The Influence of the Spatial Co-Registration Error on the Estimation of Growing Stock Volume Based on Airborne Laser Scanning Metrics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Ground Survey
Variable | Mean | Standard Deviation | CV [%] | |||
---|---|---|---|---|---|---|
District | Lowlands | Mountains | Lowlands | Mountains | Lowlands | Mountains |
GSV [m3/ha] | 407 | 376 | 155 | 170 | 38 | 45 |
Tree height [m] | 21 | 17 | 3.9 | 8 | 18 | 48 |
DBH [cm] | 21 | 22 | 11 | 14 | 51 | 64 |
Age [years] | 53 | 57 | 24 | 26 | 45 | 45 |
Trees dens. [n/ha] | 762 | 589 | 375 | 368 | 49 | 63 |
Slope [degrees] | 4.8 | 13.6 | 2.8 | 4.8 | 58 | 35 |
TRI * | 0.033 | 0.19 | 0.019 | 0.07 | 58 | 37 |
2.2. GNSS Positioning
2.3. ALS Data
2.4. Stratification
2.5. GSV Estimation
2.6. Monte Carlo Simulations
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. ALS Metrics Used for Random Forest Based GSV Estimation
ALS Metric | Importance [%IncMSE] * | Definition |
log_zq70.2 | 3545 | Natural logarithm of the 70th height quantile from the last echoes |
zq70.2 | 3299 | The 70th height quantile from the last echoes |
zmean.1 | 2494 | Mean height return from the first echoes |
zmean.3 | 2322 | Mean height return from the all echoes above 2 m over the ground |
log_zmean.3 | 2045 | Natural logarithm of mean height return from all echoes above 2 m over the ground |
log_zq70.3 | 1742 | Natural logarithm of the 70th height quantile from all echoes above 2 m over the ground |
log_zmean.2 | 1607 | Natural logarithm of mean height return from the last echoes |
zq70.3 | 1599 | The 70th height quantile from all echoes above 2 m over the ground |
zmean.2 | 1498 | Mean height return from the last echoes |
zsd.2 | 877 | Standard deviation of height returns from last echoes |
zq25.3 | 535 | The 25th height quantile from all echoes above 2 m over the ground |
log_zq25.3 | 513 | Natural logarithm of the 25th height quantile from all echoes above 2 m over the ground |
log_iskew.2 | 448 | Natural logarithm of the skewness of points’ intensity distribution from the last echoes |
iskew.2 | 443 | The skewness of points’ intensity distribution from the last echoes |
log_zq20.3 | 373 | Natural logarithm of the 20th height quantile from all echoes above 2 m over the ground |
log_zkurt.1 | 361 | Natural logarithm of the kurtosis of points’ height distribution from the first echoes |
log_p3th.3 | 356 | Natural logarithm of percentage of 3rd echoes from all echoes above 2 m over the ground |
log_X.7 | 341 | The ratio between the number of points above 3rd height threshold (as described in [26,27]), to all echoes above 2 m |
pzabove2 | 335 | Percentage of all returns above 2 m from all echoes |
log_zq10.1 | 316 | Natural logarithm of the 20th height quantile from the first echoes above 2 m over the ground |
p2_zkurt.1 | 311 | Power (square) transformation of the kurtosis of points’ height distribution from the first echoes |
zkurt.1 | 302 | Kurtosis of points’ height distribution from the first echoes |
p2_zq10.1 | 288 | Power (square) transformation of the 20th height quantile from the first echoes above 2 m over the ground |
log_zsd.4 | 288 | Natural logarithm of the standard deviation of height returns from first echoes above 2 m |
zq20.3 | 287 | The 20th height quantile from all echoes above 2 m over the ground |
pzabovezmean.1 | 270 | Percentage of returns above zmean from the first echoes |
log_zq15 | 239 | Natural logarithm of the 15th height quantile from all echoes above 2 m over the ground |
zq10.1 | 236 | 10th height quantile from first echoes above 2 m over the ground |
log_pzabove2.1 | 232 | Natural logarithm of percentage of returns above 2 m from the first echoes |
log_zsd.5 | 231 | Natural logarithm of the standard deviation of height returns from last echoes above 2 m |
p2_zq15 | 230 | Power (square) transformation of the 15th height quantile from all echoes |
zq20.2 | 225 | 20th height quantile from last echoes |
log_zq25.2 | 223 | Natural logarithm of 25th height quantile from last echoes |
log_pzabovezmean.2 | 221 | Natural logarithm of percentage of returns above zmean from the last echoes |
zq15 | 214 | 15th height quantile from all echoes |
pzabovezmean.5 | 208 | Percentage of returns above zmean from last echoes above 2 m |
pzabovezmean.4 | 203 | Percentage of returns above zmean from first echoes above 2 m |
pzabove2.1 | 203 | Percentage of all returns above 2 m from first echoes |
zsd.3 | 195 | Standard deviation of height returns from all echoes above 2 m |
log_pzabovezmean.3 | 188 | Natural logarithm of percentage of returns above zmean from all echoes above 2 m |
zq25.2 | 179 | The 25th height quantile from last echoes |
log_zq20.2 | 177 | Natural logarithm of the 20th height quantile from last echoes |
zq5.1 | 176 | The 5th height quantile from first echoes |
p2_zq5.1 | 154 | Power (square) transformation of the 5th height quantile from first echoes |
log_zkurt.5 | 143 | Natural logarithm of kurtosis of points’ height distribution from the last echoes above 2 m |
log_zkurt.4 | 136 | Natural logarithm of kurtosis of points’ height distribution from first echoes above 2 m |
pzabovezmean | 129 | Percentage of returns above zmean from all echoes |
log_zq5.1 | 114 | Natural logarithm of the 5th height quantile from first echoes |
log_p2th.3 | 109 | Natural logarithm of percentage of 2nd echoes from all echoes above 2 m over the ground |
log_iskew.3 | 65 | Natural logarithm of the skewness of points’ intensity distribution from all echoes above 2 m |
iskew.3 | 42 | Skewness of points’ intensity distribution from all echoes above 2 m |
References
- Hou, Z.; Xu, Q.; Tokola, T. Use of ALS, Airborne CIR and ALOS AVNIR-2 Data for Estimating Tropical Forest Attributes in Lao PDR. ISPRS J. Photogramm. Remote Sens. 2011, 66, 776–786. [Google Scholar] [CrossRef]
- Köhl, M.; Magnussen, S.; Marchetti, M. Sampling Methods, Remote Sensing and GIS Multiresource Forest Inventory; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 978-3-642-06898-0. [Google Scholar]
- Bakuła, M.; Oszczak, S.; Pelc-Mieczkowska, R. Performance of RTK Positioning in Forest Conditions: Case Study. J. Surv. Eng. 2009, 135, 125–130. [Google Scholar] [CrossRef]
- Grala, N.; Brach, M. Analysis of GNSS Receiver Accuracy in the Forest Environment. Ann. Geomat. 2009, 7, 41–45. [Google Scholar]
- Valbuena, R.; Mauro, F.; Rodriguez-Solano, R.; Manzanera, J.A. Accuracy and Precision of GPS Receivers under Forest Canopies in a Mountainous Environment. Span. J. Agric. Res. 2010, 8, 1047–1057. [Google Scholar] [CrossRef]
- Brach, M. Analiza dokładności wyznaczania współrzędnych wybranymi odbiornikami GNSS w środowisku leśnym. Sylwan 2012, 156, 47–56. [Google Scholar]
- Næsset, E. Effects of Differential Single- and Dual-Frequency GPS and GLONASS Observations on Point Accuracy under Forest Canopies. Photogramm. Eng. Remote Sens. 2001, 67, 1021–1026. [Google Scholar]
- Andersen, H.-E.; Clarkin, T.; Winterberger, K.; Strunk, J. An Accuracy Assessment of Positions Obtained Using Survey- and Recreational-Grade Global Positioning System Receivers across a Range of Forest Conditions within the Tanana Valley of Interior Alaska. West. J. Appl. For. 2009, 24, 128–136. [Google Scholar] [CrossRef]
- Kaartinen, H.; Hyyppä, J.; Vastaranta, M.; Kukko, A.; Jaakkola, A.; Yu, X.; Pyörälä, J.; Liang, X.; Liu, J.; Wang, Y.; et al. Accuracy of Kinematic Positioning Using Global Satellite Navigation Systems under Forest Canopies. Forests 2015, 6, 3218–3236. [Google Scholar] [CrossRef]
- Hussain, A.; Ahmed, A.; Magsi, H.; Tiwari, R. Adaptive GNSS Receiver Design for Highly Dynamic Multipath Environments. IEEE Access 2020, 8, 172481–172497. [Google Scholar] [CrossRef]
- Brach, M.; Stereńczak, K.; Bolibok, L.; Kwaśny, Ł.; Krok, G.; Laszkowski, M. Impacts of Forest Spatial Structure on Variation of the Multipath Phenomenon of Navigation Satellite Signals. Folia For. Pol. 2019, 61, 3–21. [Google Scholar] [CrossRef]
- Feng, T.; Chen, S.; Feng, Z.; Shen, C.; Tian, Y. Effects of Canopy and Multi-Epoch Observations on Single-Point Positioning Errors of a GNSS in Coniferous and Broadleaved Forests. Remote Sens. 2021, 13, 2325. [Google Scholar] [CrossRef]
- Mauro, F.; Valbuena, R.; Manzanera, J.A.; García-Abril, A. Influence of Global Navigation Satellite System Errors in Positioning Inventory Plots for Tree-Height Distribution studiesThis Article Is One of a Selection of Papers from Extending Forest Inventory and Monitoring over Space and Time. Can. J. For. Res. 2011, 41, 11–23. [Google Scholar] [CrossRef]
- Janssen, S.; Pretzsch, H.; Bürgi, A.; Ramstein, L.; Gallus Bont, L. Improving the Accuracy of Timber Volume and Basal Area Prediction in Heterogeneously Structured and Mixed Forests by Automated Co-Registration of Forest Inventory Plots and Remote Sensing Data. For. Ecol. Manag. 2023, 532, 120795. [Google Scholar] [CrossRef]
- Hernández-Stefanoni, J.L.; Reyes-Palomeque, G.; Castillo-Santiago, M.Á.; George-Chacón, S.P.; Huechacona-Ruiz, A.H.; Tun-Dzul, F.; Rondon-Rivera, D.; Dupuy, J.M. Effects of Sample Plot Size and GPS Location Errors on Aboveground Biomass Estimates from LiDAR in Tropical Dry Forests. Remote Sens. 2018, 10, 1586. [Google Scholar] [CrossRef]
- Frazer, G.W.; Magnussen, S.; Wulder, M.A.; Niemann, K.O. Simulated Impact of Sample Plot Size and Co-Registration Error on the Accuracy and Uncertainty of LiDAR-Derived Estimates of Forest Stand Biomass. Remote Sens. Environ. 2011, 115, 636–649. [Google Scholar] [CrossRef]
- Gobakken, T.; Næsset, E. Assessing Effects of Positioning Errors and Sample Plot Size on Biophysical Stand Properties Derived from Airborne Laser Scanner Data. Can. J. For. Res. 2009, 39, 1036–1052. [Google Scholar] [CrossRef]
- Bruchwald, A.; Rymer-Dudzinska, T.; Dudek, A.; Michalak, K.; Wroblewski, L.; Zasada, M. Wzory Empiryczne Do Okreslania Wysokosci i Piersnicowej Liczby Ksztaltu Grubizny. Sylwan 2000, 144, 5–13. [Google Scholar]
- Tonolli, S.; Dalponte, M.; Vescovo, L.; Rodeghiero, M.; Bruzzone, L.; Gianelle, D. Mapping and Modeling Forest Tree Volume Using Forest Inventory and Airborne Laser Scanning. Eur. J. Forest Res. 2011, 130, 569–577. [Google Scholar] [CrossRef]
- Mourelatou, A. Environmental Indicator Report 2017: In Support to the Monitoring of the Seventh Environment Action Programme; Publications Office: Luxembourg, 2017; ISBN 978-92-9213-926-1. [Google Scholar]
- Lee, J.; Phua, M. Estimation of Stand Volume of Conifer Forest: A Bayesian Approach Based on Satellite-based Estimate and Forest Register Data. For. Sci. Technol. 2010, 6, 7–17. [Google Scholar] [CrossRef]
- Wilson, M.F.J.; O’Connell, B.; Brown, C.; Guinan, J.C.; Grehan, A.J. Multiscale Terrain Analysis of Multibeam Bathymetry Data for Habitat Mapping on the Continental Slope. Mar. Geod. 2007, 30, 3–35. [Google Scholar] [CrossRef]
- Brach, M. Rapid Static Positioning Using a Four System GNSS Receivers in the Forest Environment. Forests 2022, 13, 45. [Google Scholar] [CrossRef]
- Stereńczak, K.; Lisańczuk, M.; Parkitna, K.; Mitelsztedt, K.; Mroczek, P.; Miścicki, S. The Influence of Number and Size of Sample Plots on Modelling Growing Stock Volume Based on Airborne Laser Scanning. Drewno 2018, 61, 5–22. [Google Scholar] [CrossRef]
- Lisańczuk, M.; Mitelsztedt, K.; Parkitna, K.; Krok, G.; Stereńczak, K.; Wysocka-Fijorek, E.; Miścicki, S. Influence of Sampling Intensity on Performance of Two-Phase Forest Inventory Using Airborne Laser Scanning. For. Ecosyst. 2020, 7, 65. [Google Scholar] [CrossRef]
- Horn, B.K.P. Horn Hill Shading and the Reflectance Map. Proc. IEEE 1981, 69, 14–47. [Google Scholar] [CrossRef]
- Hopkins, B.; Skellam, J.G. A New Method for Determining the Type of Distribution of Plant Individuals. Ann. Bot. 1954, 18, 213–227. [Google Scholar] [CrossRef]
- Roussel, J.-R.; Auty, D.; Coops, N.C.; Tompalski, P.; Goodbody, T.R.H.; Meador, A.S.; Bourdon, J.-F.; De Boissieu, F.; Achim, A. lidR: An R Package for Analysis of Airborne Laser Scanning (ALS) Data. Remote Sens. Environ. 2020, 251, 112061. [Google Scholar] [CrossRef]
- Roussel, J.-R.; Auty, D. lidR: Airborne LiDAR Data Manipulation and Visualization for Forestry Applications 2016, Version 4.1.1; R Foundation: Vienna, Austria, 2016. [Google Scholar]
- Woods, M.; Lim, K.; Treitz, P. Predicting Forest Stand Variables from LiDAR Data in the Great Lakes St. Lawrence Forest of Ontario. For. Chron. 2008, 84, 827–839. [Google Scholar] [CrossRef]
- Lucas, C.; Bouten, W.; Koma, Z.; Kissling, W.D.; Seijmonsbergen, A.C. Identification of Linear Vegetation Elements in a Rural Landscape Using LiDAR Point Clouds. Remote Sens. 2019, 11, 292. [Google Scholar] [CrossRef]
- Næsset, E. Predicting Forest Stand Characteristics with Airborne Scanning Laser Using a Practical Two-Stage Procedure and Field Data. Remote Sens. Environ. 2002, 80, 88–99. [Google Scholar] [CrossRef]
- Gobakken, T.; Næsset, E.; Nelson, R.; Bollandsås, O.M.; Gregoire, T.G.; Ståhl, G.; Holm, S.; Ørka, H.O.; Astrup, R. Estimating Biomass in Hedmark County, Norway Using National Forest Inventory Field Plots and Airborne Laser Scanning. Remote Sens. Environ. 2012, 123, 443–456. [Google Scholar] [CrossRef]
- Probst, P.; Boulesteix, A.-L. To Tune or Not to Tune the Number of Trees in Random Forest? arXiv 2017, arXiv:1705.05654. [Google Scholar]
- Hogg, R.V.; Tanis, E.A.; Zimmerman, D.L. Probability and Statistical Inference, 9th ed.; Pearson: Boston, MA, USA, 2015; ISBN 978-0-321-92327-1. [Google Scholar]
- Edwards, A.W.F.R.A. Fischer, Statistical Methods for Research Workers, First Edition (1925). In Landmark Writings in Western Mathematics 1640–1940; Elsevier: Amsterdam, The Netherlands, 2005; pp. 856–870. ISBN 978-0-444-50871-3. [Google Scholar]
- Mascha, E.J.; Vetter, T.R. Significance, Errors, Power, and Sample Size: The Blocking and Tackling of Statistics. Anesth. Analg. 2018, 126, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Fraenkel, J.R.; Wallen, N.E. How to Design and Evaluate Research in Education, 7th ed.; McGraw-Hill: New York, NY, USA, 2009; ISBN 978-0-07-352596-9. [Google Scholar]
- Hijmans, R.J. Terra: Spatial Data Analysis 2020, Version 1.7-78; R Foundation: Vienna, Austria, 2020. [Google Scholar]
- Baddeley, A.; Rubak, E.; Turner, R. Spatial Point Patterns: Methodology and Applications with R; Champan & Hall/CRC Interdisciplinary Statistics Series; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2016; ISBN 978-1-4822-1020-0. [Google Scholar]
- Baddeley, A.; Turner, R. Spatstat: An R Package for Analyzing Spatial Point Patterns. J. Stat. Soft. 2005, 12, 1–42. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by RandomForest. R News. 2001, 2/3, 18–22. Available online: https://journal.r-project.org/articles/RN-2002-022/RN-2002-022.pdf (accessed on 1 December 2024).
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Rabosky, D.L.; Grundler, M.; Anderson, C.; Title, P.; Shi, J.J.; Brown, J.W.; Huang, H.; Larson, J.G. BAMMtools: An R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 2014, 5, 701–707. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Tomppo, E.O.; Næsset, E. Advances and Emerging Issues in National Forest Inventories. Scand. J. For. Res. 2010, 25, 368–381. [Google Scholar] [CrossRef]
- McGaughey, R.J.; Ahmed, K.; Andersen, H.-E.; Reutebuch, S.E. Effect of Occupation Time on the Horizontal Accuracy of a Mapping-Grade GNSS Receiver under Dense Forest Canopy. Photogramm. Eng. Remote Sens. 2017, 83, 861–868. [Google Scholar] [CrossRef]
- Hawryło, P.; Francini, S.; Chirici, G.; Giannetti, F.; Parkitna, K.; Krok, G.; Mitelsztedt, K.; Lisańczuk, M.; Stereńczak, K.; Ciesielski, M.; et al. The Use of Remotely Sensed Data and Polish NFI Plots for Prediction of Growing Stock Volume Using Different Predictive Methods. Remote Sens. 2020, 12, 3331. [Google Scholar] [CrossRef]
- Pascual, C.; Mauro, F.; García-Abril, A.; Manzanera, J.A. Applications of ALS (Airborne Laser Scanning) Data to Forest Inventory. Experiences with Pine Stands from Mountainous Environments in Spain. IOP Conf. Ser. Earth Environ. Sci. 2019, 226, 012001. [Google Scholar] [CrossRef]
- Parkitna, K.; Krok, G.; Miścicki, S.; Ukalski, K.; Lisańczuk, M.; Mitelsztedt, K.; Magnussen, S.; Markiewicz, A.; Stereńczak, K. Modelling Growing Stock Volume of Forest Stands with Various ALS Area-Based Approaches. For. Int. J. For. Res. 2021, 94, 630–650. [Google Scholar] [CrossRef]
- Goodbody, T.R.H.; Coops, N.C.; White, J.C. Digital Aerial Photogrammetry for Updating Area-Based Forest Inventories: A Review of Opportunities, Challenges, and Future Directions. Curr. For. Rep. 2019, 5, 55–75. [Google Scholar] [CrossRef]
- Cao, Q.; Dettmann, G.T.; Radtke, P.J.; Coulston, J.W.; Derwin, J.; Thomas, V.A.; Burkhart, H.E.; Wynne, R.H. Increased Precision in County-Level Volume Estimates in the United States National Forest Inventory with Area-Level Small Area Estimation. Front. For. Glob. Change 2022, 5, 769917. [Google Scholar] [CrossRef]
- Laes, D.; Reutebuch, S.E.; McGaughey, R.J.; Mitchell, B. Guidelines to Estimate Forest Inventory Parameters; US Forest Service: Salt Lake City, UT, USA, 2011.
- Chen, M.; Qiu, X.; Zeng, W.; Peng, D. Combining Sample Plot Stratification and Machine Learning Algorithms to Improve Forest Aboveground Carbon Density Estimation in Northeast China Using Airborne LiDAR Data. Remote Sens. 2022, 14, 1477. [Google Scholar] [CrossRef]
- Hauglin, M.; Rahlf, J.; Schumacher, J.; Astrup, R.; Breidenbach, J. Large Scale Mapping of Forest Attributes Using Heterogeneous Sets of Airborne Laser Scanning and National Forest Inventory Data. For. Ecosyst. 2021, 8, 65. [Google Scholar] [CrossRef]
- Banaś, J.; Drozd, M.; Zięba, S.; Bujoczek, L. Improving Effectiveness of Forest Inventory by Stratified Sampling. Sylwan 2017, 161, 804–811. [Google Scholar]
- Haakana, H.; Heikkinen, J.; Katila, M.; Kangas, A. Efficiency of Post-Stratification for a Large-Scale Forest Inventory—Case Finnish NFI. Ann. For. Sci. 2019, 76, 9. [Google Scholar] [CrossRef]
- Næsset, E.; Bjerke, T.; Bvstedal, O.; Ryan, L. Contributions of Differential GPS and GLONASS Observations to Point Accuracy under Forest Canopies. Photogramm. Eng. Remote Sens. 2000, 66, 403–407. [Google Scholar]
- Holopainen, M.; Vastaranta, M.; Hyyppä, J. Outlook for the Next Generation’s Precision Forestry in Finland. Forests 2014, 5, 1682–1694. [Google Scholar] [CrossRef]
- Knott, J.A.; Liknes, G.C.; Giebink, C.L.; Oh, S.; Domke, G.M.; McRoberts, R.E.; Quirino, V.F.; Walters, B.F. Effects of Outliers on Remote Sensing-assisted Forest Biomass Estimation: A Case Study from the United States National Forest Inventory. Methods Ecol. Evol. 2023, 14, 1587–1602. [Google Scholar] [CrossRef]
- Krok, G.; Kraszewski, B.; Stereńczak, K. Zastosowanie Naziemnego Skanowania Laserowego w Inwentaryzacji Lasu—Przegląd Wybranych Zagadnień (Application of Terrestrial Laser Scanning in Forest Inventory—An Overview of Selected Issues). Leśne Pr. Badaw. 2020, 81, 175–194. [Google Scholar] [CrossRef]
- Abdi, O.; Uusitalo, J.; Pietarinen, J.; Lajunen, A. Evaluation of Forest Features Determining GNSS Positioning Accuracy of a Novel Low-Cost, Mobile RTK System Using LiDAR and TreeNet. Remote Sens. 2022, 14, 2856. [Google Scholar] [CrossRef]
- Ogundipe, O.; Ince, S.; Bonenberg, L. GNSS Positioning Under Forest Canopy. In Proceedings of the ENC-GNSS 2014, Rotterdam, The Netherlands, 15–17 April 2014. [Google Scholar]
- Lee, T.; Bettinger, P.; Merry, K.; Cieszewski, C. The Effects of Nearby Trees on the Positional Accuracy of GNSS Receivers in a Forest Environment. PLoS ONE 2023, 18, e0283090. [Google Scholar] [CrossRef] [PubMed]
- Davison, S.; Donoghue, D.N.M.; Galiatsatos, N. The Effect of Leaf-on and Leaf-off Forest Canopy Conditions on LiDAR Derived Estimations of Forest Structural Diversity. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102160. [Google Scholar] [CrossRef]
- White, J.C.; Arnett, J.T.T.R.; Wulder, M.A.; Tompalski, P.; Coops, N.C. Evaluating the Impact of Leaf-on and Leaf-off Airborne Laser Scanning Data on the Estimation of Forest Inventory Attributes with the Area-Based Approach. Can. J. For. Res. 2015, 45, 1498–1513. [Google Scholar] [CrossRef]
Statistics | FACTORS—Continuous Data Types | Stratification Groups | |||||
---|---|---|---|---|---|---|---|
Slope (1) | TRI (2) | TD (3) | THD (4) | CHD (5) | Land Type | Species Groups | |
minimal | 1 | 0.02 | 20 | 0.06 | 1.1 | Lowlands: 496 plots (49.8%) Mountains: 500 plots (50.2%) | Coniferous plots: 460 (46.2%) Mixed species groups: 304 (30.5%) Deciduous plots: 232 (23.3%) |
maximal | 30.6 | 0.45 | 3540 | 15.0 | 15.4 | ||
mean | 9.0 | 0.13 | 676 | 1.26 | 6.8 | ||
SD | 6.1 | 0.09 | 381 | 0.75 | 2.4 | ||
CV | 68% | 69% | 56% | 59% | 35% |
Variable | RF Importance [%IncMSE] * | Definition |
---|---|---|
log_zq70.2 | 3545 | Natural logarithm of the 70th height quantile from the last echoes |
zq70.2 | 3299 | The 70th height quantile from the last echoes |
zmean.1 | 2494 | Mean height return from the first echoes |
zmean.3 | 2322 | Mean height return from all echoes above 2 m over the ground |
log_zmean.3 | 2045 | Natural logarithm of mean height return from all echoes above 2 m over the ground |
log_zq70.3 | 1742 | Natural logarithm of the 70th height quantile from all echoes above 2 m over the ground |
log_zmean.2 | 1607 | Natural logarithm of mean height return from the last echoes |
zq70.3 | 1599 | The 70th height quantile from all echoes above 2 m over the ground |
zmean.2 | 1498 | Mean height return from the last echoes |
zsd.2 | 877 | Standard deviation of height returns from last echoes |
Non-Stratified Sample (N = 996) | Lowlands (N = 496) | Mountains (N = 500) | |||||||||||||||
Plot Size (m2) | Plot Size (m2) | Plot Size (m2) | |||||||||||||||
Shift [m] | 100 | 200 | 300 | 400 | 500 | 100 | 200 | 300 | 400 | 500 | 100 | 200 | 300 | 400 | 500 | ||
0 | 47 | 37 | 29 | 26 | 23 | 37 | 26 | 21 | 19 | 17 | 58 | 46 | 37 | 31 | 29 | ||
1 | 48 | 38 | 30 | 26 | 24 | 38 | 27 | 22 | 20 | 18 | 60 | 47 | 37 | 32 | 30 | ||
2 | 50 | 38 | 30 | 27 | 25 | 39 | 28 | 22 | 20 | 18 | 60 | 48 | 37 | 32 | 31 | ||
3 | 51 | 39 | 31 | 27 | 25 | 41 | 29 | 24 | 21 | 19 | 62 | 48 | 38 | 33 | 31 | ||
4 | 53 | 41 | 32 | 27 | 26 | 44 | 31 | 24 | 22 | 20 | 63 | 50 | 39 | 33 | 32 | ||
5 | 54 | 42 | 33 | 28 | 26 | 46 | 31 | 25 | 23 | 20 | 65 | 51 | 40 | 34 | 31 | ||
6 | 55 | 43 | 33 | 29 | 27 | 46 | 33 | 26 | 23 | 20 | 65 | 52 | 41 | 34 | 33 | ||
7 | 56 | 44 | 34 | 30 | 27 | 47 | 33 | 27 | 25 | 21 | 67 | 53 | 42 | 34 | 33 | ||
8 | 57 | 45 | 35 | 30 | 28 | 48 | 35 | 28 | 26 | 22 | 67 | 54 | 42 | 36 | 34 | ||
9 | 58 | 46 | 36 | 31 | 28 | 49 | 36 | 29 | 26 | 22 | 68 | 55 | 43 | 36 | 34 | ||
10 | 59 | 46 | 37 | 31 | 29 | 50 | 36 | 30 | 26 | 23 | 69 | 55 | 44 | 36 | 35 | ||
Coniferous (N = 460) | Deciduous (N = 232) | Mixed (N = 304) | |||||||||||||||
Plot Size (m2) | Plot Size (m2) | Plot Size (m2) | |||||||||||||||
Shift [m] | 100 | 200 | 300 | 400 | 500 | 100 | 200 | 300 | 400 | 500 | 100 | 200 | 300 | 400 | 500 | ||
0 | 39 | 28 | 22 | 19 | 17 | 57 | 53 | 38 | 32 | 28 | 51 | 36 | 28 | 22 | 23 | ||
1 | 40 | 29 | 22 | 20 | 18 | 61 | 54 | 39 | 33 | 32 | 52 | 37 | 29 | 23 | 23 | ||
2 | 42 | 30 | 23 | 21 | 18 | 62 | 55 | 40 | 33 | 32 | 53 | 38 | 30 | 24 | 24 | ||
3 | 43 | 31 | 25 | 22 | 19 | 64 | 56 | 40 | 34 | 33 | 55 | 40 | 30 | 24 | 24 | ||
4 | 46 | 32 | 26 | 22 | 20 | 67 | 56 | 40 | 33 | 34 | 56 | 40 | 31 | 25 | 25 | ||
5 | 47 | 34 | 28 | 23 | 21 | 69 | 57 | 41 | 35 | 34 | 58 | 40 | 32 | 26 | 26 | ||
6 | 49 | 36 | 28 | 24 | 21 | 70 | 58 | 43 | 35 | 34 | 58 | 43 | 33 | 27 | 26 | ||
7 | 51 | 36 | 30 | 26 | 22 | 71 | 59 | 42 | 35 | 35 | 60 | 43 | 34 | 29 | 28 | ||
8 | 51 | 38 | 31 | 27 | 23 | 70 | 60 | 43 | 36 | 35 | 59 | 43 | 35 | 30 | 27 | ||
9 | 54 | 39 | 32 | 26 | 23 | 73 | 60 | 43 | 37 | 35 | 59 | 45 | 36 | 31 | 29 | ||
10 | 54 | 40 | 33 | 27 | 24 | 73 | 61 | 44 | 37 | 36 | 61 | 45 | 37 | 31 | 30 | ||
error ranges (%): | 15–20 | 21–25 | 26–30 | 31–35 | 36–40 | >40 |
Non-Stratified Sample (N = 996) | Lowlands (N = 496) | Mountains (N = 500) | |||||||||||||||
Plot Size (m2) | Plot Size (m2) | Plot Size (m2) | |||||||||||||||
Shift [m] | 100 | 200 | 300 | 400 | 500 | 100 | 200 | 300 | 400 | 500 | 100 | 200 | 300 | 400 | 500 | ||
0 | 24 | 14 | 6 | 2 | 0 | 19 | 9 | 4 | 2 | 0 | 29 | 17 | 8 | 2 | 0 | ||
1 | 25 | 14 | 7 | 3 | 1 | 21 | 9 | 4 | 2 | 0 | 31 | 18 | 9 | 3 | 1 | ||
2 | 26 | 15 | 7 | 3 | 2 | 22 | 11 | 5 | 3 | 1 | 32 | 19 | 9 | 3 | 2 | ||
3 | 27 | 16 | 7 | 3 | 2 | 23 | 12 | 6 | 3 | 1 | 33 | 20 | 9 | 4 | 2 | ||
4 | 29 | 17 | 8 | 4 | 2 | 27 | 13 | 7 | 4 | 2 | 35 | 22 | 10 | 4 | 3 | ||
5 | 31 | 18 | 9 | 5 | 3 | 28 | 14 | 8 | 5 | 3 | 36 | 22 | 11 | 5 | 3 | ||
6 | 31 | 20 | 10 | 5 | 3 | 29 | 15 | 9 | 6 | 3 | 37 | 24 | 13 | 5 | 4 | ||
7 | 33 | 20 | 11 | 7 | 4 | 30 | 16 | 10 | 8 | 4 | 38 | 24 | 13 | 6 | 4 | ||
8 | 33 | 21 | 12 | 7 | 5 | 31 | 17 | 11 | 8 | 5 | 38 | 25 | 14 | 7 | 5 | ||
9 | 35 | 22 | 13 | 7 | 5 | 32 | 19 | 12 | 8 | 5 | 39 | 26 | 15 | 7 | 5 | ||
10 | 35 | 23 | 13 | 7 | 6 | 33 | 19 | 13 | 9 | 6 | 40 | 26 | 15 | 7 | 6 | ||
Coniferous (N = 460) | Deciduous (N = 232) | Mixed (N = 304) | |||||||||||||||
Plot Size (m2) | Plot Size (m2) | Plot Size (m2) | |||||||||||||||
Shift [m] | 100 | 200 | 300 | 400 | 500 | 100 | 200 | 300 | 400 | 500 | 100 | 200 | 300 | 400 | 500 | ||
0 | 22 | 11 | 5 | 2 | 0 | 29 | 25 | 10 | 4 | 0 | 28 | 13 | 6 | 0 | 0 | ||
1 | 23 | 12 | 5 | 3 | 1 | 32 | 26 | 11 | 5 | 3 | 30 | 14 | 7 | 0 | 0 | ||
2 | 25 | 13 | 6 | 3 | 1 | 34 | 27 | 12 | 5 | 4 | 31 | 15 | 8 | 1 | 1 | ||
3 | 26 | 14 | 8 | 4 | 2 | 36 | 28 | 12 | 5 | 4 | 33 | 17 | 8 | 2 | 2 | ||
4 | 29 | 15 | 9 | 5 | 2 | 38 | 28 | 12 | 5 | 6 | 33 | 17 | 8 | 2 | 2 | ||
5 | 30 | 17 | 11 | 6 | 4 | 40 | 28 | 12 | 7 | 5 | 35 | 18 | 10 | 4 | 3 | ||
6 | 31 | 19 | 11 | 7 | 4 | 41 | 30 | 14 | 7 | 6 | 36 | 21 | 11 | 5 | 4 | ||
7 | 34 | 19 | 13 | 9 | 5 | 43 | 30 | 14 | 7 | 6 | 37 | 20 | 12 | 6 | 5 | ||
8 | 34 | 20 | 13 | 9 | 6 | 42 | 31 | 15 | 8 | 6 | 37 | 21 | 12 | 7 | 5 | ||
9 | 36 | 21 | 15 | 9 | 6 | 44 | 31 | 15 | 8 | 6 | 36 | 22 | 13 | 8 | 6 | ||
10 | 37 | 23 | 15 | 10 | 7 | 45 | 32 | 15 | 9 | 7 | 38 | 23 | 14 | 8 | 7 | ||
percentage points: | 1 | 2 | 3 | 4 | 5 | >5 |
Non-Stratified Sample (N = 996) | Lowlands (N = 496) | Mountains (N = 500) | |||||||||||||||
Plot Size (m2) | Plot Size (m2) | Plot Size (m2) | |||||||||||||||
Shift [m] | 100 | 200 | 300 | 400 | 500 | 100 | 200 | 300 | 400 | 500 | 100 | 200 | 300 | 400 | 500 | ||
0 | 4 | 6 | 5 | 4 | 4 | 2 | 0 | 1 | 0 | 0 | 5 | 7 | 7 | 6 | 6 | ||
1 | 4 | 6 | 5 | 5 | 4 | 4 | 1 | 1 | 1 | 0 | 6 | 8 | 7 | 6 | 6 | ||
2 | 5 | 7 | 5 | 5 | 4 | 3 | 1 | 1 | 1 | 0 | 6 | 8 | 8 | 7 | 6 | ||
3 | 6 | 8 | 6 | 5 | 5 | 4 | 1 | 1 | 1 | 0 | 8 | 9 | 8 | 7 | 7 | ||
4 | 7 | 8 | 6 | 5 | 5 | 6 | 2 | 1 | 1 | 0 | 7 | 10 | 8 | 7 | 7 | ||
5 | 7 | 9 | 6 | 5 | 5 | 6 | 2 | 1 | 1 | 0 | 7 | 11 | 10 | 8 | 7 | ||
6 | 7 | 10 | 7 | 5 | 5 | 6 | 2 | 1 | 1 | 1 | 8 | 11 | 10 | 8 | 7 | ||
7 | 9 | 10 | 7 | 5 | 5 | 7 | 2 | 1 | 1 | 0 | 9 | 11 | 10 | 8 | 8 | ||
8 | 9 | 11 | 8 | 6 | 5 | 8 | 2 | 1 | 1 | 1 | 9 | 13 | 11 | 8 | 7 | ||
9 | 11 | 11 | 8 | 5 | 5 | 8 | 2 | 2 | 1 | 1 | 9 | 13 | 11 | 8 | 7 | ||
10 | 10 | 11 | 8 | 6 | 6 | 9 | 2 | 2 | 1 | 1 | 8 | 12 | 10 | 8 | 8 | ||
Coniferous (N = 460) | Deciduous (N = 232) | Mixed (N = 304) | |||||||||||||||
Plot Size (m2) | Plot Size (m2) | Plot Size (m2) | |||||||||||||||
Shift [m] | 100 | 200 | 300 | 400 | 500 | 100 | 200 | 300 | 400 | 500 | 100 | 200 | 300 | 400 | 500 | ||
0 | 2 | 2 | 0 | 0 | 1 | 6 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | ||
1 | 3 | 2 | 1 | 1 | 1 | 8 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 0 | ||
2 | 4 | 3 | 1 | 1 | 1 | 8 | 1 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 0 | ||
3 | 5 | 3 | 2 | 1 | 1 | 9 | 2 | 3 | 1 | 1 | 2 | 2 | 1 | 1 | 0 | ||
4 | 6 | 3 | 2 | 2 | 1 | 9 | 3 | 2 | 1 | 2 | 2 | 2 | 1 | 1 | 0 | ||
5 | 7 | 5 | 3 | 1 | 1 | 10 | 3 | 3 | 1 | 2 | 3 | 3 | 2 | 1 | 0 | ||
6 | 7 | 5 | 3 | 2 | 1 | 12 | 4 | 3 | 1 | 2 | 3 | 2 | 2 | 1 | 0 | ||
7 | 10 | 6 | 4 | 2 | 1 | 12 | 3 | 3 | 2 | 2 | 4 | 2 | 2 | 0 | 0 | ||
8 | 10 | 6 | 5 | 2 | 2 | 14 | 4 | 4 | 3 | 2 | 4 | 2 | 2 | 1 | 0 | ||
9 | 13 | 9 | 5 | 2 | 2 | 17 | 4 | 3 | 2 | 3 | 4 | 1 | 2 | 1 | 0 | ||
10 | 12 | 8 | 6 | 2 | 2 | 14 | 4 | 4 | 4 | 3 | 3 | 1 | 2 | 1 | 0 | ||
error magnitude (%): | 0 | 1 | 2 | 3 | 4 | ≥5 |
All | Plot Size (m2) | Coniferous | Plot Size (m2) | |||||||||
Factor | 100 | 200 | 300 | 400 | 500 | Factor | 100 | 200 | 300 | 400 | 500 | |
CHD | 0.12 | 0.22 | 0.26 | 0.28 | 0.31 | CHD | 0.08 | 0.28 | 0.27 | 0.32 | 0.33 | |
Slope | 0.06 | 0.10 | 0.08 | 0.06 | 0.09 | Slope | 0.07 | 0.14 | 0.19 | 0.15 | 0.18 | |
TD | −0.26 | −0.33 | −0.35 | −0.29 | −0.32 | TD | −0.31 | −0.3 | −0.36 | −0.28 | −0.3 | |
THD | −0.16 | −0.18 | −0.17 | −0.15 | −0.17 | THD | −0.2 | −0.28 | −0.27 | −0.25 | −0.25 | |
TRI | 0.07 | 0.10 | 0.08 | 0.07 | 0.10 | TRI | 0.06 | 0.15 | 0.19 | 0.16 | 0.18 | |
Lowlands | Plot Size (m2) | Deciduous | Plot Size (m2) | |||||||||
Factor | 100 | 200 | 300 | 400 | 500 | Factor | 100 | 200 | 300 | 400 | 500 | |
CHD | 0.23 | 0.39 | 0.38 | 0.42 | 0.41 | CHD | 0.24 | 0.18 | 0.17 | 0.33 | 0.31 | |
Slope | −0.03 | −0.01 | 0.00 | −0.03 | −0.03 | Slope | 0.25 | 0.26 | 0.27 | 0.22 | 0.25 | |
TD | −0.32 | −0.37 | −0.38 | −0.4 | −0.4 | TD | −0.24 | −0.4 | −0.37 | −0.39 | −0.39 | |
THD | −0.21 | −0.25 | −0.27 | −0.26 | −0.28 | THD | 0.06 | −0.02 | −0.02 | −0.04 | 0.03 | |
TRI | −0.02 | −0.01 | 0.00 | −0.03 | −0.03 | TRI | 0.25 | 0.26 | 0.27 | 0.22 | 0.25 | |
Mountains | Plot Size (m2) | Mix | Plot Size (m2) | |||||||||
Factor | 100 | 200 | 300 | 400 | 500 | Factor | 100 | 200 | 300 | 400 | 500 | |
CHD | 0.14 | 0.16 | 0.21 | 0.21 | 0.23 | CHD | 0.07 | 0.21 | 0.38 | 0.26 | 0.35 | |
Slope | 0.12 | 0.11 | 0.06 | 0.08 | 0.06 | Slope | 0.28 | 0.19 | 0.05 | 0.09 | 0.10 | |
TD | −0.19 | −0.3 | −0.28 | −0.22 | −0.26 | TD | −0.25 | −0.3 | −0.37 | −0.37 | −0.43 | |
THD | −0.11 | −0.1 | −0.07 | −0.05 | −0.06 | THD | −0.21 | −0.23 | −0.25 | −0.18 | −0.22 | |
TRI | 0.11 | 0.12 | 0.06 | 0.08 | 0.07 | TRI | 0.27 | 0.18 | 0.06 | 0.09 | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lisańczuk, M.; Mitelsztedt, K.; Stereńczak, K. The Influence of the Spatial Co-Registration Error on the Estimation of Growing Stock Volume Based on Airborne Laser Scanning Metrics. Remote Sens. 2024, 16, 4709. https://doi.org/10.3390/rs16244709
Lisańczuk M, Mitelsztedt K, Stereńczak K. The Influence of the Spatial Co-Registration Error on the Estimation of Growing Stock Volume Based on Airborne Laser Scanning Metrics. Remote Sensing. 2024; 16(24):4709. https://doi.org/10.3390/rs16244709
Chicago/Turabian StyleLisańczuk, Marek, Krzysztof Mitelsztedt, and Krzysztof Stereńczak. 2024. "The Influence of the Spatial Co-Registration Error on the Estimation of Growing Stock Volume Based on Airborne Laser Scanning Metrics" Remote Sensing 16, no. 24: 4709. https://doi.org/10.3390/rs16244709
APA StyleLisańczuk, M., Mitelsztedt, K., & Stereńczak, K. (2024). The Influence of the Spatial Co-Registration Error on the Estimation of Growing Stock Volume Based on Airborne Laser Scanning Metrics. Remote Sensing, 16(24), 4709. https://doi.org/10.3390/rs16244709