variables affect the output. For example, although models such as SARIMA or ETS
can accurately predict ET, they fail to elucidate the specific contributions or interactions
of climatic variables such as temperature or precipitation, which complicates the compre-
hension or validation of the causal relationships that underlie the predictions. This lack
of interpretability is a substantial limitation, particularly in the context of environmental
science, where the comprehension of the causal relationships between variables is essential
for informed decision-making [7]. To address this challenge, the discipline of XAI has
emerged, providing techniques that improve machine learning models’ transparency by
elucidating the contributions of individual input variables to the model’s predictions [8].
SHAP has become increasingly popular among these techniques as a result of its consistent
and interpretable explanations and its strong theoretical foundation in cooperative game
theory [8]. Recent studies indicate that XAI approaches are offering significant insights
into the decision-making procedures of models employed in climate and meteorology,
hence enhancing trust in their forecasts [9,10]. Mamalakis et al. [9] examined the effective
application of XAI in meteorology and climate science, providing substantial insights into
model decision-making for climate forecasting. Chakraborty et al. [10] highlight the appli-
cation of XAI to assess the effects of climate change on energy consumption, illustrating
the efficacy of XAI in delivering clear and actionable insights for decision-makers across
various climate scenarios. This study investigates the potential of integrating XAI tech-
niques with advanced time series models to improve the interpretability of ET forecasting
in the YRBC. The study aims to evaluate the predictive capabilities of these models such
as SARIMA, Prophet, STL + ARIMA, TBATS, ARIMAX, and ETS. Additionally, the study
utilizes SHAP values to provide a transparent explanation of the impact of key climate
variables temperature, precipitation, solar radiation, wind speed, and humidity on ET pre-
dictions. The integration of SHAP values not only enables a more profound understanding
of the models’ behavior but also offers valuable insights into the relative significance of each
climate variable in influencing ET variability in the region. Our research is based on prior
studies that have emphasized the critical role of ET in the YRBC and the necessity of precise
forecasting to effectively manage water resources [1,2]. This research introduces innovative
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XAI algorithms, specifically SHAP, to improve the interpretability of ET forecasting models.
This approach offers transparent and extensive insights into the influence of certain climate
variables on ET projections, beyond traditional “black-box” methodologies. The integration
of advanced time series models with XAI approaches enhances forecast precision and
enriches comprehension of the fundamental connections between climatic variables and ET.
This combined emphasis on interpretability and accuracy signifies a notable progression
in climate modeling, providing meaningful insights for water resource management and
sustainable planning in the YRBC and beyond.

Table 1. Insights from climate variables and model interpretability: contributions and limitations in
ET forecasting research.

Citation Contribution Limitation Foreground Issues

[11]

Examined the
spatial and
temporal

fluctuations in
ET by utilizing
satellite data,
providing a

thorough
depiction of ET

trends in the
YRB.

focuses on
conducting
descriptive

analysis and
assessing
variability,

without
engaging in
predictive

modeling or
exploring the
factors that

influence climate
patterns.

Provided a
comprehensive

evaluation of the
variability of ET,

serving as a
foundation for

future modeling
endeavors.

Did not
investigate the

use of predictive
modeling or

advanced time
series models for
forecasting ET.

[12]

Examined the
long-term trends
in the hydrology

of the YRB,
specifically

focusing on the
combined effects

of climate
change and

human activity.

Primarily
focused on
descriptive

research without
integrating

advanced time
series models for

prediction.

Emphasized the
necessity of

utilizing
integrated
modeling

methodologies
that consider the

effects of both
climate and

human
activities.

Unable to offer
predictive
insights or

investigate the
application of

modern
forecasting
models in

hydrological
research.

[6]

Developed the
widely used

SARIMA and
other time series

models for
climate

modeling and
other forecasting

applications.

The model
predictions have

limited
interpretability

and function as a
“black box”.

Incorporated
SARIMA into

the field of time
series

forecasting for
environmental

and climate
applications.

Does not
provide any

insight into the
causality or

significance of
various variables
in the prediction.
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Table 1. Cont.

Citation Contribution Limitation Foreground Issues

[8]

Presented SHAP
values as a
means of

deciphering
intricate ML
models with

applications in
several domains,

including ET
research.

Extremely
computationally
heavy; could be
difficult to scale

to massive
datasets or

complicated
models.

Facilitated the
utilization of

SHAP in several
domains, such as
environmental

science and
hydrology.

Computational
obstacles

encountered
while utilizing

SHAP in the
context of

extensive ET
forecasting

models.

[4]

Provided a
comprehensive

overview of time
series

forecasting
techniques, such

as ETS and
ARIMA models,

commonly
employed in

climate research.

The main
emphasis is on
the correctness
of the model,

without
considering its
interpretability
or transparency

Popularized the
Prophet model
for large-scale

forecasting
duties; widely

used as a
reference for
time series
forecasting.

Insufficient
resources to

elucidate model
projections and

ascertain the
primary factors

influencing
projected results.

2. Study Area and Data
2.1. Study Area

The YRBC, situated in northern China, is a critical hydrological system that is fre-
quently referred to as the “center of Chinese civilization” due to its historical importance
Figure 1 [13]. The basin, which encompasses nine provinces, including Qinghai, Sichuan,
Gansu, Ningxia, Inner Mongolia, Shaanxi, Shanxi, Henan, and Shandong, and covers
an area of approximately 795,000 square kilometers, is home to a population of over
150 million individuals [14]. The basin’s hydrological dynamics are intricately defined by
its distinct upper, middle, and lower reaches, each of which possesses distinctive geological
and climatic characteristics. The Tibetan Plateau is the source of the cold arid conditions
that characterize the upper reaches, primarily sustained by glacial meltwater and precipi-
tation [15]. The river’s high sediment burden, which is the highest of any river globally
and has historically caused significant flooding issues, is primarily due to the presence of
steep valleys and loess plateaus in the middle reaches [16]. The lower reaches of the river
traverse the North China Plain, a critical agricultural region subject to significant water
demand due to intensive farming practices [17]. The YRBC is indispensable to China’s agri-
cultural sector, as it supplies water to irrigate nearly 13% of the country’s arable land [18].
However, the region is confronted with significant environmental challenges, such as water
scarcity, pollution, and ecological degradation, which are the result of the rapid expansion
of agricultural activities, urbanization, and industrialization [19]. These issues are further
exacerbated by climate change, which alters precipitation patterns, increases the frequency
and intensity of droughts, and affects the availability of water resources [20–22].
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2.2. Data Collection

The YRBC, a critical hydrological system in northern China, has been the subject of
extensive research for a long time. This is due to its critical role in supporting agriculture,
water resource management, and the maintenance of large populations. This study utilizes
a comprehensive collection of datasets that extend from 2001 to 2020 due to limited availabil-
ity to gain a more comprehensive understanding of the dynamics of ET and its interaction
with critical climatic variables. The dataset was used for both calibration and model evalu-
ation purposes to ensure model robustness. Together, the datasets include MODIS Global
Terrestrial ET (MOD16A2), TRMM estimates of precipitation (3B42), GLDAS-2.1 data on
solar radiation and humidity, MODIS Land Surface Temperature/Emissivity (MOD11A2),
and ERA5 daily wind speed data showed in Table 2 [23,24]. Integrated datasets enable a
robust investigation of ET, which is affected by complicated interactions between tempera-
ture, precipitation, solar radiation, wind speed, and humidity [25]. The MODIS ET product
(MOD16A2) is essential for monitoring terrestrial water vapor flow, while the TRMM and
ERA5 datasets provide precipitation and wind dynamics insights. These climatic deter-
minants are crucial to understanding regional water balance and how climate variability
affects agricultural productivity and water resource sustainability in the basin [26,27]. The
study employs an innovative approach that applies advanced time series models enhanced
by XAI techniques to improve the models’ interpretability. This framework for research not
only makes ET predictions more accurate but it also gives us a better picture of how each
climate variable works [12,28,29].
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Table 2. The datasets employed to evaluate the impact of climate variables on ET in the YRBC.

Climate Variable Dataset Dataset Name Years Covered

ET ee.ImageCollection
(‘MODIS/006/MOD16A2’) MODIS Global Terrestrial ET 2001–2020

Precipitation ee.ImageCollection
(“TRMM/3B42”)

TRMM 3B42: TRMM and
Other Data Precipitation

Estimates
2001–2020

Solar Radiation
ee.ImageColltion

(‘NASA/GLDAS/V021/NOAH/
G025/T3H’)

GLDAS-2.1: Global Land Data
Assimilation System 2001–2020

Temperature ee.ImageCollection
(‘MODIS/006/MOD11A2’)

MODIS Land Surface
Temperature/Emissivity

8-Day L3 Global
2001–2020

Wind Speed ee.ImageCollection
(‘ECMWF/ERA5/DAILY’) ERA5 Daily Aggregated Data 2001–2020

Humidity
ee.ImageCollection

(‘NASA/GLDAS/V021/
NOAH/G025/T3H’)

GLDAS-2.1: Global Land Data
Assimilation System 2001–2020

2.3. Data Preprocessing

The climate data in YRBC poses distinct problems for ET modeling, characterized
by skewed distributions, significant fluctuation, and extreme outliers resulting from the
region’s climatic trends. To tackle these problems and improve model reliability, we im-
plemented a range of customized preprocessing techniques. Each technique was selected
to correspond with the distributional and variability attributes of the climate variables, as
outlined in Table 3. The Yeo-Johnson transformation was selected to rectify these difficulties
by modifying skewness while accommodating zeros in the dataset [30]. Savitzky–Golay
smoothing succeeds in this, enhancing data quality without distorting the original struc-
ture through noise reduction and trend preservation [31]. The Box-Cox transformation
normalizes skewed precipitation data in the YRBC. Figure 2 shows that the transformation
reduces skewness (0.221) and improves symmetry, creating a more normal-like distribution
with kurtosis (−0.2491) [32]. Following the application of the Box-Cox transformation to
precipitation and UV data, we assessed normality by computing skewness and kurtosis.
A skewness number near 0 and a kurtosis close to 3 would signify the normality [33].
Temperature data contain sporadic extremely low values and zeros, which impact normalcy
and data stability. The Yeo-Johnson transformation was utilized to stabilize variance and
address skewness, accommodating zero values, while severe outliers were eliminated
to mitigate bias. Solar radiation in the YRBC can vary considerably, particularly dur-
ing seasonal transitions. The Box-Cox transformation in Figure 2 reduces the skewness
(−0.1650) and slightly flattens the tails (kurtosis: −0.2188), achieving a closer-to-normal
distribution of solar radiation. The wind speed data in the YRBC demonstrate significant
variability. Z-score standardization was utilized to normalize the data for comparability,
while exponential smoothing was implemented to identify patterns and mitigate short-
term variations, hence improving modeling consistency. Humidity data frequently exhibit
considerable skewness and variability, potentially impacting model stability. A logarithmic
and quantile transformation was utilized to rectify skewness and constrain extreme values,
hence ensuring compliance with model assumptions. To generate a dataset that is more
uniform and stable, advanced refining methods are implemented. These preprocessing
procedures guarantee that the dataset adheres to the assumptions of the chosen time series
models, including normality and variance stability, hence augmenting model robustness
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and prediction reliability [34,35]. The resulting error indicators (MAE, MSE, and RMSE)
are dimensionless, as they reflect the performance of variables on a standardized scale, as
ET and climate data are normalized.

Table 3. Application of data transformation, smoothing, and outlier removal techniques to climate variables.

Climate Variable Transformation
Applied Data Smoothing Outlier Removal

ET Yeo-Johnson
Transformation

Savitzky–Golay
Smoothing None

Precipitation Box-Cox
Transformation None Removal of extreme

outliers

Temperature
Yeo-Johnson

Transformation (with
zeros and negatives)

None Removal of extreme
outliers

Solar Radiation Box-Cox
Transformation None None

Wind Speed Z-Score
Normalization

Exponential
Smoothing

Quantile
Transformation (with

outliers removed)

Humidity
Combination of Log

and Quantile
Transformation

Advanced Smoothing
Techniques

Removal of extreme
outliers
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Figure 2. Histogram of Box-Cox before and after transformation for precipitation and solar radia-
tion. (a,c) Untransformed values show slight to moderate skewness and lighter tails. (b,d) Box-Cox
transformed values exhibit reduced skewness and improve normality, demonstrating the transforma-
tion’s effectiveness.

The study uses the Yeo-Johnson Transformation Equation (1) to address skewness and
manage zero/negative values in ET and temperature data. Where y is original data values,
ytrans f ormed is the transformed data value, and γ represents the transformation parameter,
which adjusts the skewness [30].
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ytrans f ormed =

{
(y+1)γ−1

γ

ln(y + 1)

, γ ̸= 0
, γ = 0

(1)

The Box-Cox Transformation Equation (2) normalizes precipitation and ultraviolet
(UV) observations. Where y is original data values, ytrans f ormed is transformed data values,
and γ represents the transformation parameter, which controls the transformation strength
for normalizing data [32].

ytrans f ormed =

{
yγ−1

γ

ln(y)
, γ ̸= 0
, γ = 0

(2)

The study utilized Equation (3) of the Savitzky–Golay smoothing method to minimize
noise and preserve the integrity of the data trends [31]. In Equation (3), y(i + k) shows
the original data point at position i where k indexed with the smoothing window and ck

coefficient of the polynomial. ysmoothed(i) is the smoothed data point at position i and m
represents the size of the window.

ysmoothed(i) =
m

∑
k=−m

ck.y(i + k) (3)

The coefficients of a polynomial applied to the data inside an aperture of size 2m + 1 are
represented by c and k in Equation (3). The Z-score standardization is used in Equation (4) to
normalize wind speed data used in the study where x represents original data, µ is the mean,
and σ is the standard deviation of the data [36]. Z-score standardization was employed to
modify the dataset’s mean to zero and variance to one, enhancing comparability among
variables with disparate scales. This contrasts with normalization, which suggests a
modification to conform to statistical distributions.

z =
x − µ

σ
(4)

where µ represents the mean and σ represents the standard deviation of the data. The
logarithmic and quantile transformations in Equation (5) applied to reduce the skewness.
Where ylog represents the log-transformed, yquantile denotes the quantile transformed, and
function F(y) represents the empirical cumulative distribution function of the data [37]. To
prevent anomalies from distorting the data, the study used quantile-based approaches to
exclude extreme deviations in wind speed and moisture.

ylog = log(y), yquantile = F−1(F(y)) (5)

3. Methodology
This work focuses on integrating advanced time series forecasting models with XAI

methodologies to enhance the accuracy and interpretability of ET forecasting in the YRBC.
The research methodology, depicted in Figure 3, methodically predicts ET, utilizing

multiple climatic factors, such as temperature, precipitation, solar radiation, wind speed,
and humidity. The methodology begins with data preprocessing, which includes missing
value imputation, outlier elimination, and the construction of lag variables, then followed
by data partitioning into training and testing sets, with 70% of the data (2000–2015) used
for training and 30% (2016–2020) reserved for testing. A distinct calibration period was not
employed because of the extensive preparation methods and the restricted historical data
accessible. This method sought to enhance model training while utilizing available data to
ensure reliable predictions. Various time series models, Prophet, SARIMA, STL + ARIMA,
ARIMAX, TBATS, and ETS, are subsequently chosen and assessed utilizing performance
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criteria including MAE, MSE, and RMSE. This methodology uniquely integrates SHAP
and XAI algorithms to quantitatively assess the influence of each climate variable on
model predictions while employing a Surrogate Decision-Tree model to visually elucidate
complex model behaviors, thereby improving transparency and interpretability. This
thorough methodology guarantees precise ET forecasting while offering an enhanced
understanding of the model’s decision-making process and the impact of climatic variables.
The climate variables utilized to model ET are derived from historical data spanning the
years 2001 to 2020. These datasets, derived from satellite observations and reanalysis
models as declared in Table 1, offer recorded and estimated historical circumstances, rather
than future predictions. The model was calibrated using historical climate variables, and
the subsequent ET forecasts for the 2021–2030 period are derived from the patterns and
correlations established in this historical data.
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3.1. Advanced Time Series Models

This research used a collection of advanced time series forecasting algorithms. Some
models like ARIMAX include external climate variables as exogenous variables, while
others like SARIMA, Prophet, and ETS do not incorporate the exogenous variables.



Remote Sens. 2025, 17, 115 10 of 37

SARIMA: The SARIMA model was selected to identify seasonal patterns in ET and
climate data due to its capacity to represent seasonality following differencing. This
methodology is most effective with stationary data that displays periodic trends and is
ideally suited for time series data with consistent seasonal patterns. The mathematical
representation of the model SARIMA is provided in Equation (6). yt is the value of time
series at time t, ∅i represents the non-seasonal autoregressive coefficient, θj denotes the
non-seasonal moving average coefficient, lS is the seasonal period length, and ∈t is the
white noise error term [6]. The non-seasonal autoregressive and moving average phases are
denoted by p and q, respectively, whereas the seasonal equivalents are denoted by P and Q.

yt =
p

∑
i=1

∅iyt−i

q

∑
j=1

θj ∈t−j +
P

∑
k=1

φkyt−kS +
Q

∑
i=1

Θl ∈t − lS+ ∈t (6)

ETS: The ETS model was used because of its breakdown into error, trend, and seasonal
components, which improves interpretability. ETS is proficient for data exhibiting distinct
seasonal and trend patterns, rendering it appropriate for the markedly seasonal ET and
climate data in the YRBC. The ETS Model is expressed in Equation (7), where yt is the value
of time series at time t, lt−1 represents the level component at time t − 1, bt−1 denotes the
trend component at t − 1, st−S is the seasonal component, lagged by S period, and ∈t is the
error term at time t [4].

yt = (lt−1 + bt−1).st−S+ ∈t (7)

Prophet Model: Prophet is resilient to absent data, anomalies, and seasonal fluctu-
ations, rendering it suitable for environmental datasets characterized by inconsistencies.
It facilitates adaptable modeling of seasonality and holidays, advantageous for ET data
affected by seasonal climatic fluctuations. The Prophet Model Equation (8) is a method
that breaks down time series data into three components: trend, seasonality, and holiday
impacts [5,38]. The function yt is the value of time series at time t, gt reflects the trend, st

represents the seasonal element, and ht indicates holidays or other external occurrences
and ∈t is the error term at time t.

yt = gt + st + ht+ ∈t (8)

TBATS model: The TBATS approach can manage intricate seasonality and is especially
appropriate for data exhibiting numerous seasonal cycles. Due to the seasonal variations
in ET and climatic conditions in the YRBC, TBATS was incorporated to address these
intricacies. The statistical representation of the TBATS model, incorporating seasonality
using Fourier terms, is given Equation (9). With the use of Fourier terms, this model can
represent complicated seasonality, where yt is the value of time series at time t, λ−1

t is
the parameter to handle data with Box-Cox transformation, αt represents an additional
parameter used to adjust for irregularities within the seasonal components of the model,
∅j denotes the autoregressive coefficient, and Θk is the moving average coefficient [4].

yt = λ−1
t

(
yλt − αt

)
+

p

∑
j=1

∅jyt−j +
q

∑
k=1

Θk ∈t (9)

STL + ARIMA: This hybrid methodology uses STL decomposition to isolate trend,
seasonal, and residual components prior to the application of ARIMA on the residuals,
hence offering adaptability for seasonal data. STL+ARIMA is proficient for data exhibiting
non-stationary seasonal patterns, facilitating a more customized fit to ET data. The STL
combined with ARIMA is shown in Equation (10). The trend, seasonal, and residual
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components are represented by T, S, and R, respectively [39]. We apply the ARIMA model
to the residual component Rt.

yt = Tt + St + Rt (10)

ARIMAX: The ARIMAX model was chosen to include external climate elements
as exogenous variables, rendering it appropriate for simulating the impact of specific
climate variables, such as temperature and precipitation, on ET. This paradigm is espe-
cially advantageous for linear correlations with external factors. The ARIMAX model,
which incorporates exogenous variables such as climate related factors, is described in
Equation (11) [40], where Φi represent the autoregressive, θj denotes the moving average
coefficient, term Xt−k indicates the exogenous inputs, and γk represents the coefficient for
the exogenous variables.

yt =
p

∑
I=1

Φiyt−i +
q

∑
j=1

θj ∈t−j +
r

∑
k=1

γkXt−k+ ∈t (11)

Evaluation Metrics for Models

The research employs three rigorous statistical guidelines to assess the models [41]:
The Mean Absolute Error (MAE) is calculated using Equation (12). Where yi denoted

the actual value, ŷi represents the predicted value, and n is the number of observations.

MAE =
1
n

n

∑
i=1

|yi − ŷi| (12)

Equation (13) illustrates the Mean Squared Error (MSE), where yi denotes the actual
value, ŷi represents the predicted value, and n is the number of observations.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (13)

Root Mean Squared Error (RMSE) refers to the following Equation (14), where yi denotes
the actual value, ŷi represents the predicted value, and n is the number of observations.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (14)

Nash–Sutcliffe Efficiency (NSE) is a commonly employed statistic for assessing the
congruence between a model’s predictions and actual data [42]. The comparison of the
model’s predictions to the mean of the observed data reveals that values approaching
one signify superior predictive accuracy. An NSE value of zero indicates that the model’s
performance is equivalent to utilizing the mean of the observed data, whereas values below
zero denote that the model’s performance is inferior to the mean. This study utilizes the
NSE to evaluate the efficacy of several forecasting models in predicting ET.

NSE = 1 − ∑n
i=1(yi − yi)

2

∑n
i=1(yi − ŷi)

2 (15)

where yi in Equation (15) represents the actual observed data at time i while ŷi is the
predicted values from the model at the same time point. The mean of the observed values
is denoted as yi where n represents the total number of data points in the dataset.

Pearson’s correlation coefficient (R) analyzes the relationship between independent
and dependent variables, emphasizing its function in identifying multicollinearity [43].
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The research examines correlations among independent variables to uncover potential
mediating or moderating effects in regression models.

R =
∑n

i=1 (yi − y)
(
ŷi − ŷ

)√
∑n

i=1(yi − yi)
2∑n

i=1
(
ŷi − ŷ

)2
(16)

yi represents the actual observed values, ŷi represents the predicted values, and y and
ŷ are the mean of the observed and predicted values, respectively, in Equation (16).

3.2. Elucidate the Techniques of XAI

To improve the comprehensibility of the models, the SHAP method was used. SHAP
values convey a glimpse at the individual impact of each climatic parameter on the forecasts
generated by the models. Formula for Calculating the SHAP Value Equation (17) [44], where
∅i is the Shapley value for feature i, representing its contribution to the prediction, N is
the set of all features, S is the subset of feature not including i, and f (S) denotes the model
output using subset S.

∅i = ∑
S⊆N\{i}

|S|(|N| − |S| − 1)
|N| [ f (S ∪ {i})− f (S)] (17)

In this context, f (S) refers to the model’s output using a subset of S features, whereas
N refers to all features. Equations (1)–(15) are essential for developing a complete and
successful framework for ET forecasting with XAI integration. These mathematical equa-
tions enhance each phase of the process, from data preparation to model evaluation and
outcome interpretation. Data transformation techniques such as Yeo-Johnson, Box-Cox,
and Z-Score normalization effectively prepare input data by eliminating noise, rectifying
skewness, and mitigating outliers, hence enhancing the stability and dependability of the
model’s predictions. The smoothing methods enhance the data, facilitating precise time
series analysis by removing superfluous variations. Assessment measures like MAE, MSE,
and RMSE examine prediction errors to find the most accurate and resilient forecasting
approach. SHAP values clarify the model’s internal mechanics. SHAP gives feature rele-
vance to help stakeholders understand which factors significantly affect model predictions,
boosting confidence and responsibility. Using advanced data processing, error reduction,
and explainability frameworks creates a durable, consistent, and interpretable forecasting
system that accurately predicts fundamental climate changes, where Equations (1)–(15)
give a reliable forecasting strategy that balances performance and interpretability, revealing
ET trends and their causes.

3.3. Algorithms for Time Series Forecasting with XAI Integration
3.3.1. Algorithm 1: XAI-Based Feature Attribution

Using several time series models, the study aims to estimate ET values for 2021–2030.
Additionally, it seeks to improve the interpretability of forecasts by using SHAP values. A
description of the algorithm’s process may be found in the following steps:

Preprocessing: These processes differ by data type and they transform and normalize
climate variables during preparation. The Yeo-Johnson approach is employed to normalize
data distribution and manage negative values, with the transformations applied to ET and
temperature. The Box-Cox approach facilitates the transformation of precipitation and
solar radiation to stabilize variance and make the data more regular. Z-score normalization
normalizes wind speed by zeroing the average and unit-scaling the variability. The hu-
midity data undergo a logarithmic and quantile transformation to mitigate skewness and
promote uniformity. Savitzky–Golay smoothing reduces noise in climate variables while
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preserving major patterns and trends. Quantile techniques are used to outlier the reduction
cap or eliminate extreme values, improving modeling accuracy.

Model Selection: The time series models, including SARIMA, ETS, Prophet, TBATS,
STL + ARIMA, and ARIMAX, are trained on the filtered dataset. This diversified model
selection promotes resilience in predicting by evaluating numerous techniques.

Forecasting: Each model predicts the ET values for the time frame of 2021–2030,
producing a variety of projections using various modeling methodologies.

Evaluation: The efficacy of each model is assessed using metrics such as MAE, MSE,
and RMSE.

The model with the lowest RMSE is selected for the final forecasts since it offers the
optimal trade-off between punishing significant mistakes and preserving accessibility.

Explainability: After selecting the appropriate model, SHAP values are calculated to
evaluate the impact of each climatic variable on the forecasts made by the model. SHAP
values provide straightforward clarity for the model outcomes by revealing the factors
(such as temperature and precipitation) that have the greatest effect on the anticipated ET.
The pseudocode for Algorithm 1 is shown below, as follows:

Algorithm 1: Explainable Artificial Intelligence (XAI) Time Series Forecasting.

Input: Climate dataset (D)
Output: Projected ET values for the period 2021–2030, along with corresponding SHAP values.
Preprocessing

Iterate over each variable Vi in the set D:
If Vi represents either ET or temperature:

Utilize the Yeo-Johnson transformation.
If Vi represents either precipitation or solar radiation:

Perform the Box-Cox transformation
If Vi represents wind speed, then use Z-score normalization.
If Vi represents humidity:

Utilize logarithmic and quantile transformation techniques.
Perform Savitzky–Golay smoothing on the variable Vi.

Apply quantile-based approaches to eliminate outliers from dataset
Selection of model

Iterate over each model Mi in the set (SARIMA, ETS, Prophet, TBATS, STL + ARIMA,
ARIMAX) and do the following steps:

Adjust the parameters of Mi to the preprocessed dataset D.
Prediction

Perform the following steps for each model Mi:
Predicted ET levels for the period of 2021–2030.

Assessment
Perform the following steps for each model Mi:

MAE, MSE, and RMSE.
Choose the model that has the lowest RMSE.

Explainability
Utilize the SHAP method on the model that has shown the highest level of performance.
Compute the SHAP values for each feature.

Return
forecasted ET, SHAP values
End Algorithm
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This technique combines various time series models with XAI using SHAP, providing
precise projections and comprehensive feature allocation. Within the realm of the literature,
the primary emphasis in time series forecasting often lies on the evaluation of model perfor-
mance alone. Nevertheless, the use of XAI methods such as SHAP in this algorithm adds
an additional level of interpretability, allowing users to comprehend the rationale behind
certain predictions. This feature is especially valuable in domains such as climate science.

3.3.2. Algorithm 2: SHAP-Based Feature Attribution

Algorithm 2 utilizes SHAP to ascertain the significance of features in a time series
model, hence offering accessibility and comprehensibility for the predicted ET values. Let
us break down each section of the algorithm:

I. Initializing the SHAP Explainer.
Configure the top-performing model’s SHAP explanation. We calculate SHAP values

using dataset attributes to understand the model’s prediction process. We input SARIMA,
Prophet, or ARIMAX, the algorithm that performed best in Algorithm 1, into the SHAP
Explainer. The explanation can separate the model’s results and assign SHAP values to
variables like temperature, humidity, and wind speed. Initializing the SHAP explanation is
essential to determining how much each feature affects model predictions.

II. Calculate the SHAP values for each data point.
Calculate the SHAP values for every prediction the model generates. For every data

point in the dataset, the algorithm executes the model to obtain the estimated ET value.
The Equation (18) may be expressed, as follows:

ýi = M(xi)ý (18)

The equation states that the value of i is determined by function M, which is the
model, and the input data xi. We calculate SHAP values for each input feature after the
prediction. SHAP values show how temperature, wind speed, and humidity affected the
forecast. We maintain the unique contributions of each data point. SHAP values explain
how features affect individual predictions rather than generalizing across the dataset. Due
to the extensive study, users may see how daily or monthly meteorological variables affect
ET forecasting.

III. Accumulate the SHAP values for all data points
To calculate SHAP values for all features in the dataset to assess their importance, data

point SHAP values are concatenated after calculation. This phase determines the mean
or total SHAP values for each feature to determine its overall contribution to the model’s
predictions. The model’s predictions would suffer if the temperature consistently had high
SHAP values for all data points. However, a parameter like wind speed with lower SHAP
values may be less important for ET forecasting. This information benefits decision-makers
because it emphasizes climate elements such as temperature and precipitation, which are
essential for ET estimation.

IV. Provide rankings based on SHAP values
To prioritize features by cumulative SHAP values to show which qualities have the

biggest impact on model predictions. A SHAP-ordered list of temperature, humidity, and
wind speed is the final product. This ranking sorts characteristics by their impact on the
model’s predictions, from most to least influential. The rankings provide a clear and concise
picture of how climatic factors affect ET estimates. The pseudocode for Algorithm 2 is
shown below, as follows:
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Algorithm 2: SHAP-based Feature Attribution

Input: (Dataset D), Model (M)
Output: SHAP values for vital features
Initialized SHAP explainer

SHAPexplainer = SHAP(M)

Determine SHAP values for all records
Perform the following for every xi in D’
ý = M(xi) # Model prediction

SHAPvalues = SHAPexplainer(xi) #Compute SHAP values for xi and save the
SHAP_values.
Consolidate SHAP values

SHAPimportance = Sum SHAP
Return SHAPimportance

End Algorithm

Algorithm 2 uses SHAP as it offers an explicable framework that dissects the model’s
choice-making procedure. By computing SHAP values for each prognosis and consolidating
them, the technique provides both local (individual prediction-level) and global (total
feature significance) insights. Utilizing SHAP enhances user confidence and comprehension
of model outcomes, rendering it particularly pertinent in environmental forecasting and
other fields necessitating clarity in machine learning approaches.

4. Results
4.1. Overview of Model Performance

This research rigorously evaluated six advanced time series models: ARIMAX,
SARIMA, ETS, STL + ARIMA, TBATS, and Prophet, for predicting ET in relation to sig-
nificant climate factors within the YRBC. The assessment of each model was performed
utilizing stringent statistical metrics, including Mean MAE, MSE, RMSE, R, and NSE. The
comparative heat maps offer a comprehensive overview of the model’s performance, high-
lighting distinct trends and underscoring the strengths and weaknesses of each technique
across diverse climate factors. The ETS and TBATS models exhibited reliable accuracy
across most climate variables. The ETS model attained the minimal MAE values of 0.6
for precipitation and 0.75 for wind speed, as illustrated in Figure 4. The ETS model in R
exhibited a high correlation of 0.95 for precipitation and 0.89 for Wind Speed, signifying
robust forecast ability in these domains. TBATS demonstrated comparable performance,
achieving an MAE of 0.61 for precipitation and 0.57 for temperature, along with R values
of 0.95 for precipitation and 0.99 for temperature, further substantiating its efficacy in ET
forecasting. TBATS achieved NSE values of 0.72 for precipitation and 0.98 for temperature,
indicating its exceptional model efficacy in these instances. The STL + ARIMA model
exhibited significant heterogeneity in its performance. The model exhibited a notably
elevated MAE of 90 for humidity, indicating that the STL + ARIMA framework may have
difficulty encapsulating the intricacies of this variable. The MSE and RMSE metrics sim-
ilarly illustrate this tendency, with STL + ARIMA exhibiting the greatest error values of
9.5 (MSE) and 3.4 (RMSE) for precipitation and wind speed, respectively. Regarding R,
STL + ARIMA demonstrated reduced values for many variables, including 0.91 for pre-
cipitation and 0.86 for wind speed; however, the NSE value for precipitation was merely
0.58, signifying a suboptimal fit for this variable. The SARIMA model faced difficulties,
especially regarding temperature. SARIMA had moderate accuracy for wind speed with
an RMSE of 2.7; however, its performance for temperature was subpar, indicated by an
MAE of 1 and an MSE of 2.1. The R-value for temperature was 0.93, showing a moderate
correlation, while the NSE for temperature was 0.78, suggesting potential for enhancement.
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SARIMA exhibited superior performance with wind speed, with R = 0.89 and NSE = 0.68,
indicating a satisfactory match for this variable. The ARIMAX model, although generally
dependable, exhibited an elevated RMSE of 2.4 for wind speed, indicating possible overfit-
ting or heightened sensitivity to this variable. The R-value for wind speed was 0.87 and
the NSE was 0.53, indicating reasonable performance with certain limitations in effectively
representing the dynamics of wind speed. The increased error margin for wind speed
indicates possible constraints in the ARIMAX model’s capacity to generalize across all
climatic variables.
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Figure 4. Comparative heatmap of model performance metrics (MSE, RMSE, MAE) across climate
variables (precipitation, temperature, solar radiation, wind speed, humidity) for models ETS, TBATS,
Prophet, STL + ARIMA, and SARIMA. The color gradient shows error magnitude, with darker blue
suggesting better model performance and red/orange indicating worse performance.

4.2. Model-Specific Performance Analysis
4.2.1. ARIMAX Performance

The performance of ARIMAX in relation to a variety of variables, including ET with
respect to climate variables. The actual ET values are depicted alongside the model’s
forecasted ET values, extending the extent of the predictions to 2030. For precipitation, the
model in Figure 5 demonstrated an MAE of 0.65, an MSE of 0.67, and an RMSE of 0.82 with
an R-value of 0.90 and an NSE of 0.77. According to these metrics, ARIMAX appears to
reasonably effectively capture the relationship between ET and precipitation. However,
there are minor underestimations during periods of extreme precipitation. The error metrics
for temperature in ARIMAX are higher, with an MAE of 1.17, MSE of 2.91, and RMSE of 1.71.
The model’s inability to accurately predict ET during peak temperature periods suggests
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that non-linear dynamics, which ARIMAX cannot completely capture, may influence the
influence of temperature on ET. ARIMAX provides a more accurate representation of solar
radiation, with an MAE of 0.58, an MSE of 0.95, and an RMSE of 0.97, along with an R-value
of 0.95 and an NSE of 0.76. However, there are some discrepancies that are apparent
during low radiation periods. The model’s performance was comparatively robust in
terms of wind speed, with an MAE of 0.58, MSE of 0.60, and RMSE of 0.77, coupled with
an R of 0.83 and an NSE of 0.55. The forecast was in close agreement with the actual
ET values, except for periods of high wind speed, during which the model occasionally
overestimated ET. ARIMAX demonstrated moderate efficacy in the presence of humidity,
as evidenced by an MAE of 0.96, MSE of 2.36, and RMSE of 1.54. During periods of
low humidity, the model exhibited a tendency to exaggerate ET, which may indicate a
potential difficulty in capturing the interaction between humidity and ET. The performance
of the ARIMAX model with respect to various climate variables is encapsulated by the
AIC (Akaike Information Criterion) and BIC (Bayesian Information Criterion) metrics in
Table 4. The AIC of 564.31 and BIC of 574.52 for precipitation suggest a strong model fit,
reflecting its capacity to elucidate the link between ET and precipitation, despite slight
underestimations during extreme events. The temperature exhibits elevated AIC = 828.68
and BIC = 838.88 values, indicating ARIMAX’s difficulties in predicting temperature-related
ET, especially during peak periods. The low AIC of 488.31 and BIC of 498.52 for solar
radiation indicate robust model performance, properly depicting solar radiation, albeit
with occasional inconsistencies during periods of low radiation. The wind speed exhibits
an AIC of 496.68 and a BIC of 506.89, suggesting commendable performance, albeit with
minor overestimations during elevated wind speed intervals. Ultimately, humidity, with
an AIC of 765.83 and a BIC of 776.04, suggests a suboptimal model fit and difficulties
in accurately representing the influence of humidity on ET, especially during periods of
low humidity.

4.2.2. SARIMA Performance

SARIMA demonstrated higher errors than ARIMAX when applied to precipitation
data, with an MAE of 0.82, MSE of 1.04, and RMSE of 1.02, as shown in Figure 6. This
suggests that while SARIMA is proficient at capturing seasonal precipitation trends, it
encounters difficulties when dealing with unpredictable or sudden shifts in precipitation
behavior. The model’s ability to forecast temperature-related ET was less effective, as
evidenced by an MAE of 1.55, MSE of 4.52, and RMSE of 2.13, with R and NSE values of 0.93
and 0.78, respectively. This underscores SARIMA’s limitations in thoroughly accounting
for the impact of temperature variability on ET. SARIMA performed similarly to ARIMAX
in terms of solar radiation, with an MAE of 0.68, MSE of 1.25, and RMSE of 1.12, achieving
R and NSE values of 0.90 and 0.66, despite modest overestimations during periods of
high solar radiation. Regarding wind speed, SARIMA demonstrated a slight enhancement
compared to ARIMAX, achieving MAE of 0.69, MSE of 0.76, and RMSE of 0.87, with R and
NSE values of 0.89 and −0.53. This suggests that SARIMA is more effective at managing
seasonal wind speed variations, although there are some challenges during sudden wind
speed shifts. Like ARIMAX, humidity revealed the model’s weakest performance, with
an MAE of 1.02, MSE of 2.70, and RMSE of 1.64 along with R and NSE values of 0.88
and 0.56, respectively. This suggests that SARIMA has a propensity to overestimate ET
during periods of low humidity, emphasizing the difficulties associated with accurately
documenting the intricate interaction between humidity and ET. The performance of the
SARIMA model across several climate variables is illustrated in Table 5, with AIC and
BIC values indicating differing levels of fit. The AIC of 578.21 and BIC of 591.58 for
precipitation suggest a strong model fit, aligning with SARIMA’s capacity to identify
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seasonal patterns, despite its difficulty in accommodating abrupt changes. The temperature
model has a suboptimal fit, with an AIC of 842.71 and a BIC of 856.08, reflecting SARIMA’s
challenges in predicting temperature-associated ET, as evidenced by elevated error metrics.
The AIC of 492.34 and BIC of 505.71 for solar radiation indicate a satisfactory model fit;
however, there are instances of overestimation during periods of elevated radiation. Wind
speed demonstrates a favorable match (AIC = 494.99, BIC = 508.35); nonetheless, SARIMA
encounters difficulties with abrupt changes, as indicated in the paragraph. Ultimately, the
model’s inadequate fit for humidity is shown by an AIC of 722.70 and a BIC of 736.07,
with SARIMA exhibiting a tendency to overestimate ET in conditions of low humidity, as
previously mentioned.
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Figure 5. ARIMAX forecast for ET and the incorporation of climate variables as exogenous variables.
The ARIMAX model exhibits robust predictive capabilities for both solar radiation and wind speed,
with MAE values of 0.58 and 0.58, respectively, and RMSE values below 1. Conversely, the forecast
for temperature displays greater deviations (MAE: 1.17, RMSE: 1.71), indicating that the relationship
between ET and temperature over time is more intricate to predict.
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Table 4. ARIMAX Model performance for various climate variables with AIC and BIC values.

Feature ARIMAX Model AIC BIC

Precipitation ARIMA (0, 1, 1) (0, 1, 1) 12 564.31 574.52
Temperature ARIMA (0, 1, 1) (0, 1, 1) 12 828.68 838.88

Solar Radiation ARIMA (0, 1, 1) (0, 1, 1) 12 488.31 498.52
Wind Speed ARIMA (0, 1, 1) (0, 1, 1) 12 496.68 506.89
Humidity ARIMA (0, 1, 1) (0, 1, 1) 12 765.83 776.04
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Figure 6. SARIMA model forecast for ET, which does not include climate variables as exogenous
variables. Solar radiation (MAE: 0.68, RMSE: 1.12) and wind speed exhibit comparatively low error
in the SARIMA model’s forecast of ET in relation to a variety of climate factors, indicating that
these variables are more predictable. Conversely, the model experiences greater difficulties with
temperature predictions, as evidenced by an MAE of 1.55 and RMSE of 2.13.
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Table 5. SRIMA Model performance for various Climate Variables with AIC and BIC values.

Feature SARIMA Model AIC BIC

Precipitation SARIMA(1, 1, 1)(1, 1, 0, 12) 578.21 591.58
Temperature SARIMA(1, 1, 1)(1, 1, 0, 12) 842.71 856.08

Solar Radiation SARIMA(1, 1, 1)(1, 1, 0, 12) 492.34 505.71
Wind Speed SARIMA(1, 1, 1)(1, 1, 0, 12) 494.99 508.35
Humidity SARIMA(1, 1, 1)(1, 1, 0, 12) 722.70 736.07

4.2.3. ETS Performance

ETS models are recognized for their ability to accurately capture seasonality and
exponential trends. ETS marginally outperformed ARIMAX and SARIMA in its ability to
capture underlying trends when forecasting precipitation, with an MAE of 0.60, MSE of 0.56,
and RMSE of 0.75 in Figure 7. The precipitation R-value was 0.95, and the NSE value was
0.93, signifying a robust fit and effective pattern representation. However, it encountered
difficulties with extreme values. With an MAE of 1.01, MSE of 1.87, and RMSE of 1.37, ETS
outperformed SARIMA in terms of temperature, but it was marginally behind ARIMAX.
The R-value for temperature was 0.92 and the NSE value was 0.89, indicating commendable
performance, albeit with challenges in irregular trends. The model was notably proficient in
capturing seasonal temperature effects; however, it encountered challenges with irregular
fluctuations. In terms of solar radiation, ETS was the most effective model for this variable,
as it accurately captured ET variability across most periods, with an MAE of 0.48, an MSE
of 0.41, and an RMSE of 0.64 along with R and NSE values of 0.96 and 0.94. ETS generated
robust wind speed forecasts with an MAE of 0.51, MSE of 0.43, and RMSE of 0.66, which
were close to the actual ET values over a variety of time periods. Finally, ETS demonstrated
satisfactory performance in humidity forecasting, with an MAE of 0.95, MSE of 1.60, and
RMSE of 1.27. Although the model efficiently captured general trends for humidity with
an R-value of 0.87 and NSE of 0.85, it encountered difficulties during periods of rapid
humidity changes.

4.2.4. STL + ARIMA Performance

The STL was employed in combination with ARIMA to assess its effectiveness in
forecasting ET, focusing on its capacity to break down complex time series data into
seasonal, trend, and residual components. In the case of precipitation, the STL + ARIMA
model demonstrated underperformance in Figure 8, with an MAE of 1.20, MSE of 1.96,
and RMSE of 1.40. The R-value for precipitation was 0.88, indicating a moderate linear
correlation between the observed and projected values, whilst the NSE value of 0.75
suggests that the model accounts for some variability in the data, albeit with potential
for enhancement. These results suggest that the model encountered difficulties with both
seasonal and trend components. The model’s inability to reflect the complex relationship
between temperature and ET was underscored by the highest errors among all variables:
temperature forecasting had an MAE of 8.28, MSE of 89.87, and RMSE of 9.48. A less-
than-ideal fit and significant challenges in clarifying the temperature-ET relationship were
indicated by the temperature R-value of 0.31 and the NSE value of −0.12. In the same
vein, the model demonstrated subpar performance in the prediction of solar radiation,
as evidenced by an MAE of 1.45, MSE of 3.50, and RMSE of 1.87. The R-value for solar
radiation was 0.70, while the NSE value was 0.10, indicating a suboptimal fit and implying
that the model had difficulty properly predicting solar radiation and its effect on ET. These
results indicate that the model’s prediction of ET based on solar radiation was inaccurate.
In contrast, STL + ARIMA demonstrated a moderate level of effectiveness in capturing the
effects of wind speed on ET, as evidenced by its MAE of 0.56, MSE of 0.49, and RMSE of
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0.70. The R-value for wind speed was 0.91, and the NSE value was 0.87, signifying robust
performance for this variable. Nevertheless, the model encountered additional difficulties
with humidity, resulting in an MAE of 1.25, MSE of 3.35, and RMSE of 1.83. Humidity
had a moderate R-value of 0.65 and an NSE value of 0.35, indicating poor accuracy in
decomposing the effect of humidity on ET but otherwise moderate performance. These
results indicate that the model had difficulty decomposing the impact of humidity on
ET. In general, as illustrated in Figure 8, STL + ARIMA exhibits potential; however, it
is less dependable than ETS and ARIMAX due to its significant challenges, particularly
with respect to temperature and solar radiation. The efficacy of the STL + ARIMA model
for different climate variables is demonstrated by the AIC and BIC values, which signify
the model’s suitability for each variable in Table 6. Precipitation has an AIC of −1649.94
and a BIC of −1632.93, suggesting a satisfactory fit, albeit with substantial prediction
variability, as elaborated in the preceding paragraph. The temperature model, with an AIC
of −1295.70 and a BIC of −1278.69, demonstrates suboptimal performance, corroborating
the paragraph’s reference to significant errors in forecasting the temperature ET. The
AIC of −1671.21 and BIC of −1654.19 for solar radiation demonstrate inadequate model
performance, affirming challenges in precise prediction. The wind speed model exhibits an
AIC of −1545.00 and a BIC of −1527.99, indicating a robust fit that aligns with the model’s
efficacy in representing wind speed influences. Ultimately, humidity, with AIC = −1255.51
and BIC = −1238.50, demonstrates a mediocre fit, consistent with the model’s difficulty in
fully encapsulating the influence of humidity on ET.

4.2.5. TBATS Performance

The TBATS method, renowned for its ability to effectively handle intricate seasonal
patterns and non-linear relationships, was utilized to anticipate ET using climate factors.
Regarding precipitation, the TBATS model had a similar performance to the ETS model,
as evidenced by an MAE of 0.61, MSE of 0.57, and RMSE of 0.76. The R-value for precipi-
tation was 0.94, and the NSE value was 0.91, signifying a robust correlation and effective
performance in representing seasonal impacts on evapotranspiration. These results in
Figure 9 indicate that the TBATS model effectively accounted for the seasonal impacts
on evapotranspiration. When it comes to predicting temperature, TBATS outperformed
STL + ARIMA and SARIMA models, with an MAE of 1.01, MSE of 1.85, and RMSE of 1.36.
The R-value for temperature was 0.89, and the NSE value was 0.85, indicating satisfactory
model performance; however, it was still inferior to the ETS and ARIMAX models, which
yielded marginally superior predictions. However, TBATS still did not do as well as ETS
and the ARIMAX models. The robust results for solar radiation, including an MAE of
0.50, MSE of 0.43, and RMSE of 0.65, which were comparable to those of ETS, demonstrate
the viability of TBATS for this variable. The R-value for solar radiation was 0.96, and
the NSE value was 0.94, indicating that TBATS was highly proficient in predicting solar
radiation. TBATS also demonstrated satisfactory performance in the presence of wind
speed, achieving an MAE of 0.50, MSE of 0.41, and RMSE of 0.64, which was in close
alignment with ETS performance. The R-value for wind speed was 0.92, while the NSE
value was 0.89, demonstrating high accuracy and a robust fit. Finally, TBATS achieved an
MAE of 0.90, MSE of 1.34, and RMSE of 1.16, which was marginally better than ETS in
the humidity category. The R-value for humidity was 0.88, and the NSE value was 0.80,
signifying that TBATS yielded satisfactory yet imperfect predictions for humidity. Figure 9
demonstrates that TBATS is a highly effective alternative to ETS, especially for predicting
wind speed and solar radiation.
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Figure 7. ETS model forecast for ET and climate variables: The ETS model effectively predicts ET and
climate variables, demonstrating exceptional solar radiation (MAE: 0.48, RMSE: 0.64) and wind speed
(MAE: 0.51, RMSE: 0.66). Nevertheless, the model demonstrates slightly higher errors for humidity
(MAE: 0.95, RMSE: 1.27) and temperature (MAE: 1.01, RMSE: 1.37), suggesting that it has moderate
difficulty in capturing variations in these factors.
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Figure 8. STL + ARIMA model forecast for ET and climate variables: The model accurately predicts
wind speed and precipitation with comparatively low error values. However, it has poor performance
when forecasting temperature, as evidenced by the extremely high MSE (89.87) and RMSE (9.48)
values. Solar radiation and humidity also pose moderate challenges, as evidenced by MAE values
exceeding 1.0.

Table 6. STL + ARIMA Model performance for various Climate Variables with AIC and BIC values.

Feature AIC BIC

Precipitation −1649.94 −1632.93
Temperature −1295.70 −1278.69

Solar Radiation −1671.21 −1654.19
Wind Speed −1545.00 −1527.99
Humidity −1255.51 −1238.50
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Figure 9. TBATS model forecast for ET and climate variables: The TBATS model yields accurate
predictions for most climate variables, with the lowest errors in wind speed and solar radiation.
Although temperature estimates are generally accurate, they exhibit a higher variance (MAE: 1.01),
while humidity predictions also exhibit moderate forecasting errors (MAE: 0.90).

4.2.6. Prophet Performance

The ET forecasting problem was addressed using Prophet, which is renowned for its
simplicity and accuracy in forecasting, as illustrated in Figure 10. Prophet demonstrated a
significant ability to capture the effects of precipitation on ET, as evidenced by its MAE of
0.60, MSE of 0.55, and RMSE of 0.74, which closely matched the results of ETS and TBATS.
The R-value for precipitation was 0.95, and the NSE value was 0.93, signifying a robust fit
and proficient capacity to encapsulate seasonal effects on ET. With an MAE of 0.99, MSE of
1.69, and RMSE of 1.30, Prophet effectively captured the seasonal and trend components
when forecasting temperature, outperforming TBATS and ETS by a minor margin. The
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R-value for temperature was 0.91, and the NSE value was 0.88, indicating strong model
efficacy in representing temperature patterns. The solar radiation model demonstrated
robust results, surpassing ETS and TBATS by a minor margin, with an MAE of 0.47, MSE
of 0.39, and RMSE of 0.62. The R-value for solar radiation was 0.97, and the NSE value
was 0.95, signifying an excellent match and high accuracy for this variable. In terms of
wind speed, Prophet obtained an MAE of 0.55, MSE of 0.45, and RMSE of 0.67, which
was slightly superior to ETS and TBATS. The R-value for wind speed was 0.90, and the
NSE value was 0.85, indicating robust model performance with an adequate fit. Prophet’s
strong performance in forecasting humidity, with an MAE of 1.01, MSE of 1.56, and RMSE
of 1.25, demonstrated its comprehensive capacity to capture the impact of humidity on
ET. The R-value for humidity was 0.89, and the NSE value was 0.83, signifying a robust
correlation for humidity, albeit with slight difficulties in forecasting rapid variations. The
model Prophet in Figure 10 is a viable candidate for ET forecasting in the YRBC due to its
consistent performance across a variety of climate variables, as illustrated in Figure 7.

4.3. Model-Interactive Performance Comparison

The performance of each model across a variety of climate variables is comprehensively
evaluated by the primary error metrics, MAE, MSE, and RMSE, as well as R and NSE. Radar
plots (Figure 11) emphasize these metrics, providing a visual representation of the model’s
efficacy. Other models were consistently surpassed by the Prophet and ETS models. Prophet
demonstrated its capacity to accurately capture solar radiation patterns by achieving the
lowest MAE (0.47) and MSE (0.39) for solar radiation. Additionally, it achieved a significant
R of 0.93 and NSE of 0.85. Nevertheless, SARIMA encountered an increase in errors, which
resulted in an MAE of 0.68, RMSE of 1.12, R of 0.90, and a negative NSE (−0.53). TBATS
obtained satisfactory results, with an RMSE of 0.65 and an R of 0.92, which closely matched
ETS’ performance. ETS, Prophet, and ARIMAX demonstrated comparable efficacy in the
context of precipitation-based ET forecasting. Prophet followed closely behind with an
RMSE of 0.74 and comparable values for R and NSE, while ETS attained an RMSE of 0.75,
R of 0.94, and NSE of 0.72. SARIMA encountered obstacles with an RMSE of 1.02, R of
0.91, and a low NSE of 0.58, whereas STL + ARIMA underperformed across all metrics,
reporting the maximum errors (MAE of 1.20, RMSE of 1.40, and R of 0.90) and a weak NSE.
In wind speed predictions, TBATS and ETS exhibited exceptional performance, attaining
RMSE values of 0.64 and 0.66, respectively. R values were greater than 0.88, and NSE values
exceeded 0.85, indicating that the models were highly reliable. Prophet also demonstrated
satisfactory performance, with an RMSE of 0.67, R of 0.89, and NSE of 0.74. In contrast,
STL + ARIMA and SARIMA demonstrated lower reliability because of higher error rates
and weaker correlations. STL + ARIMA achieved the highest RMSE (0.87), R of 0.86, and
a negative NSE (−0.53). The most significant disparities were observed in temperature
forecasting, with STL + ARIMA exhibiting the highest error rates. This included an RMSE of
9.48, R of 0.54, and a negative NSE (−0.50). Prophet and ETS, on the other hand, exhibited
superior performance, with RMSE values of 1.30 and 1.37, R values of 0.99, and NSE
values of 0.98, respectively. Nevertheless, SARIMA encountered difficulty in capturing
temperature variability, resulting in an RMSE of 2.13, R of 0.97, and NSE of 0.95. The ETS,
TBATS, and Prophet models demonstrated robust performance in humidity forecasting,
with the ETS achieving an RMSE of 0.55, R of 0.92, and NSE of 0.88. TBATS followed
closely with an RMSE of 0.56, R of 0.91, and NSE of 0.86, suggesting the high reliability
of capturing humidity variations. Prophet also demonstrated satisfactory performance,
achieving an RMSE of 0.57, R of 0.90, and NSE of 0.85. In contrast, SARIMA and STL +
ARIMA encountered significant challenges in accurately modeling humidity. SARIMA
recorded an RMSE of 0.72, R of 0.87, and a low NSE of 0.64, while STL + ARIMA reported
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the highest RMSE of 0.85, R of 0.86, and a negative NSE (−0.12). Prophet, TBATS, and ETS
consistently demonstrated reliable performance across a variety of climate variables, as
illustrated in Figure 11. The low error metrics were complemented by robust R and NSE
values. Conversely, SARIMA and STL + ARIMA demonstrated weaker correlations and
higher error rates, particularly in the context of temperature and solar radiation predictions.
Prophet and ETS are the most appropriate models for ET forecasting, particularly when
prioritizing advancements in R and NSE, as well as decreasing MAE, MSE, and RMSE. The
model performance is comprehensively summarized in Figure 11, which highlights the
strengths of Prophet, TBATS, and ETS while also emphasizing the limitations of SARIMA
and STL + ARIMA.
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Figure 10. Prophet model forecast for ET and climate variables: With MAE values of 0.47 and 0.55 for
solar radiation and wind speed, respectively, the Prophet model performs well in terms of prediction.
However, it faces greater difficulties with temperature (MAE: 0.99, RMSE: 1.30) and humidity (MAE:
1.01, RMSE: 1.25), where the forecast errors are marginally higher.
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Figure 11. Overall, radar performance comparison of forecasting models across climate variables: each
chart shows MAE, MSE, RMSE, R, and NSE model errors. ETS, TBATS, and SARIMA have lower error
values for most climatic variables, indicating improved accuracy and reliability. STL + ARIMA has
larger errors, especially for temperature, indicating its difficulty anticipating volatile climate variables.
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4.4. XAI and Model Interpretability
4.4.1. Decision Tree Surrogate Model Performance Across Models

The most dependable models across a variety of climate variables were Prophet,
TBATS, and ETS, as determined by the analysis. SARIMA and STL + ARIMA consistently
demonstrated higher error rates, particularly in the capture of solar radiation and tem-
perature. Consequently, Prophet and ETS can be regarded as the most suitable models
for ET forecasting, particularly when the objective is to reduce MAE, MSE, and RMSE.
Figure 12a,b illustrates the Decision Tree Surrogate Models for the SARIMA and ARIMAX
models, respectively, providing a simplified perspective on the model’s decision-making
process. Specified threshold values determine the splits, with each node representing a
decision based on a climate variable. The SARIMA model initiates the temperature data
separation at 23.46 ◦C in Figure 12a, which yields a squared error of 0.76. The subsequent
division on solar radiation occurs at 10.64 for data points with a temperature of ≤19.25 ◦C,
resulting in a reduced squared error of 0.12. The terminal nodes display the final squared
errors, with a value of −0.89 indicating the model’s prediction accuracy for this subset of
data and 18 samples, including 0.11. In a similar vein, Figure 12b illustrates the ARIMAX
model, which also bases its initial division on temperature at 23.46 ◦C, with a squared error
of 0.81. The model further refines predictions by dividing variables such as wind speed
at 0.43 and solar radiation at −2.25. The leaf nodes display the final squared errors, such
as 0.05 with 49 samples and a value of −0.15, which represents ARIMAX’s accuracy for
these specific conditions. The consistent separation criteria in both models, particularly
in relation to temperature and wind speed, underscores the substantial influence of these
variables on ET predictions.
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Figure 12. (a,b): Decision tree surrogate models for SARIMA and ARIMAX: both models prioritize
temperature and wind speed as primary splitting variables. The accuracy of ET prediction is substan-
tially influenced by initial splits at temperature thresholds of ≤23.46 ◦C and wind speed thresholds
of ≤0.46 for SARIMA and ≤0.43 for ARIMAX. (c,d): Decision Tree Surrogate Models for ETS and
Prophet: With initial divides at temperature ≤ 23.46 ◦C and considerable secondary splits depending
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on precipitation (ETS) and wind speed (Prophet), both models emphasize temperature and wind
speed as important predictors and demonstrate their impact on ET forecasting. (e,f): Decision Tree
Surrogate Models for TBATS and STL + ARIMA: temperature and humidity are the primary factors,
with TBATS emphasizing wind speed and STL + ARIMA concentrating on the intricate interactions
between temperature and precipitation. This demonstrates their ability to capture a variety of ET
prediction patterns.

The ETS model initiates with a temperature threshold of 23.46 ◦C, yielding a squared
error of 0.83 demonstrated in Figure 12c. For data with temperatures below this threshold,
the next notable separation occurs at precipitation ≤−0.78, followed by another division
based on solar radiation at 10.68, yielding a reduced squared error of 0.08 for 19 samples.
Conversely, at elevated temperatures, a wind speed of ≤0.56 becomes the critical determi-
nant, resulting in error values, such as 0.11 for 7 samples with a value of −0.61. Subsequent
splits enhance the model’s performance by highlighting the impact of humidity and sun
radiation on predictions. In Figure 12d, the Prophet model commences with a temperature
threshold of 23.46 ◦C, yielding a squared error of 0.73. When the temperature is below
19.25 ◦C, solar radiation further divides the data at 10.64, resulting in a squared error as
low as 0.09 with 18 samples. If the temperature surpasses 23.46 ◦C, the model concentrates
on wind speeds of ≤0.28, resulting in a squared error of 0.13 for 18 samples with a value
of −0.15. We optimize the model’s decision-making through divisions based on humidity
and wind speed, achieving a squared error as low as 0.06 with 15 samples. The analogous
initial divides among models underscore the pivotal influence of temperature and wind
speed, while the disparate secondary splits accentuate each model’s distinct reaction to
varying climatic conditions.

The TBATS model initiates splitting at a temperature threshold of 23.46 ◦C in
Figure 12e, resulting in a squared error of 0.76. We perform additional division at 3.51 ◦C
based on temperature for data with a temperature below 19.25 ◦C, resulting in a reduced
squared error of 0.10 for 34 samples. The next divide is based on wind speed at 0.40 if the
temperature falls within the range of 19.25 ◦C to 23.46 ◦C. This results in an error reduction
of 0.08 for 12 samples. Humidity and wind speed are the primary factors influencing
splits on the right limb, where the temperature exceeds 23.46 ◦C. A squared error of 0.1
for 13 samples is the result of a notable divergence at humidity ≤ 12.66, suggesting that
the TBATS model is significantly sensitive to humidity fluctuations. The STL + ARIMA
model starts with humidity as the primary separation factor (12.46 in Figure 12f, with a
squared error of 0.07 for the left branch). If humidity is less than 12.46, we implement
further refinement at a temperature threshold of 30.0 ◦C, resulting in a lower squared error
of 0.05 with 137 samples. The model enhances its predictions by incorporating additional
divisions on wind speed and temperature, as evidenced by a squared error of 0.11 for
17 samples at a temperature of 28.29 ◦C. The squared error for 17 samples is reduced to
0.1 as the model continues to divide based on humidity ≤ 0.28 and precipitation ≤ −0.15
on the right branch. These substitute models show that STL + ARIMA makes decisions
based on a more complicated interaction between temperature, humidity, and precipitation.
This is like how complex climate variables interact when predicting ET. On the other hand,
TBATS is more affected by changes in temperature and humidity.

The Decision Tree Surrogate Models for all six forecasting methodologies indicate
that temperature is the primary determinant affecting ET projections, while wind speed,
humidity, and precipitation play varying roles. SARIMA and ARIMAX exhibit sensitivity
to temperature and wind speed, but models such as STL + ARIMA and TBATS more
effectively encapsulate intricate variable interactions. These visualizations offer a distinct
comparison of each model’s decision-making processes and their appropriateness for
various climatic scenarios.



Remote Sens. 2025, 17, 115 31 of 37

4.4.2. SHAP Value Analysis

Summary plots in Figure 13 provide insightful interpretations of the significance of
features in each model’s output in relation to ET during SHAP analysis. These graphs offer
a prioritized perspective on the climate variables that affect the models, emphasizing the
magnitude and direction of their influence on predictions. In the ARIMAX SHAP summary,
temperature has the most significant influence on model output, with SHAP values ranging
from −1.5 to 1.0, as shown in Figure 13. This suggests that temperature fluctuations cause
the most significant changes in ET predictions.
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Figure 13. SHAP value analysis of feature impact on ET predictions across different models: SHAP
value charts for six models (a) ARIMAX, (b) Prophet, (c) SARIMA, (d) ETS, (e) STL + ARIMA, and
(f) TBATS show how climate parameters (temperature, precipitation, wind speed, humidity, solar
radiation) affect ET forecasts. Blue dots indicate low feature values, whereas red points indicate
high values. SHAP values, shown by the dots on the x-axis, measure each feature’s contribution
to the model’s prediction for a single occurrence. Positive SHAP values improve ET predictions,
while negative values decrease them. Across models, temperature and precipitation have the greatest
impact, but the impacts of humidity and solar radiation vary.

Precipitation also influences the model, exhibiting a SHAP range of −1.0 to 0.5 and
consistently negatively impacting ET predictions. SHAP values ranging from −0.5 to
0.5 influence wind speed, suggesting that both low and high wind velocities, albeit in
opposite directions, influence ET. For solar radiation and humidity, SHAP ranges from
−0.5 to 0.5, indicating that ET predictions are moderately variable in relation to these
factors. Temperature significantly influences the model output, as demonstrated by the
SHAP values for ETS. The values range from −1.0 to 1.0, indicating a symmetrical effect of
temperature differences on ET. Wind speed significantly influences the model’s predictions,
as evidenced by SHAP values in the −0.75 to 0.75 range. Solar radiation influences the range
of −0.5 to 0.5 SHAP values, suggesting that high solar radiation enhances ET forecasts.
Humidity and precipitation, with their smaller ranges of −0.25 to 0.25, influence the model’s
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output. However, their impact is less pronounced than that of temperature and wind speed.
Temperature dominates the Prophet SHAP plot, with SHAP values ranging from −1.0 to
1.0. This suggests that temperature has a significant influence on ET predictions across
the entire range of observed values. The SHAP range of −0.75 to 0.75 reflects the wind
speed’s significant contribution to model predictions, albeit less so than temperature. The
SHAP ranges of humidity and precipitation are both between −0.5 and 0.5, indicating
that these factors have moderate but balanced influences on ET. The SHAP range of solar
radiation is −0.25 to 0.5, with positive SHAP values being primarily associated with higher
solar radiation levels, indicating a correlation with increased ET. Temperature remains
the most significant feature in SARIMA, with SHAP values ranging from −1.0 to 1.0.
This underscores its dominant influence on ET. The model’s response to variations in
wind speed is significantly variable, as evidenced by the more symmetrical range of wind
speed from −0.5 to 0.75 SHAP. The precipitation SHAP values range from −0.5 to 0.25,
indicating that ET predictions are generally lower when precipitation is higher. SHAP
values for humidity and solar radiation range from −0.25 to 0.5, suggesting that they have
relatively minor impacts on the forecast in comparison to wind speed and temperature. The
SHAP summary for STL + ARIMA reveals temperature and wind speed as the dominant
variables, with temperature showing SHAP values from −1.0 to 1.0 and wind speed
showing SHAP values from −0.75 to 0.75. These ranges underscore the model’s sensitivity
to these variables. Solar radiation has SHAP values from −0.5 to 0.5, suggesting that
periods of high solar radiation correspond with increases in ET forecasts. Humidity and
precipitation both show SHAP values between −0.5 and 0.25, indicating more nuanced
and variable effects on ET predictions. Temperature and wind speed remain the primary
variables in TBATS, with SHAP values for temperature ranging from −1.0 to 1.0 and wind
speed from −0.75 to 1.0. SHAP values between −0.5 and 0.5 indicate that solar radiation
has a significant impact, while humidity values range from −0.5 to 0.75, suggesting that
it plays a more variable function in this model. High precipitation tends to reduce ET
forecasts, as evidenced by the SHAP precipitation values, which range from −0.5 to 0.25.
Temperature continues to be the most influential variable in all models, with SHAP values
that extend to ±1.5, demonstrating its substantial impact on ET predictions. The consistent
involvement of wind speed in modulating ET is underscored by the fact that it closely
follows SHAP ranges, which reach ±0.75 across models. The effects of solar radiation,
humidity, and precipitation are moderate, with SHAP values ranging from −0.5 to 0.5,
although they differ by model. Additionally, Figure 13 gives a thorough comparative
representation of SHAP values among models including SARIMA, STL + ARIMA, and
TBATS. It highlights the overarching influence of temperature, with SHAP ranges ranging
to ±1.5, and identifies wind speed as a significant secondary component. Solar radiation,
humidity, and precipitation demonstrate intricate and varying impacts, as illustrated in the
figure’s comprehensive distribution.

4.4.3. Comparison of Model Insights: Decision Trees vs. SHAP Values

Both Decision Tree Surrogate Models and SHAP Value Analysis aim to simplify
complex ET forecasting models from various perspectives. Decision trees simplify the
model’s decision-making process by highlighting critical variables and thresholds, showing
how particular parameters affect predictions globally. SHAP values provide additional
example-specific knowledge by quantifying each variable’s contribution to predictions.
Both methods show that in most models, temperature and wind speed drive ET fore-
casts. In decision trees, temperature is often the dominant splitting node, underscoring
its importance, while SHAP values demonstrate a wide range of temperature effects on
model outputs. Wind speed is included in later decision tree splits and ranks highly in
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SHAP analysis. Both methods note precipitation, but it is less important than temperature
and wind speed. SHAP values provide more detailed information on sun radiation and
humidity, which are moderate but less important in decision trees. Decision trees provide a
general overview of model behavior, while SHAP is more specific about how each variable
affects predictions. Both approaches agree on the relevance of temperature and wind speed,
but SHAP’s variability shows subtler impacts like humidity and sun radiation, providing
depth to the interpretation.

5. Discussion
The integration of XA methods into the analysis of ET forecasting models is a sub-

stantial improvement in the interpretability of climate variable interactions with model
predictions. In order to offer a more comprehensive understanding of the variables that
influence ET forecasts, such as temperature, wind speed, precipitation, solar radiation, and
humidity, this study employed Decision Tree Surrogate Models and SHAP Value Analysis.
This methodology contributes to an expanding body of research that is dedicated to en-
hancing the interpretability and transparency of machine learning models in environmental
science [45–47]. The outcomes of both XAI methodologies provide complementary insights
into model interpretability. The Decision Tree Surrogate Models indicate that tempera-
ture is the primary variable affecting ET forecasts, consistent with earlier research that
identifies temperature as a crucial element in evapotranspiration dynamics [3,48]. In the
ARIMAX model, the temperature threshold of 23.46 ◦C serves as a critical demarcation,
where elevated temperature values result in substantial discrepancies in the squared error
of predictions. This finding aligns with previous research indicating that temperature signif-
icantly influences evapotranspiration [49]. Wind speed, which exerts influence beyond the
threshold of 0.43 m/s in the ARIMAX model, is corroborated by research indicating that it
is a crucial determinant of evapotranspiration, particularly in areas with low humidity [50].
The early impact of precipitation in the ETS model further supports research indicating
that the seasonal variability of moisture availability is a principal factor influencing ET
variability [51]. Conversely, SHAP Value Analysis offers a more nuanced instance-specific
elucidation of the contributions of climate factors. This approach facilitates a more detailed
comprehension of the impact of specific instances of temperature, wind speed, and precipi-
tation on model projections [52]. The SHAP values for temperature in the ARIMAX model
vary from −1.5 to 1.0, indicating a significant influence on ET forecasts, aligning with the
established significance of temperature in most evapotranspiration models [3]. Conversely,
SHAP values for wind speed and precipitation in the ETS model demonstrate their rel-
atively moderate yet significant roles, consistent with the general consensus that wind
speed and moisture availability affect ET, albeit to a lesser degree than temperature [53].
SHAP analysis indicates the subtle effects of sun radiation and humidity that are not as
distinctly represented in the Decision Trees. Although both methods emphasize tempera-
ture and wind speed as the principal determinants of ET variability, SHAP values offer a
more nuanced comprehension of how additional variables, such as humidity, may have
context-dependent influences on forecasts. The SHAP values for humidity in the Prophet
model vary from −0.5 to 0.5, signifying a modest influence, consistent with research demon-
strating the intricate and diverse impacts of humidity on ET [54,55]. Conversely, Decision
Trees often emphasize global patterns, potentially resulting in the underrepresentation of
variables like humidity and solar radiation, as these are not as closely associated with world
trends as temperature and wind speed are. The contrast between global (Decision Tree)
and local (SHAP) interpretability highlights the importance of employing both approaches
concurrently to comprehensively grasp model behavior. The amalgamation of SHAP with
Decision Trees enhances our comprehension by providing overarching insights into the



Remote Sens. 2025, 17, 115 34 of 37

paramount variables and intricate instance-specific elucidations of how distinct climate
conditions affect ET predictions. A comprehensive approach is essential in environmental
modeling, where precise and interpretable projections are critical for decision-making in
climate-sensitive sectors like agriculture and water resource management [56]. This study’s
findings enhance the existing literature on XAI in environmental forecasting, providing
fresh insights into the influence of climate factors on ET predictions and emphasizing
the synergistic advantages of Decision Tree Surrogate Models and SHAP analysis. These
strategies enhance interpretability and function as valuable instruments for augmenting
model transparency, which is crucial for practical applications in climate-related domains.

6. Conclusions
This study effectively implemented XAI techniques, specifically Decision Tree Surro-

gate Models and SHAP Value Analysis, to improve the interpretability of sophisticated
time series models that forecast ET in the YRBC. According to the findings, the ETS and
Prophet models are advised for high-precision applications due to their exceptional ability
to forecast temperature and wind speed, as seen by low RMSE values. ARIMAX is more
effective for examining variability in temperature and precipitation, although SARIMA
and STL + ARIMA are better for detecting periodic climatic trends, despite their shortcom-
ings regarding solar radiation and severe temperatures. The integration of these methods
provided global and instance-specific insights into the contributions of climate variables,
thereby addressing the previously noted “black box” nature of sophisticated forecasting
models. The results confirm that the primary determinants of ET predictions across most
models are temperature and wind speed. For instance, temperature, with SHAP values
ranging from −1.5 to 1.0, and wind speed, with an SHAP range of −0.5 to 0.5, influence
the ARIMAX model’s predictions. These results are consistent with other models, such
as Prophet and ETS, in which temperature remains the most influential variable. This is
evident in decision trees with temperature divides at thresholds such as 23.46 ◦C. The com-
bined use of Decision Tree Surrogate Models and SHAP enhances model interpretability.
Critical thresholds where variables substantially influence predictions are identified by the
Decision Trees, which provide a clear global perspective of the models’ decision-making
processes. For instance, the initial node separation (23.46 ◦C) in ETS is followed by a
concentration of precipitation, which is consistent with ETS’s precise precipitation forecasts
(MAE = 0.60). Conversely, SHAP values enhance this comprehension by quantifying the
individual contributions of variables to predictions. This is especially apparent in the case
of more complex variables such as humidity and solar radiation, where SHAP analysis
demonstrates that they play moderate but significant roles in the models’ predictions. For
example, the Prophet model exhibits a proportionate impact on ET, as humidity’s SHAP
values range from −0.5 to 0.5. The results also underscore the degree of variability in model
performance across various climate variables. Models like SARIMA and STL + ARIMA
face difficulties in predicting solar radiation and temperature, as evidenced by their MAE
of 1.55 for temperature and RMSE of 9.48 for the same variable. In contrast, models such as
Prophet and ETS consistently produce more precise predictions, particularly for variables
such as wind speed. Prophet has an RMSE of 0.67, whereas ETS has an RMSE of 0.66. In
conclusion, XAI methodologies have enhanced the transparency of ET forecasting models
and elucidated the significance of climatic variables in ET predictions. This dual-method
approach establishes a robust basis for climate modeling and water resource management
research, particularly in the YRBC, where precise and comprehensible ET forecasts are
crucial for sustainable planning. This study has some drawbacks. The influence of climate
change on model efficacy necessitates additional investigation, as past data included in the
models may inadequately reflect forthcoming climatic alterations. Furthermore, incorporat-
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ing extended time series data and supplementary anthropogenic variables could augment
model robustness and enhance predictive accuracy. Subsequent studies will concentrate
on integrating dynamic climate projections and broadening the analytical scope to eval-
uate wider socio-environmental connections. These enhancements seek to augment the
applicability of the suggested technique for sustainable planning in the YRBC and beyond.
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