ResTUnet: A Novel Neural Network Model for Nowcasting Using Radar Echo Sequences by Ground-Based Remote Sensing
Abstract
:1. Introduction
2. Model
2.1. Model Overview
2.2. ResTUnet
2.3. ResT
2.4. 1*1 Convolution
2.5. Model Conclusion
3. Experiments and Results
3.1. Observed Data
3.2. Evaluation Method
3.3. Experiment Settings
3.4. Experimental Results
3.5. Ablation Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Reyniers, M. Quantitative Precipitation Forecasts Based on Radar Observations: Principles, Algorithms and Operational Systems; Institut Royal Météorologique de Belgique: Brussel, Belgium, 2008. [Google Scholar]
- Wilson, J.W.; Crook, N.A.; Mueller, C.K.; Sun, J.; Dixon, M. Nowcasting thunderstorms: A status report. Bull. Am. Meteorol. Soc. 1998, 79, 2079–2100. [Google Scholar] [CrossRef]
- Berenguer, M.; Surcel, M.; Zawadzki, I.; Xue, M.; Kong, F. The diurnal cycle of precipitation from continental radar mosaics and numerical weather prediction models. part ii: Intercomparison among numerical models and with nowcasting. Mon. Weather Rev. 2012, 140, 2689–2705. [Google Scholar] [CrossRef]
- Chen, L.; Cao, Y.; Ma, L.; Zhang, J. A deep learning-based methodology for precipitation nowcasting with radar. Earth Space Sci. 2020, 7, e2019EA000812. [Google Scholar] [CrossRef]
- Rinehart, R.; Garvey, E. Three-dimensional storm motion detection by conventional weather radar. Nature 1978, 273, 287–289. [Google Scholar] [CrossRef]
- Li, L.; Schmid, W.; Joss, J. Nowcasting of motion and growth of precipitation with radar over a complex orography. J. Appl. Meteorol. Climatol. 1995, 34, 1286–1300. [Google Scholar] [CrossRef]
- Mingxuan, C.; Yingchun, W.; Xiaoding, Y. Improvement and application test of trec algorithm for convective storm nowcast. J. Appl. Meteorol. Sci. 2007, 18, 690–701. [Google Scholar]
- Bowler, N.E.; Pierce, C.E.; Seed, A. Development of a precipitation nowcasting algorithm based upon optical flow techniques. J. Hydrol. 2004, 288, 74–91. [Google Scholar] [CrossRef]
- Woo, W.C.; Wong, W.K. Operational application of optical flow techniques to radar-based rainfall nowcasting. Atmosphere 2017, 8, 48. [Google Scholar] [CrossRef]
- Han, L.; Liang, H.; Chen, H.; Zhang, W.; Ge, Y. Convective precipitation nowcasting using u-net model. IEEE Trans. Geosci. Remote Sens. 2021, 60, 4103508. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Adv. Neural Inf. Process. Syst. 2015, 28, 802–810. [Google Scholar] [CrossRef]
- Shi, X.; Gao, Z.; Lausen, L.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Deep learning for precipitation nowcasting: A benchmark and a new model. Adv. Neural Inf. Process. Syst. 2017, 30, 5622–5632. [Google Scholar] [CrossRef]
- Wang, Y.; Long, M.; Wang, J.; Gao, Z.; Yu, P.S. Predrnn: Recurrent neural networks for predictive learning using spatiotemporal lstms. Adv. Neural Inf. Process. Syst. 2017, 30, 879–888. [Google Scholar]
- Wang, Y.; Gao, Z.; Long, M.; Wang, J.; Philip, S.Y. Predrnn++: Towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning. In Proceedings of the International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 5123–5132. [Google Scholar]
- Sønderby, C.K.; Espeholt, L.; Heek, J.; Dehghani, M.; Oliver, A.; Salimans, T.; Agrawal, S.; Hickey, J.; Kalchbrenner, N. Metnet: A neural weather model for precipitation forecasting. arXiv 2020, arXiv:2003.12140. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Proceedings of the 18th International Conference, Munich, Germany, 5–9 October 2015; Part III 18; Springer: Munich, Germany, 2015; pp. 234–241. [Google Scholar]
- Trebing, K.; Staczyk, T.; Mehrkanoon, S. Smaat-unet: Precipitation nowcasting using a small attention-unet architecture. Pattern Recognit. Lett. 2021, 145, 178–186. [Google Scholar] [CrossRef]
- Espeholt, L.; Agrawal, S.; Sønderby, C.; Kumar, M.; Heek, J.; Bromberg, C.; Gazen, C.; Carver, R.; Andrychowicz, M.; Hickey, J.; et al. Deep learning for twelve hour precipitation forecasts. Nat. Commun. 2022, 13, 5145. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yang, Y.B. Rest: An efficient transformer for visual recognition. Adv. Neural Inf. Process. Syst. 2021, 34, 15475–15485. [Google Scholar]
- Weyn, J.A.; Durran, D.R.; Caruana, R. Can machines learn to predict weather? using deep learning to predict gridded 500-hpa geopotential height from historical weather data. J. Adv. Model. Earth Syst. 2019, 11, 2680–2693. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 6000–6010. [Google Scholar] [CrossRef]
- Ulyanov, D.; Vedaldi, A.; Lempitsky, V. Instance normalization: The missing ingredient for fast stylization. arXiv 2016, arXiv:1607.08022. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Schaefer, J.T. The critical success index as an indicator of warning skill. Weather Forecast. 1990, 5, 570–575. [Google Scholar] [CrossRef]
- Thornes, J.E.; Stephenson, D.B. How to judge the quality and value of weather forecast products. Meteorol. Appl. 2001, 8, 307–314. [Google Scholar] [CrossRef]
- PLi, W.; Wong, W.K.; Chan, K.Y.; Lai, E.S.T. SWIRLS—An Evolving Nowcasting System; Hong Kong Special Administrative Region Government: Hong Kong, China, 2000. [Google Scholar]
- Chai, T.; Draxler, R.R. Root mean square error (rmse) or mean absolute error (mae). Geosci. Model Dev. Discuss. 2014, 7, 1525–1534. [Google Scholar]
- Zhang, Z. Improved adam optimizer for deep neural networks. In Proceedings of the 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), Banff, AB, Canada, 4–6 June 2018; pp. 1–2. [Google Scholar]
- Wang, D.; Yang, Y.; Ning, S. Deepstcl: A deep spatiotemporal convlstm for travel demand prediction. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8. [Google Scholar]
- Tian, L.; Li, X.; Ye, Y.; Xie, P.; Li, Y. A generative adversarial gated recurrent unit model for precipitation nowcasting. IEEE Geosci. Remote Sens. Lett. 2019, 17, 601–605. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, Z.; Liu, W.; Guo, Z.; Zhang, Z. Weather radar echo prediction method based on convolution neural network and long short-term memory networks for sustainable e-agriculture. J. Clean. Prod. 2021, 298, 126776. [Google Scholar] [CrossRef]
- Xiang, Z.; Demir, I. Distributed long-term hourly streamflow predictions using deep learning–a case study for state of iowa. Environ. Model. Softw. 2020, 131, 104761. [Google Scholar] [CrossRef]
- Cui, Z.; Chen, W.; Chen, Y. Multi-scale convolutional neural networks for time series classification. arXiv 2016, arXiv:1603.06995. [Google Scholar]
Rainfall Level | Rainfall Intensity | Reflectivity Factor |
---|---|---|
Light to moderate | 2 ≤ R(mm/h) < 5 | 22.3 ≤ Z(dBZ) < 28.5 |
Moderate | 5 ≤ R(mm/h) < 10 | 28.5 ≤ Z (dBZ) < 33.2 |
Moderate to heavy | 10 ≤ R(mm/h) < 30 | 33.2 ≤ Z (dBZ) < 40.7 |
Rainstorm warning | 30 ≤ R(mm/h) | 40.7 ≤ Z(dBZ) |
Rainfall Threshold (mm/h) | CSI↑ | HSS↑ | ||||
---|---|---|---|---|---|---|
5 | 10 | 30 | 5 | 10 | 30 | |
ConvLSTM | 0.7136 | 0.5467 | 0.1879 | 0.8217 | 0.6515 | 0.2918 |
ConvGRU | 0.7076 | 0.5779 | 0.1976 | 0.8125 | 0.6194 | 0.2784 |
TrajGRU | 0.7105 | 0.5710 | 0.2150 | 0.8030 | 0.6325 | 0.3058 |
PredRNN++ | 0.7313 | 0.6204 | 0.2488 | 0.8240 | 0.6841 | 0.3491 |
ResTUnet | 0.7334 | 0.6345 | 0.2916 | 0.8329 | 0.7033 | 0.3909 |
Rainfall Threshold (mm/h) | POD↑ | FAR↓ | ||||
---|---|---|---|---|---|---|
5 | 10 | 30 | 5 | 10 | 30 | |
ConvLSTM | 0.7578 | 0.5946 | 0.2461 | 0.1755 | 0.3257 | 0.6283 |
ConvGRU | 0.7435 | 0.6134 | 0.2774 | 0.1645 | 0.3475 | 0.6439 |
TrajGRU | 0.7270 | 0.6301 | 0.2646 | 0.1793 | 0.3098 | 0.5906 |
PredRNN++ | 0.7567 | 0.6555 | 0.2976 | 0.1918 | 0.2889 | 0.6001 |
ResTUnet | 0.7769 | 0.6702 | 0.3312 | 0.1682 | 0.2751 | 0.5312 |
Model | Params (M) | FLOPs (G) | CSI | ACC |
---|---|---|---|---|
ResTUnet without 1*1 convolution and ResT | 21.32 | 204.8 | 0.2645 | 0.4574 |
ResTUnet without 1*1 convolution | 30.13 | 298.6 | 0.5312 | 0.7458 |
ResTUnet without ResT | 18.85 | 172.4 | 0.2726 | 0.4869 |
ResTUnet | 25.47 | 198.2 | 0.5346 | 0.7512 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Zhang, R.; Wu, Y.; Wang, Y.; Zhang, Y.; Zheng, L.; Xu, C.; Zuo, X.; Wang, Z. ResTUnet: A Novel Neural Network Model for Nowcasting Using Radar Echo Sequences by Ground-Based Remote Sensing. Remote Sens. 2024, 16, 4792. https://doi.org/10.3390/rs16244792
Zhang L, Zhang R, Wu Y, Wang Y, Zhang Y, Zheng L, Xu C, Zuo X, Wang Z. ResTUnet: A Novel Neural Network Model for Nowcasting Using Radar Echo Sequences by Ground-Based Remote Sensing. Remote Sensing. 2024; 16(24):4792. https://doi.org/10.3390/rs16244792
Chicago/Turabian StyleZhang, Lei, Ruoyang Zhang, Yu Wu, Yadong Wang, Yanfeng Zhang, Lijuan Zheng, Chongbin Xu, Xin Zuo, and Zeyu Wang. 2024. "ResTUnet: A Novel Neural Network Model for Nowcasting Using Radar Echo Sequences by Ground-Based Remote Sensing" Remote Sensing 16, no. 24: 4792. https://doi.org/10.3390/rs16244792
APA StyleZhang, L., Zhang, R., Wu, Y., Wang, Y., Zhang, Y., Zheng, L., Xu, C., Zuo, X., & Wang, Z. (2024). ResTUnet: A Novel Neural Network Model for Nowcasting Using Radar Echo Sequences by Ground-Based Remote Sensing. Remote Sensing, 16(24), 4792. https://doi.org/10.3390/rs16244792