Automatic Method for Detecting Deformation Cracks in Landslides Based on Multidimensional Information Fusion
Abstract
:1. Introduction
2. Description of the Datasets
2.1. Study Area
2.2. Data Acquisition and Description
2.3. Description of Ground Truth
3. Methodology
3.1. Data Pre-Processing
3.2. Crack Identification Model and Principle
3.2.1. Types of Surface Cracks Observed on Landslides
3.2.2. Crack Extraction Based on Point Cloud
3.2.3. Crack Extraction Based on Digital Images
3.3. Crack Pixel Repair and Filtering
- Morphological repair
- 2.
- Orientation filtering
- 3.
- Length and frequency filtering
3.4. Multidimensional Information Fusion
4. Results and Discussion
4.1. Remote Sensing Data Pre-Processing
4.2. Initial Extraction
4.3. Repair and Filtering
4.4. Multidimensional Information Fusion Results
4.4.1. The Result of Fusion
4.4.2. Evaluation of the Fusion Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes Classification of Landslide Types, an Update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Xu, Q.; Tang, M.G.; Xu, K.X.; Huang, X.B. Research on space-time evolution laws and early warning-prediction of landslides. Chin. J. Rock Mech. Eng. 2008, 27, 1104–1112. [Google Scholar]
- Stumpf, A.; Malet, J.P.; Kerle, N.; Niethammer, U.; Rothmund, S. Image-Based Mapping of Surface Fissures for the Investigation of Landslide Dynamics. Geomorphology 2013, 186, 12–27. [Google Scholar] [CrossRef]
- Xu, L.; Dai, F.C.; Tham, L.G.; Zhou, Y.F.; Wu, C.X. Investigating Landslide-related Cracks along the Edge of Two Loess Platforms in Northwest China. Earth Surf. Process. Landf. 2012, 37, 1023–1033. [Google Scholar] [CrossRef]
- Xu, Q.; Zhao, B.; Dai, K.; Dong, X.; Li, W.; Zhu, X.; Yang, Y.; Xiao, X.; Wang, X.; Huang, J.; et al. Remote Sensing for Landslide Investigations: A Progress Report from China. Eng. Geol. 2023, 321, 107156. [Google Scholar] [CrossRef]
- Cheng, Z.; Gong, W.; Tang, H.; Juang, C.H.; Deng, Q.; Chen, J.; Ye, X. UAV Photogrammetry-Based Remote Sensing and Preliminary Assessment of the Behavior of a Landslide in Guizhou, China. Eng. Geol. 2021, 289, 106172. [Google Scholar] [CrossRef]
- Lian, X.; Li, Z.; Yuan, H.; Liu, J.; Zhang, Y.; Liu, X.; Wu, Y. Rapid Identification of Landslide, Collapse and Crack Based on Low-Altitude Remote Sensing Image of UAV. J. Mt. Sci. 2020, 17, 2915–2928. [Google Scholar] [CrossRef]
- Fang, C.; Fan, X.; Zhong, H.; Lombardo, L.; Tanyas, H.; Wang, X. A Novel Historical Landslide Detection Approach Based on LiDAR and Lightweight Attention U-Net. Remote Sens. 2022, 14, 4357. [Google Scholar] [CrossRef]
- Yi, X.; Feng, W.; Li, B.; Yin, B.; Dong, X.; Xin, C.; Wu, M. Deformation Characteristics, Mechanisms, and Potential Impulse Wave Assessment of the Wulipo Landslide in the Baihetan Reservoir Region, China. Landslides 2023, 20, 615–628. [Google Scholar] [CrossRef]
- Jiang, S.; Zhang, J. Real-time Crack Assessment Using Deep Neural Networks with Wall-climbing Unmanned Aerial System. Comput. -Aided Civ. Infrastruct. Eng. 2020, 35, 549–564. [Google Scholar] [CrossRef]
- Kheradmandi, N.; Mehranfar, V. A Critical Review and Comparative Study on Image Segmentation-Based Techniques for Pavement Crack Detection. Constr. Build. Mater. 2022, 321, 126162. [Google Scholar] [CrossRef]
- Yu, T.; Zhu, A.; Chen, Y. Efficient Crack Detection Method for Tunnel Lining Surface Cracks Based on Infrared Images. J. Comput. Civ. Eng. 2017, 31, 04016067. [Google Scholar] [CrossRef]
- Yang, K.; Hu, Z.; Liang, Y.; Fu, Y.; Yuan, D.; Guo, J.; Li, G.; Li, Y. Automated Extraction of Ground Fissures Due to Coal Mining Subsidence Based on UAV Photogrammetry. Remote Sens. 2022, 14, 1071. [Google Scholar] [CrossRef]
- Wang, H.; Nie, D.; Tuo, X.; Zhong, Y. Research on Crack Monitoring at the Trailing Edge of Landslides Based on Image Processing. Landslides 2020, 17, 985–1007. [Google Scholar] [CrossRef]
- Han, W.; Zhang, X.; Wang, Y.; Wang, L.; Huang, X.; Li, J.; Wang, S.; Chen, W.; Li, X.; Feng, R.; et al. A Survey of Machine Learning and Deep Learning in Remote Sensing of Geological Environment: Challenges, Advances, and Opportunities. ISPRS J. Photogramm. Remote Sens. 2023, 202, 87–113. [Google Scholar] [CrossRef]
- Al-Rawabdeh, A.; He, F.; Moussa, A.; El-Sheimy, N.; Habib, A. Using an Unmanned Aerial Vehicle-Based Digital Imaging System to Derive a 3D Point Cloud for Landslide Scarp Recognition. Remote Sens. 2016, 8, 95. [Google Scholar] [CrossRef]
- Yu, Y.T.; Li, J.; Guan, H.Y.; Wang, C. 3D Crack Skeleton Extraction from Mobile LiDAR Point Clouds. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 914–917. [Google Scholar] [CrossRef]
- Sandric, I.; Chitu, Z.; Ilinca, V.; Irimia, R. Using High-Resolution UAV Imagery and Artificial Intelligence to Detect and Map Landslide Cracks Automatically. Landslides 2024, 21, 2535–2543. [Google Scholar] [CrossRef]
- Liu, Z.; Cao, Y.; Wang, Y.; Wang, W. Computer Vision-Based Concrete Crack Detection Using U-Net Fully Convolutional Networks. Autom. Constr. 2019, 104, 129–139. [Google Scholar] [CrossRef]
- Lucieer, A.; Jong, S.M.D.; Turner, D. Mapping Landslide Displacements Using Structure from Motion (SfM) and Image Correlation of Multi-Temporal UAV Photography. Prog. Phys. Geogr. Earth Environ. 2014, 38, 97–116. [Google Scholar] [CrossRef]
- Ruzgienė, B.; Berteška, T.; Gečyte, S.; Jakubauskienė, E.; Aksamitauskas, V.Č. The Surface Modelling Based on UAV Photogrammetry and Qualitative Estimation. Measurement 2015, 73, 619–627. [Google Scholar] [CrossRef]
- Mancini, F.; Dubbini, M.; Gattelli, M.; Stecchi, F.; Fabbri, S.; Gabbianelli, G. Using Unmanned Aerial Vehicles (UAV) for High-Resolution Reconstruction of Topography: The Structure from Motion Approach on Coastal Environments. Remote Sens. 2013, 5, 6880–6898. [Google Scholar] [CrossRef]
- Reza, A.M. Realization of the Contrast Limited Adaptive Histogram Equalization (CLAHE) for Real-Time Image Enhancement. J. VLSI Signal Process. -Syst. Signal Image Video Technol. 2004, 38, 35–44. [Google Scholar] [CrossRef]
- Tomasi, C.; Manduchi, R. Bilateral Filtering for Gray and Color Images. In Proceedings of the Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), Bombay, India, 7 January 1998; Narosa Publishing House: Delhi, India, 1998; pp. 839–846. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X. Novel survey on the color-image graying algorithm. In Proceedings of the 2014 IEEE International Conference on Computer and Information Technology, Xi’an, China, 11–13 September 2014; IEEE: Piscataway, NJ, USA, 2014. [Google Scholar]
- Han, X.F.; Jin, J.S.; Wang, M.J.; Jiang, W.; Gao, L.; Xiao, L. A Review of Algorithms for Filtering the 3D Point Cloud. Signal Process. Image Commun. 2017, 57, 103–112. [Google Scholar] [CrossRef]
- Chen, Z.; Yuan, Z.; Peng, J.; Li, X.; Mao, S.; Hui, X. Basic characteristics about ground crack’s development of weihe basin. J. Eng. Geol. 2007, 15, 441–447. [Google Scholar]
- Zhou, K.; Hou, Q.; Wang, R.; Guo, B. Real-Time KD-Tree Construction on Graphics Hardware. ACM Trans. Graph. 2008, 27, 126. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, X.; Wang, L. Research on Fracture Mechanism and Stability of Slope with Tensile Cracks. Appl. Sci. 2022, 12, 12687. [Google Scholar] [CrossRef]
- Zhang, F.; Hu, Z.; Yang, K.; Fu, Y.; Feng, Z.; Bai, M. The Surface Crack Extraction Method Based on Machine Learning of Image and Quantitative Feature Information Acquisition Method. Remote Sens. 2021, 13, 1534. [Google Scholar] [CrossRef]
- Kanopoulos, N.; Vasanthavada, N.; Baker, R.L. Design of an Image Edge Detection Filter Using the Sobel Operator. IEEE J. Solid-State Circuits 1988, 23, 358–367. [Google Scholar] [CrossRef]
- Liang, S.; Cheng, J.; Zhang, J. Maximum Likelihood Classification of Soil Remote Sensing Image Based on Deep Learning. Earth Sci. Res. J. 2020, 24, 357–365. [Google Scholar] [CrossRef]
- Dougherty, E.R.; Lotufo, R.A. Hands-on Morphological Image Processing; SPIE Press: Bellingham, WA, USA, 2003. [Google Scholar]
- Birant, D.; Kut, A. ST-DBSCAN: An Algorithm for Clustering Spatial–Temporal Data. Data Knowl. Eng. 2007, 60, 208–221. [Google Scholar] [CrossRef]
- Meher, B.; Agrawal, S.; Panda, R.; Abraham, A. A Survey on Region Based Image Fusion Methods. Inf. Fusion 2019, 48, 119–132. [Google Scholar] [CrossRef]
- Johnson, D.L.; Miller, A.C. A Spatially Distributed Hydrologic Model Utilizing Raster Data Structures. Comput. Geosci. 1997, 23, 267–272. [Google Scholar] [CrossRef]
- Körding, K.P.; Wolpert, D.M. Bayesian Decision Theory in Sensorimotor Control. Trends Cogn. Sci. 2006, 10, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Hajian-Tilaki, K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Casp. J. Intern. Med. 2013, 4, 627–635. [Google Scholar]
- Guo, C.; Xu, Q.; Dong, X.; Li, W.; Zhao, K.; Lu, H.; Ju, Y. Geohazard Recognition and Inventory Mapping Using Airborne LiDAR Data in Complex Mountainous Areas. J. Earth Sci. 2021, 32, 1079–1091. [Google Scholar] [CrossRef]
Hardware Parameters of the Drone | Field Flight Configuration | ||
---|---|---|---|
Drone model | FeiMa D200 Drone | Ground spatial resolution | 1.5 cm |
Load model | SONY ILCE-6000 | Overlap rate between flight bands | 80% |
Sensor size | 23.5 × 15.6 mm | Course overlap rate | 85% |
Effective Pixels | 6000 × 4000 | Aerial photography altitude | 80 m |
Lens parameters | 20 mm (focus) | Number of routes | 13 |
Differential mode | PPK/RTK and its fusion mode | Route length | 3.9 km |
Control radius | 5 km | Aerial photography area | 0.07 km2 |
Category | Method | TPR | FPR | Precision | F-Score | |
---|---|---|---|---|---|---|
Small deformation cracks | Grayscale value segmentation model | Initial | 81.32% | 32.54% | 71.42% | 0.760 |
After filtering | 71.23% | 21.5% | 76.81% | 0.739 | ||
Supervised classification model | Initial | 79.67% | 29.64% | 72.88% | 0.761 | |
After filtering | 72.31% | 17.34% | 80.66% | 0.763 | ||
Gradient value segmentation model | Initial | 79.84% | 59.63% | 57.24% | 0.667 | |
After filtering | 82.56% | 10.32% | 88.89% | 0.856 | ||
Large deformation crack | Eigenvalue Ratios segmentation model | Initial | 77.34% | 48.32% | 61.54% | 0.685 |
After filtering | 73.54% | 34.86% | 67.84% | 0.706 | ||
Roughness segmentation model | Initial | 82.45% | 31.98% | 72.05% | 0.769 | |
After filtering | 76.35% | 18.86% | 80.19% | 0.782 | ||
Slope segmentation model | Initial | 78.46% | 27.64% | 73.95% | 0.761 | |
After filtering | 77.36% | 13.56% | 85.09% | 0.810 |
Fusion Method | Type | TPR | FPR | Precision | F-Score |
---|---|---|---|---|---|
The Layer stacking fusion | Slope + Edge Gradient | 80.81% | 12.74% | 86.38% | 0.835 |
The Bayesian probability fusion method based on minimum risk | 1.24% | 0.13% | 90.51% | 0.024 | |
61.59% | 3.24% | 95.03% | 0.750 | ||
76.67% | 8.97% | 89.53% | 0.826 | ||
83.73% | 10.64% | 87.15% | 0.864 | ||
92.36% | 12.36% | 85.37% | 0.901 | ||
93.52% | 34.32% | 71.96% | 0.822 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, B.; Xu, Q.; Dong, X.; Li, W.; Wu, M.; Ju, Y.; He, Q. Automatic Method for Detecting Deformation Cracks in Landslides Based on Multidimensional Information Fusion. Remote Sens. 2024, 16, 4075. https://doi.org/10.3390/rs16214075
Deng B, Xu Q, Dong X, Li W, Wu M, Ju Y, He Q. Automatic Method for Detecting Deformation Cracks in Landslides Based on Multidimensional Information Fusion. Remote Sensing. 2024; 16(21):4075. https://doi.org/10.3390/rs16214075
Chicago/Turabian StyleDeng, Bo, Qiang Xu, Xiujun Dong, Weile Li, Mingtang Wu, Yuanzhen Ju, and Qiulin He. 2024. "Automatic Method for Detecting Deformation Cracks in Landslides Based on Multidimensional Information Fusion" Remote Sensing 16, no. 21: 4075. https://doi.org/10.3390/rs16214075
APA StyleDeng, B., Xu, Q., Dong, X., Li, W., Wu, M., Ju, Y., & He, Q. (2024). Automatic Method for Detecting Deformation Cracks in Landslides Based on Multidimensional Information Fusion. Remote Sensing, 16(21), 4075. https://doi.org/10.3390/rs16214075