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Abstract: Hyperspectral unmixing (HU) aims to decompose mixed pixels into a set of endmembers
and corresponding abundances. Deep learning-based HU methods are currently a hot research topic,
but most existing unmixing methods still rely on per-pixel training or employ convolutional neural
networks (CNNs), which overlook the non-local correlations of materials and spectral characteristics.
Furthermore, current research mainly focuses on linear mixing models, which limits the feature
extraction capability of deep encoders and further improvement in unmixing accuracy. In this paper,
we propose a nonlinear unmixing network capable of extracting global spatial-spectral features. The
network is designed based on an autoencoder architecture, where a dual-stream CNNs is employed
in the encoder to separately extract spectral and local spatial information. The extracted features are
then fused together to form a more complete representation of the input data. Subsequently, a linear
projection-based multi-head self-attention mechanism is applied to capture global contextual infor-
mation, allowing for comprehensive spatial information extraction while maintaining lightweight
computation. To achieve better reconstruction performance, a model-free nonlinear mixing approach
is adopted to enhance the model’s universality, with the mixing model learned entirely from the data.
Additionally, an initialization method based on endmember bundles is utilized to reduce interference
from outliers and noise. Comparative results on real datasets against several state-of-the-art unmixing
methods demonstrate the superior of the proposed approach.

Keywords: hyperspectral unmixing; convolutional neural network; self-attention mechanism;
deep learning

1. Introduction

Hyperspectral imagery (HSI) can be acquired from numerous contiguous spectral
bands, enabling the identification of materials that cannot be distinguished in traditional
broadband imagery [1]. However, different material substances may contribute to the
spectral measurements of individual pixels. For such mixed pixels, we aim to identify
the different materials present in the mixture, along with their corresponding proportions.
Hyperspectral unmixing (HU) decomposes the spectral measurements of mixed pixels
into a set of constituent spectra, or endmembers, and a set of corresponding fractions, or
abundances, indicating the proportional presence of each endmember in the pixel [2,3].
Endmembers typically consist of familiar macroscopic substances in the scene, such as soil,
trees, water, or any natural or man-made materials. HU provides the capability to identify
subpixel details, which has practical value in many scenarios [4–6].

Based on the spectral mixing mechanism, common HU models can be categorized into
Linear Mixing Model (LMM) and Nonlinear Mixing Model (NLMM) [7,8]. LMM assumes
that each pixel in a HSI is a linear combination of endmembers and their abundances. Due
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to its generality, LMM has been the primary model for HU over the past few decades [9].
HU using LMM consists of two steps. The first step involves endmember extraction,
with typical methods including Pure Pixel Index (PPI) [10], N-FINDR algorithm [11],
and Vertex Component Analysis (VCA) [12]. The second step is abundance estimation
based on spectral data and the extracted endmembers, typically achieved through op-
timization algorithms with abundance nonnegativity constraint (ANC) and abundance
sum-to-one constraint (ASC), with the common method being Fully Constrained Least
Squares Unmixing (FCLSU) [13]. However, this two-step unmixing approach may lead to
error accumulation [14]. To avoid such errors, blind unmixing techniques, which simul-
taneously perform endmember extraction and abundance estimation, have been widely
researched [15–17]. Existing methods often rely on Nonnegative Matrix Factorization
(NMF), where many extended NMFs introduce a series of regularization constraints during
the matrix factorization process to incorporate prior information on both spectral and
spatial domains into the NMF framework, thus enhancing the stability of unmixing [18–20].

However, in practical scenarios, the spectra captured by detectors are not simply the
weighted sum of individual endmember spectra [21]. The spectral variability (SV) caused
by lighting conditions, terrain, atmospheric effects, and nonlinear effects introduced by
complex interactions among materials in the scene limit the ability of LMM to achieve
high performance [22]. Many LMM-based methods attempt to introduce additional pa-
rameters to model SV, but their modeling capability under complex conditions lacks good
generalization [23–26]. To address complex SV and nonlinearity, NLMM is an ideal solution.
NLMM can be divided into model-based and model-free methods [27]. Model-based meth-
ods assume that the spectral mixing process is known a priori. A popular class of NLMM
is the Bilinear Mixing Model (BMM), which simplifies nonlinear theory by assuming that
light experiences at most two reflections of the illuminating radiation before reaching the
detector. A major variant of this model is the Fan model [28], which performs poorly in
scenarios with only linear interactions. To improve model generalization, the Generalized
Bilinear Model (GBM) [29], the Linear-Quadratic Model (LQM) [8], and the Polynomial
Post Nonlinear Mixing Model (PNMM) [30] are proposed, incorporating a hyperparameter
to balance the weights of linear and nonlinear terms in the model. However, the mixing
priors are often unknown in practical applications, leading to poor generalization and diffi-
culties in model selection. Therefore, to improve model generalization, the development of
model-free unmixing methods is necessary.

In recent years, the powerful learning and data fitting capabilities of deep learning
have provided strong support for HU. The network architectures are primarily based on
autoencoders and their variants, where HSIs are encoded into corresponding abundance
fractions and decoded back into spectra, with the decoder weights representing endmem-
bers. Most deep learning-based HU approaches focus primarily on pixel-wise unmixing,
employing various regularizations to constrain the solution space. The mDAE [31] employs
a nonnegative sparse autoencoder for unmixing and cascades a marginalized denoising au-
toencoder to mitigate the effects of noise. Recognizing that cascading introduces additional
reconstruction errors, the uDAS [32] incorporates denoising ability as a denoising constraint
into the network optimization process. To enhance the sparsity of estimations, EndNet [33]
introduces a novel loss function incorporating a Kullback–Leibler divergence term with
SAD similarity and several other penalty terms. In contrast to commonly used norm-based
sparse priors, OSPAEU [34] observes that different abundance maps are nearly orthogonal,
thus proposing an orthogonal sparse prior that achieves better abundance sparsity. Recently,
several methods have integrated discriminative networks into their models, where struc-
tural distribution similarity is utilized to guide spectral reconstruction [35–37]. However,
these methods are limited to pixel-level unmixing, despite ample evidence demonstrating
the advantages of incorporating spatial information into the unmixing process.

Leveraging the convenience of neural network frameworks, autoencoder-based meth-
ods effectively exploit spatial features through convolutional layers [38]. CNNAEU [39]
segments HSIs into a series of patches and extracts spatial information using 2D convolu-
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tional neural networks (CNNs). DEAS [40] designs a plug-and-play extended-aggregated
convolutional module, which extends the algorithm’s spatial receptive field using dilated
convolutions at different scales and demonstrates its effectiveness in enhancing the un-
mixing capabilities of CNNAEU. In fact, the targets exhibit varying scales and sizes, with
pure pixels distributed throughout the entire HSI. Networks utilizing local convolutional
filters overlook the global material distribution and long-range interdependencies, resulting
in the loss of essential spatial feature information during the unmixing process. While
MSNet [41] scales the original HSI to expand the receptive field of CNNs, downsampling
operations lead to the loss of detailed information, making it challenging to balance the
preservation of detailed information and the acquisition of comprehensive information.
In contrast to the limited receptive fields of traditional CNNs, considering the non-local
spatial correlations between hyperspectral pixels, employing self-attention mechanisms
proves to be a viable solution. DeepTrans [42] pioneers the application of transformers [43]
in HU, capturing non-local feature dependencies through interactions between image
blocks. However, block-based operations introduce inconsistencies associated with patches.
UST-Net [44] integrates the advantages of MSNet and DeepTrans, applying a multi-head
self-attention mechanism (MHSAM) based on shifted windows to HSIs at different scales,
enabling operations on the entire HSI and eliminating inconsistencies between patches.
Nevertheless, due to computational constraints, the current non-local spatial correlations
are still based on operations between blocks and cannot establish connections between
pixels. Additionally, while the introduction of spatial information yields favorable end-
member results, it often leads to excessive smoothing of abundance transitions. An ideal
approach involves jointly extracting spatial-spectral information from HSI using 3D CNN,
albeit at the cost of increased computational burden. Hence, it is common practice to
either sequentially extract spatial and spectral information from HSI or employ dual-stream
networks for joint extraction of spatial-spectral information. The former is exemplified by
SSAE [45], where spatial information is initially utilized for effective endmember extraction,
subsequently fixed into the decoder of the abundance estimation network. 1D CNN is
then employed to extract the spectral features of HSI, facilitating more accurate abundance
estimation. To achieve end-to-end learning, SSANet [46] incorporates an adaptive spectral-
spatial attention module, sequentially comprising a spatial attention module and a spectral
attention module. The latter typical method is DBA [47], which extracts spatial-spectral
information through two branches and adjusts the weighting ratio of both as hyperparame-
ters to regulate their impact on the unmixing results. SSCU-Net [48] and MSSS-Net [49]
adopt weight-sharing mechanisms to enable interaction between the information streams,
thereby reducing the selection of hyperparameters. Upon summarizing existing unmixing
algorithms, it is observed that none fully account for both spatial and spectral information
of HSI due to computational constraints, inevitably resulting in a decrease in unmixing
performance. Furthermore, the aforementioned unmixing algorithms are all based on the
LMM, comprising a meticulously designed encoder and a simple single-layer decoder.
DAEU [50] experiments reveal that the simplistic structure of the decoder influences the
performance of the autoencoder in reconstructing inputs, indicating that a single-layer
decoder fails to fully exploit the robust capabilities of the encoder.

Linear unmixing can be easily addressed using classical methods, while deep learning
demonstrates stronger competitiveness in tackling nonlinear problems [51,52]. NAE [53]
reconfigures the decoder based on the PNMM [30] and leverages pre-training to enhance
unmixing performance. Taking into account the higher degrees of freedom inherent in
nonlinear neural networks, AEC [54] designed the encoder as the inverse of the mixing
process, thereby enhancing the algorithm’s robustness. UHUNA [55] designs three specific
nonlinear models for the decoder while retaining the ability for further expansion, thereby
improving algorithm versatility. RDAE [56] unfolds the GBM [29] to construct the decoder
while extracting endmembers and their second-order scattering interactions. 3DAEU [57]
jointly extracts spatial-spectral information of HSI using 3D CNN, with a carefully designed
decoder covering several existing artificial models. Compared to linear methods, there are
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relatively fewer algorithms developed based on NLMM. On one hand, existing nonlinear
unmixing methods often confine themselves to specific mixing models. Developing data-
driven model-free unmixing methods can effectively enhance model generalization. On the
other hand, due to the inherent non-convexity of blind unmixing methods, the high degrees
of freedom in nonlinear unmixing algorithms often generate a set of meaningless endmem-
bers. Addressing the critical issue of setting appropriate initialization and regularization to
guide algorithm convergence towards optimal solutions is a key consideration.

1.1. Motivation

While 1D CNN, 2D CNN and self-attention mechanism have been widely employed
for feature extraction, none of these methods fully integrate global spatial information
and spectral properties of HSI. Therefore, this paper utilizes a dual-stream network to
separately extract spatial and spectral information of HSI, and global pixel-level contextual
communication is achieved through a MHSAM based on linear projection, reducing the
computational complexity from O(N2) to O(N) without compromising unmixing perfor-
mance. To fully harness the powerful feature fitting capability of the encoder, a data-driven
nonlinear decoder is adopted. The nonlinear type is learned entirely from the data, enabling
effective handling of various complex nonlinear scenarios. Considering the challenge of
nonlinear decoders easily falling into local optima during model training, a stable initializa-
tion method is developed to effectively handle outliers and noise, significantly enhancing
unmixing performance.

1.2. Novelty and Contribution

The main contributions of this article are summarized as follows:

• We propose a novel global spatial-spectral unmixing method, which integrates global
spatial-spectral information in HSI, achieving pixel-level global spatial information
interaction to reduce information loss and improve unmixing performance. Unlike
conventional patch-based operations, to the best of our knowledge, this is the first
application of pixel-level global attention mechanisms in HU, avoiding discontinuities
between pixel blocks.

• We introduce a decoder structure suitable for nonlinear spectral unmixing. Com-
pared to various nonlinear decoders designed for specific models, data-driven non-
linear decoders do not require the application of mixed priors of the scene, enabling
adaptive handling of complex mixed images including linear and various nonlinear
mixing scenarios.

• We propose a simple and efficient endmember initialization method to mitigate the
interference from noise and outliers. Experimental results demonstrate that this
method maintains high accuracy across various complex datasets. Moreover, this
method can replace the commonly used VCA initialization directly applied to existing
autoencoder unmixing algorithms, significantly enhancing unmixing performance.

This article is organized as follows. Section 2 provides a brief introduction to the
mixing model and autoencoder structures. Section 3 elaborates on the proposed unmixing
autoencoder framework, including the specific network architecture, component modules,
and loss functions. Section 4 presents the experimental section, where performance com-
parisons are made with existing state-of-the-art unmixing methods. Finally, the conclusions
of our work are presented in Section 5.

2. Problem Formulation
2.1. Data Model

Let Y = [y1, y2, ..., yN] ∈ RD×N represent a HSI, where D is the number of spectral
bands and N is the number of pixels. The LMM assumes that each pixel is a linear
combination of pure materials, which can be formulated as:

Y = AX + R (1)
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where A = [a1, ..., aP] ∈ RD×P represents an endmember matrix with P pure materials,
X = [x1, ..., xN] ∈ RP×N is the corresponding abundance matrix, and R ∈ RD×N is
an additive noise matrix. Typically, both the endmember matrix and the abundance matrix
are non-negative, and the columns of the abundance matrix sum to one, that is

A ≥ 0, X ≥ 0

1T
RX = 1T

N
(2)

where 1R and 1N are column vectors of ones with lengths R and N, respectively.
Although LMM is popular, it struggles to handle the nonlinearity occurring among

different materials in real HSIs. In such cases, NLMM can better represent the unmixing
process, with its general form as follows:

Y = φ(A, X) + R (3)

where φ defines the nonlinear interactions between endmembers. To extract interpretable
endmembers and abundances from the model, most NLMMs decompose the nonlinear
process into a linear term and a nonlinear perturbation term:

Y = AX + ψ(AX) + R (4)

Moreover, the mixture model defined in Equation (4) offers better control over the de-
gree of nonlinearity. PNMM [30] and MLM [58] are representative methods of such models.

2.2. Autoencoder

Deep learning-based unsupervised HU methods commonly employ an autoencoder
structure, comprising an encoder and a decoder. The encoder compresses input data
into a low-dimensional representation, representing abundance information in HSIs for
unmixing tasks. Subsequently, the decoder reconstructs the original HSI based on the
abundance information, with the decoder weights representing endmembers. The unsuper-
vised training of the entire network is achieved by selecting appropriate objective functions.
An overview of the overall network architecture is depicted in Figure 1a.

(a) (b)

Figure 1. Schematic diagram of autoencoder architecture: (a) Autoencoder architecture. (b) Several
common decoder architectures.

Figure 1b summarizes several commonly used decoding models in existing unmixing
algorithms. Most unmixing algorithms are built upon the LMM, employing a single-layer
linear decoder. The simplistic linear mixing assumption constrains the robust feature fitting
capability of autoencoder networks. Consequently, several decoder architectures based
on NLMM have been proposed, primarily categorized into model-based and model-free
approaches. Model-based decoders strictly adhere to the underlying NLMM; methods like
UHUNA [55] design decoders rigorously based on the BMM, yet such methods can only
handle single mixing scenarios. In contrast, model-free approaches can simultaneously
address multiple mixing scenarios, autonomously learning mixing forms from data via
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autoencoder networks without requiring predefined mixing priors, thereby better handling
various complex nonlinear scenarios.

3. Proposed Method

In this section, we elaborate on the proposed method. Similar to other blind unmixing
methods, the proposed approach follows the structure of an autoencoder, comprising
an encoder and a decoder, as illustrated in Figure 2. The entire HSI is input into the
network, where spatial and spectral features of the HSI are initially extracted separately
through a dual-stream network consisting of a Spatial Feature Extraction Module (SAFEM)
and a Spectral Feature Extraction Module (SEFEM). Detailed explanations regarding these
modules are provided in Section 3.1.

Figure 2. The architecture of the proposed AE network for hyperspectral unmixing.

Subsequently, the spatial and spectral features of HSI are fused together and then sub-
jected to two consecutive MHSAMs for global spatial information interaction. The module has
been redesigned to significantly reduce computational complexity, enabling pixel-wise feature
interaction without the need for patch operations. Residual connections are utilized to acceler-
ate the training process of deep neural networks, and finally, an abundance matrix is generated
through a smoothing module. Specific implementation details are provided in Section 3.2.

Finally, considering that a simple LMM-based decoder underutilizes the powerful
feature fitting capability of the encoder, the decoder is designed to consist of a linear term
and a nonlinear perturbation term. The linear term based on LMM enables rapid fitting of
the network, with the weights of the linear term corresponding to the endmember matrix.
The nonlinear term is regarded as a perturbation of linear reconstruction, automatically
learning nonlinear mixing patterns in HSI through a data-driven approach, thus enhancing
the network’s generalization across various mixing scenarios. More details on the decoder
are provided in Section 3.3.

3.1. Spatial-Spectral Feature Extraction Module

HSIs typically exhibit high similarity between adjacent pixels, which can be effectively
extracted using 2D CNN to capture local spatial information. However, this approach
overlooks the rich spectral information in HSIs. While 1D CNN operates convolutions along
the spectral dimension, it fails to consider the spatial properties of the image. On the other
hand, 3D CNN can simultaneously extract local spectral-spatial features from HSIs, yet high
parameter size in practical applications leads to increased computational costs and a risk
of overfitting [59]. The direct application of 3D CNN for feature extraction incurs a time
complexity of O(M2 · K2 · L · Cin · Cout), where M is the side length of each convolutional
kernel output feature map, and K and L represent the kernel’s spatial dimensions and
depth, respectively. Cin and Cout denote the number of input and output channels for
the convolutional layer. To balance computational costs and feature extraction capability,
a dual-stream network is proposed, leveraging the strengths of 1D CNN and 2D CNN
to separately extract spatial and spectral features from HSI. The time complexity of this
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approach is O(M2 · K2 · Cin · Cout + M2 · L · Cin · Cout), representing approximately a L-fold
reduction in computational complexity compared to direct application of 3D CNN.

The specific structure of the network is presented in Figure 3, with both streams
adopting a four-layer network architecture. Dropout is employed in the first layer of the
dual-stream network to prevent overfitting. Batch normalization is applied to each layer to
alleviate the vanishing gradient problem and accelerate network training. In the SEFEM,
max-pooling is used to enhance significant features in the HSIs and eliminate redundant
spectral information. LeakyReLU is chosen as the activation function for the network, ad-
dressing the issue of “neuron death” associated with ReLU. Notably, in the spectral feature
extraction module, both convolutional and max-pooling strides are typically set to 2. Minor
adjustments may be applied to ensure consistent dimensions across different datasets.

Figure 3. The architecture of the Spatial-Spectral Feature Extraction Module.

Finally, the extracted spectral-spatial features are concatenated together and fused
using a 2D CNN. The output dimension of the network is twice the number of endmembers.

3.2. Global Spatial Information Interaction Module

The pure pixel distribution of HSI spans the entire image. Leveraging self-attention
mechanisms facilitates substantial enhancement in the accuracy of unmixing algorithms by
enabling global spatial information interaction. Inspired by Linformer [60], we adopt linear
projection to reduce both the space and time complexity of network operations to O(N),
achieving pixel-level information interaction within reasonable computational time.

The output matrix from the previous module is denoted as X ∈ RN×2P. It is worth
noting that we did not add positional encodings to the embedded representation X because
the local spatial similarity of the pixels has already been extracted in the previous module.
Adding positional information at this stage would lead to a decrease in performance. In
this step, after the layer normalization process, X is first passed through three different
linear layers to obtain embedding matrices Q, K, V ∈ RN×2P :

Q = XWq, K = XWk, V = XWv (5)

The scaled dot-product attention computation performed between them enables the
model to capture the dependency relationships between any two pixels in the HSI, regard-
less of their spatial distance within the image:

Attention = softmax

[
QKT
√

2P

]
V (6)
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Scale factor 1/
√

2P is utilized to alleviate the gradient vanishing caused by the softmax
function. And the time and space complexity resulting from the multiplication of several
(N × 2P) matrices is O(N2). When implementing pixel-level attention mechanisms for the
task of unmixing, the sequence length N can reach magnitudes of tens of thousands. To
avoid costly computations, patch operations must be employed.

Linformer demonstrated that the self-attention matrix is low rank. By compressing
the dimensions of inputs K and V, significant reductions in computational complexity can
be achieved. We employ the same linear projection matrix L ∈ RP×N to act on both K and
V. After the projection is applied, the attention mechanism is recalculated as follows:

Attention = softmax
[

Q(LK)T
√

2P

]
LV (7)

Our projection dimension is only 128, which implies that our computational com-
plexity decreases to O(N), making it feasible to compute the global spatial correlation
among pixels in HSI within a reasonable time. The justification of projection dimension
compression will be validated in Section 4.4.

The specific module workflow is illustrated in Figure 4. In practical applications, the
concept of multi-head self-attention is adopted, with a fixed number of heads denoted as
P. This allows the model to simultaneously focus on different elemental information for
individual pixels. The final output is as follows:

headi = Attentioni = softmax
[

Qi(LKi)
T

√
2P

]
LVi (8)

X′ = Concat(head1, head2, ..., headP)Wo (9)

Figure 4. Module of Multi-Head Self-Attention Modules based on Linear Projection.

The output X′ from the multi-head self-attention module is fed into a layer normaliza-
tion layer and then passed through a multi-layer perceptron (MLP) block. The final output
is obtained through residual connections:

X′′ = X′ + MLP
(
LN(X′)

)
(10)

Multiple preceding modules can be cascaded, where the cascade number is set as 2.
The overall output dimension of the network is represented as follows:

X′′′ = X + MHSAM(MHSAM(X)) (11)

X′′′ ∈ RW×H×2P, where W and H are the width and height of the HSI, respectively.
After passing through the entire encoder, the global spatial-spectral information of the HSI
is sufficiently extracted. And then, a 3× 3 convolutional smoothing module is used to
ensure a smooth overall distribution of the abundance map output and to compress the
output dimension from 2P to P. A softmax layer is applied to the P dimension to ensure
nonnegativity constraints as well as sum-to-one constraints, as described in Equation (2).
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3.3. Unmixing with Decoder

The decoder consists of a linear component and a nonlinear perturbation component.
The linear layer represents a single reflection of the illuminating solar radiation, which can
be obtained through a simple linear combination of endmembers and abundances. The
output of the linear component is as follows:

Ylinear = E(1)X (12)

where X ∈ RW×H×P represents the abundance obtained through the encoder, E(1) is defined
as the weights of the first layer of the decoder, which are obtained using a 1× 1 2D CNN
without bias. Typically, the weights are initialized using methods such as VCA to accelerate
the training of the network. Ylinear ∈ RW×H×D represents the linearly reconstructed HSI,
which forms the main part of the network reconstruction.

The nonlinear component does not rely on existing mixture models but instead learns
parameters automatically through the network. Research has shown that neural net-
works with two hidden layers can represent any arbitrary nonlinear relationship between
inputs [61]. Therefore, we use a two-layer unbiased 2D CNN to construct the nonlinear
component of the network. The spatial information of HSI can effectively improve the
accuracy of abundance extraction in the encoder, but the network reconstruction in the
decoder is limited to the pixel level. Among the literature reviewed, only CNNAEU as-
sumes a new spectral-spatial model that considers the influence of neighboring pixels on
the reconstruction in the decoder, but this model is still limited to LMM.

In this article, we assume that the influence of neighboring pixels should be included
in the nonlinear reconstruction of any given pixel. Therefore, the first 2D CNN receptive
field in the nonlinear module is set to 3× 3, while the second remains at 1× 1. The final
reconstruction process of Ŷ is as follows:

Ynonlinear = E(2)Ylinear (13)

Ŷ = Ylinear + Ynonlinear (14)

where E(2) represents the weight of the nonlinear perturbation term. To avoid overfitting,
the nonlinear network is pretrained with the same input and output before training begins.
Therefore, during training, the nonlinear part can be regarded as a perturbation of the HSI.

3.4. Overall Loss Function

The Spectral Angle Distance (SAD), which exhibits spectral scale invariance, is chosen
as the primary reconstruction function. It evaluates the similarity between two spectral
curves by calculating the angle between the target spectrum and the reference spectrum.
A smaller angle between two spectral indicates a greater similarity. The formula for
calculating SAD is as follows:

LSAD =
1

W · H
W

∑
i=1

H

∑
j=1

arccos

( 〈
Yij, Ŷij

〉
||Yij||2||Ŷij||2

)
(15)

Considering only scale invariance may lead to significant errors, hence Mean Square
Error (MSE) is introduced into the network to ensure the stability of unmixing.

LMSE =
1

W · H
W

∑
i=1

H

∑
j=1

(
Ŷij − Yij

)2 (16)
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Given that adjacent pixels have similar abundance vectors, Total Variation (TV) loss
is added to the abundance results to impose spatial smoothness. The TV loss function is
defined as:

LTV =
1

W · H · P
W

∑
i=1

H

∑
j=1

P

∑
k=1

√(
Xi,j+1,k − Xi,j,k

)2
+
(

Xi+1,j,k − Xi,j,k

)2
(17)

To mitigate overfitting caused by nonlinear functions, L2-norm is employed to con-
strain the weights of the nonlinear term:

Lnl = ||E(2)||2 (18)

In our model, the overall training loss function comprises the following four components:

Ltotal = LSAD + λ1LMSE + λ2LTV + λ3Lnl (19)

λ1, λ2 and λ3 represent the coefficients of the regularization terms, which are uniformly
set to 1× 10−3 in the Samson dataset and Jasper Ridge dataset, and uniformly set to 1× 10−4

in the Urban dataset. It is worth noting that, for a fair comparison with competitive methods
in experiments, we did not fine-tune the regularization coefficients based on different
datasets. Therefore, fine-tuning of hyperparameters for different datasets may lead to
better results.

To sum up, the pseudocode of the proposed method is shown in Algorithm 1.

Algorithm 1 Pseudocode of the Proposed Method.

Input: HSI Y;
Output: Endmembers A;

Abundance X;
1: Initialize A by the VCA-bundles algorithm;
2: Initialize Ynonlinear;
3: Training stage:
4: for Epochs do
5: Update X using Equation (11)
6: Update A using Equation (14)
7: Compute Loss Ltotal using Equation (19)
8: Back propagation
9: end for

10: Test stage:
11: Forward propagation: Feed Y into the network;
12: Obtain A and X

4. Experiments

In order to better evaluate the proposed method, detailed ablation experiments were
conducted on the dual-branch spatial-spectral feature extraction module and the non-
linear decoder within the network. The proposed method was compared with several
representative existing methods on three real datasets.

The mean spectral angle distance (mSAD) was used to evaluate the quality of the
extracted endmembers, while the mean root mean square error (mRMSE) was utilized to
assess the accuracy of the abundance estimation, which are defined as follows:

mSAD =
1
P

P

∑
i=1

arccos

( 〈
Ai, Âi

〉
||Ai||2||Âi||2

)
(20)

mRMSE =

√√√√ 1
W · H · P

W

∑
i=1

H

∑
j=1

P

∑
k=1

(
X̂ijk − Xijk

)2
(21)
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The proposed method is implemented in Python 3.9 using the PyTorch framework.
The network’s learning rate is initialized to 1× 10−3, while the linear decoder is initialized
to 5× 10−4. Every 30 epochs of training, the learning rate is decayed by a factor of 0.8. The
training epochs for different datasets were adjusted, and the network was run for 200, 400,
and 90 epochs respectively for the Samson dataset, Jasper Ridge dataset, and Urban dataset.
The decoder weights are initialized based on the endmembers extracted in Section 4.2.

4.1. Data Description

Due to the challenge of synthetic datasets in reflecting the complex nonlinear inter-
actions in real-world scenarios, only three widely used real datasets were employed to
validate the unmixing results of different algorithms, as illustrated in Figure 5.

Samson contains 95× 95 pixels, with each pixel encompassing 156 spectral channels
ranging from 401 nm to 889 nm. This dataset is not affected by bad pixels or severe noise
contamination and consists of three endmembers: Soil, Tree, and Water.

Jasper Ridge comprises 100 × 100 pixels, with each pixel containing 198 spectral
channels ranging from 380 nm to 2500 nm after the removal of channels 1–3, 108–112,
154–166, and 220–224 due to dense water vapor and atmospheric effects. Four endmembers
are included in this dataset: Road, Soil, Tree, and Water.

Urban is a large dataset consisting of 307× 307 pixels, with each pixel containing 162
spectral channels spanning from 400 nm to 2500 nm after the removal of channels 1–4,
76, 87, 101–111, 136–153, and 198–210 due to dense water vapor and atmospheric effects.
This dataset contains a significant number of outliers and encompasses four endmembers:
Asphalt, Grass, Tree, and Roof.

(a) (b) (c)

Figure 5. Dataset: (a) Samson dataset. (b) Jasper Ridge dataset. (c) Urban dataset.

4.2. Endmember Initialization

The unmixing problem can be formulated as a non-convex minimization problem, and
reasonable initialization can significantly improve the unmixing performance. Most un-
mixing algorithms use geometric extraction algorithms such as VCA for initialization, but
the existence of outliers and noise may lead to the extraction of meaningless endmembers,
which strongly hinder the unmixing process. DAEN [62] combines stacked autoencoders
and VCA to generate well-initialized endmembers, eliminating the influence of outliers,
but it is computationally expensive. OSPAEU [34] removes outliers by measuring the uni-
formity of neighboring pixels over the entire image. MAAENet [51] proposes an SLIC-VCA
algorithm, which generates spatial groups through image segmentation [63]. The spectral
within the same group are averaged to alleviate the impact of outliers and noise. We further
optimize the SLIC-VCA algorithm by following the concept of endmember bundles.

The specific workflow is illustrated in Figure 6. HSI exhibits similar spectral charac-
teristics within compact spatial neighborhoods. Under the assumption that pure pixels
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do not exist independently, SLIC [63] is employed to segment the HSI. Notably, SLIC
clusters pixels by considering both spatial Euclidean distances and spectral similarity. The
formulation is given by:

SLICfeature =

√
∆x2

ij + ∆y2
ij

S2 +
||yi − yj||2

m2 (22)

where ∆x2
ij + ∆y2

ij is the squared Euclidean distance between two pixels, S is the search size
of SLIC, and m is a hyperparameter balancing pixel distance and spectral similarity strength.

Figure 6. The flowchart of the proposed endmember initialization method.

After SLIC segmentation, the HSI is divided into highly correlated sub-pixel blocks.
Each sub-pixel block undergoes averaging, effectively eliminating outliers and reducing
noise. Following the averaging of spectral collections, based on the concept of endmem-
ber bundles, a subset of the spectral collection is randomly selected to run VCA. This
approach assumes that a small percentage of image pixels can approximate the original
image statistics. Each run of the endmember extraction algorithm yields a different set of
endmember spectra.

Next, the extracted spectral library undergoes k-means clustering based on Euclidean
distance as a similarity metric. This partitions the spectral library into independent end-
member bundles for each ground component, characterizing each endmember with a set
of spectra exhibiting spectral variability. Finally, averaging is applied to each group of
endmember bundles to obtain the desired initial endmembers.

Utilizing the concept of endmember bundles instead of directly applying the end-
member extraction algorithm on the spectral collection offers several advantages. Firstly,
running VCA across the entire image typically yields inconsistent results, whereas averag-
ing over multiple samplings minimizes uncertainties. This ensures that even if some VCAs
extract incorrect spectra, the final endmembers remain unaffected. Secondly, averaging
a set of endmember bundles containing various spectral variabilities further mitigates the
impact of outliers and noise, achieving accurate and reliable endmember initialization.

The challenging Urban dataset is employed for comparative experiments in endmem-
ber extraction, with VCA [12], NFINDR [11], and SLIC-VCA [51] selected as the benchmark
methods. Figure 7 illustrates the visual results of endmember extraction by different al-
gorithms, while Table 1 quantitatively lists the performance of all compared methods.
Conventional geometric extraction methods are adversely affected by outliers, resulting
in the poorest outcomes. SLIC-VCA, by locally averaging spectral signatures, effectively
mitigates the impact of outliers, significantly enhancing the accuracy of endmember ex-
traction. However, it fails to accurately differentiate highly similar endmember spectra
such as “Grass” and “Tree”. In comparison, VCA-bundles accurately extracts all endmem-
bers, demonstrating robust adaptability to various complex natural scenes compared to
other methods.

To further investigate the robustness of VCA-bundles, Figure 8 visualizes the results
of endmember bundle extraction. It can be observed that for each reference endmember,
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a set of spectral subsets with varying spectral variabilities is generated, and averaging
operations help reduce the influence of spectral variability. Moreover, for endmembers
that are difficult to extract, such as “Grass”, partial erroneously extracted endmembers are
eliminated through averaging, thereby yielding robust results.

Figure 7. The results of endmember extraction (Urban dataset): extracted endmembers (blue) and
actual endmembers (orange).

Table 1. The SAD results of each comparative algorithm on the Urban dataset.

Urban VCA NFINDR SLIC-VCA VCA-Bundles

SAD

Asphalt 20.95 19.10 16.29 9.98
Grass 41.33 136.92 54.02 22.41
Tree 10.32 7.44 8.07 4.81
Roof 82.66 21.74 8.89 4.04

Mean SAD 38.82 46.30 21.98 10.31

Figure 8. Visualization results of endmember bundle extraction (Urban dataset).
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4.3. Ablation Experiments

The effectiveness of the proposed branch modules was analyzed by systematically
removing the SAFEM, SEFEM, or NLMM decoder module individually from three datasets
until all were removed. When the Spatial-Spectral Feature Extraction Module was entirely
removed, the encoding module was substituted with a 2D CNN incorporating 1× 1 spa-
tial channel attention. Table 2 summarizes the outcomes of endmember extraction and
abundance estimation under varied conditions. As anticipated, complete removal of all
modules resulted in the poorest performance. When only one module was reintroduced,
augmenting the encoder with spatial or spectral information proved more advantageous.
The independent use of the nonlinear decoder integrating local spatial information yielded
only marginal improvements; however, when paired with SAFEM, which also extracts local
spatial information, a significant enhancement in unmixing accuracy was observed. Ulti-
mately, simultaneous utilization of all three modules yielded optimal results, underscoring
the efficacy of the proposed dual-branch encoder and nonlinear decoder.

Table 2. The mSAD and mRMSE results after conducting ablation experiments on the branch modules.
Best result are bold.

Ablation Modules Samson Jasper Ridge Urban

SAFEM SEFEM NLMM mSAD mRMSE mSAD mRMSE mSAD mRMSE

% % % 4.04 13.67 4.12 10.94 8.01 11.87

" % % 2.83 11.19 4.01 10.85 7.92 11.69

% " % 3.49 11.56 4.02 10.82 7.82 11.79

% % " 3.72 13.10 4.19 10.98 7.90 11.74

" " % 2.57 8.60 3.95 9.24 7.74 11.56

" % " 2.62 8.91 3.99 9.66 7.79 11.62

% " " 3.20 12.65 4.13 10.60 7.96 12.26

" " " 2.25 7.57 3.93 8.99 7.75 11.46

In addition, a highlight of this study is the proposed MHSAM based on linear projec-
tion, facilitating pixel-level global spatial interaction. Ablation experiments were conducted
using linear layers, CNN layers, and a 5 × 5 MHSAM based on patch-based operations
as substitutes for this module on the Samson and Jasper Ridge datasets, as illustrated in
Table 3. The results indicate that using solely linear layers yielded the poorest performance,
while CNN layers considering local spatial information offered moderate improvement.
In contrast, employing MHSAM with both methods comprehensively integrating global
spatial information resulted in significant enhancements in endmember accuracy. Figure 9
illustrates abundance visualizations of tree, water, dirt, and road on the Jasper Ridge dataset,
demonstrating that MHSAM without patch-based processing achieved the smoothest pixel
transitions and best visual performance.

Table 3. The mSAD and mRMSE results after conducting ablation experiments on the MHSAM
modules. Best result are bold.

Samson Jasper Ridge

mSAD mRMSE mSAD mRMSE

Linear 5.64 13.58 12.63 10.48

CNN 5.35 11.07 8.68 10.24

MHSAM (5× 5) 2.95 11.70 4.40 9.53

Proposed 2.25 7.57 3.93 8.99
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Figure 9. Abundance maps of tree, water, dirt, and road on the Jasper Ridge dataset obtained by
different modules.

4.4. Projection Dimension Analysis

The projection dimension in the global spatial information interaction module is
an optional hyperparameter, as demonstrated in Linformer [60] where a lower projection
dimension leads to faster network training speed. However, it may also result in a decrease
in network performance. Tests were conducted on different projection dimensions using
the Samson dataset and Jasper Ridge dataset, with specific results shown in Figure 10.
Worth noting is that the network performance does not significantly deteriorate as the
projection dimension decreases, which could be attributed to the relatively simple nature
of the unmixing task. On the other hand, a more noticeable decrease is observed in
computation time, which converges when the projection dimension is below 128. Therefore,
the projection dimension is set to 128 to minimize information loss while maintaining
computational efficiency.

(a) (b)

Figure 10. The results of mRMSE and mSAD under different projection dimensions, along with the
corresponding computation times (measured in seconds). (a) Samson dataset. (b) Jasper Ridge dataset.
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4.5. Experiments

In this section, we conducted comparative experiments with other methods. We took
into consideration both linear and nonlinear methods for method selection, as the three
chosen datasets are widely used in various linear unmixing algorithms. The comparative
methods are as follows:

(1) FCLSU [13]: The most commonly used abundance estimation method. In our experi-
ments, VCA-bundles were used as the endmember extraction method in conjunction
with FCLSU.

(2) DeepTrans [42]: A linear unmixing network based on deep learning, which captures
nonlocal feature dependencies through operations between image patches.

(3) uDAS [32]: A linear unmixing network based on deep learning, with denoising capa-
bility incorporated into network optimization in the form of denoising constraints.

(4) SGSNMF [19]: A linear unmixing network based on NMF, where the group-structured
prior information of HSI is integrated into nonnegative matrix factorization optimiza-
tion, with data organized into spatial groups.

(5) NAE [53]: A nonlinear unmixing network based on deep learning, trained through
pixel-wise network.

(6) rNMF [64]: A nonlinear unmixing network based on NMF, with an additional term
introduced in the model to consider nonlinear effects.

(7) 3DAEU [57]: A nonlinear unmixing network based on deep learning, capturing
spatial-spectral information of HSI through 3DCNN, with the design of the nonlinear
model encompassing several existing artificial models.

(8) A2SAN [65]: A linear unmixing network based on deep learning, utilizing spectral
and spatial modules to extract spatial-spectral information of HSI, and employing
attention mechanisms for direct reconstruction.

(9) USTNet [44]: A linear unmixing network based on deep learning, employing multi-
head self-attention blocks based on shifted windows to extract HSI feature maps at
different scales, minimizing loss of detailed information.

All comparative methods were independently run ten times on each dataset. The
subsequent evaluation calculated the mean and standard deviation for each method.

4.5.1. Samson Dataset

The Table 4 presents the abundance RMSE and endmember SAD obtained by different
unmixing methods on the Samson dataset. It is observed that all unmixing methods can
accurately extract the endmembers “Soil” and “Tree”, but most encounter difficulties in
extracting “Water”, possibly due to its low reflectance which makes it difficult to distinguish
subtle differences in the loss function. In comparative experiments, only USTNet and the
proposed method accurately extract the “Water” endmember, suggesting that the introduc-
tion of global spatial information aids in endmember extraction, a finding reinforced by [45].
FCLSU employing VCA-bundles as the endmember extraction method achieves subopti-
mal mean SAD results, further demonstrating the advantage of the proposed initialization
method. Regarding abundance estimation, it is evident that the proposed method and
A2SAN significantly outperform other methods in accuracy, highlighting the advantage
of using scale-invariant SAD as a loss function in conjunction with spectral information
extraction. Visual results of abundances and endmembers are shown in Figures 11 and 12,
respectively. Comparisons indicate that deep learning methods exhibit significant advan-
tages over traditional methods in both endmember extraction and abundance estimation,
with recent approaches yielding abundance maps closest to ground truth.

4.5.2. Jasper Ridge Dataset

In this section, all the compared unmixing methods are applied to the Jasper Ridge
dataset. Table 5 quantitatively demonstrates the performance of all competing methods,
while the visualization results of abundance and endmembers are respectively presented in
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Figures 13 and 14. NAE and rNMF confused “Dirt” and “Road”, resulting in the poorest
performance. Although 3DAEU successfully extracted all endmembers, it completely
ignored “Road” in abundance estimation. This indicates that nonlinear methods with more
parameters are prone to falling into local minima, and may require more prior information
and careful hyperparameter tuning. Many linear methods performed better in endmember
extraction on this dataset, while DeepTrans, A2SAN and USTNet were affected by initial-
ization and interfered with the extraction of “Road”. FCLSU initialized by VCA-bundles
achieved suboptimal performance, further highlighting that more accurate endmember
initialization might bring greater benefits compared to sophisticated algorithm design.
In the observation of the abundance map, it is evident that the majority of comparative
algorithms did not accurately separate the roads, whereas the proposed method fully
considered the spatial and spectral information in HSI, achieving better road separation.
Demonstrating its stable processing capabilities across different datasets, our method con-
sistently achieved the best mSAD and mRMSE, although it may not have outperformed
others in individual comparisons.

4.5.3. Urban Dataset

Table 6 presents the abundance RMSE and endmember SAD achieved by different
unmixing methods on the Urban dataset. The Urban dataset is highly complex, with a
considerable number of outliers. Most methods face challenges distinguishing between
“Grass” and “Tree”, with uDAS and SGSNMF completely unable to differentiate between the
two. Methods incorporating spatial information such as DeepTrans, 3DAEU, and A2SAN
perform well in extracting most endmembers, while the proposed method and USTNet
achieve optimal mSAD in two specific endmembers. Influenced by endmember extraction
challenges, Figure 15’s abundance visualization results show suboptimal performance for
most methods, whereas ASAN, USTNet, and the proposed method, proposed in the last
two years, integrate spatial-spectral information extraction and self-attention mechanisms,
achieving the best results. Visual results of endmembers are shown in Figure 16.

4.6. Processing Time

Table 7 presents the running times of all methods on three datasets. Specifically, FCLSU,
uDAS, SGSNMF and rNMF were implemented in Matlab (2022a), while the remaining
methods were implemented in PyCharm (2022). The experiments were conducted on a
computer equipped with an Intel Core i5-13600KF processor, 32 GB of memory, and an
NVIDIA GeForce RTX 2080 Ti graphics processing unit. On the Samson and Jasper Ridge
datasets, the runtime of all methods remained within approximately one hundred seconds,
except for USTNet, which did not utilize GPU acceleration. The Urban dataset, being larger,
particularly saw a sharp increase in computation time for the 3D CNN-based method
3DAEU. The proposed method, leveraging global spatial-spectral information extraction,
achieved a runtime lower than that of pixel-wise methods like uDAS, thus maintaining
acceptable computational costs.
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Figure 11. Abundance maps of soil, tree, water on the Samson dataset obtained by different methods.

Table 4. Valuation metrics SAD and RMSE results of Samson dataset (×10−2). Best results are bold.

Samson FCLSU DeepTrans uDAS SGSNMF NAE rNMF 3DAEU A2SAN USTNet Proposed

SAD

Soil 1.67 ± 0.06 2.49 ± 0.40 3.12 ± 0.09 1.63 ± 0.11 2.08 ± 0.03 3.52 ± 0.01 1.18 ± 0.06 2.26 ± 0.21 1.05± 0.02 1.46 ± 0.03

Tree 3.71 ± 0.09 4.93 ± 0.24 5.44 ± 0.36 6.04 ± 0.38 4.96 ± 0.03 8.26 ± 0.01 2.97± 0.02 4.07 ± 0.04 3.35 ± 0.03 3.15 ± 0.02

Water 9.85 ± 0.12 8.81 ± 0.56 13.93 ± 1.15 23.29 ± 0.30 13.31 ± 0.14 23.73 ± 0.02 24.26 ± 0.43 13.36 ± 0.37 2.47 ± 0.03 2.15± 0.13

Mean SAD 5.08 ± 0.06 5.41 ± 0.34 7.49 ± 0.49 10.32 ± 0.03 6.78 ± 0.05 11.84 ± 0.01 9.49 ± 0.17 6.56 ± 0.08 2.29 ± 0.02 2.25± 0.04

RMSE

Soil 17.52 ± 0.04 16.40 ± 0.33 25.29 ± 0.84 20.12 ± 0.27 23.01 ± 1.95 25.87 ± 0.00 11.65 ± 0.05 7.63± 0.15 8.54 ± 0.13 9.20 ± 0.10

Tree 16.28 ± 0.14 17.35 ± 1.03 25.29 ± 0.82 25.56 ± 0.55 22.19 ± 1.60 20.47 ± 0.00 6.45 ± 0.06 4.77± 0.08 11.11 ± 0.10 7.45 ± 0.07

Water 28.29 ± 0.10 28.28 ± 0.96 41.37 ± 0.68 37.62 ± 0.27 36.07 ± 1.92 37.34 ± 0.00 10.03 ± 0.11 6.07 ± 0.18 9.37 ± 0.08 5.64± 0.16

Mean RMSE 21.34 ± 0.07 20.68 ± 0.77 30.65 ± 0.57 27.76 ± 0.25 27.85 ± 1.43 28.77 ± 0.00 9.62 ± 0.04 6.16± 0.09 9.73 ± 0.09 7.57 ± 0.09



Remote Sens. 2024, 16, 3149 19 of 26

Figure 12. Extracted endmember comparison between the different algorithms and the corresponding GTs in the Samson dataset.

Table 5. Valuation metrics SAD and RMSE results of Jasper Ridge dataset (×10−2). Best results are bold.

Jasper Ridge FCLSU DeepTrans uDAS SGSNMF NAE rNMF 3DAEU A2SAN USTNet Proposed

SAD

Tree 9.40 ± 0.20 5.42 ± 2.01 14.90 ± 1.76 13.71 ± 0.38 26.32 ± 0.06 24.94 ± 0.01 7.77 ± 0.93 11.41 ± 1.88 4.86 ± 0.17 4.03± 0.01

Water 18.08 ± 1.12 11.18 ± 2.76 9.58 ± 1.63 21.27 ± 1.95 29.60 ± 0.28 28.69 ± 0.01 22.59 ± 2.68 12.45 ± 3.31 3.76± 0.03 5.15 ± 0.04

Dirt 5.52 ± 0.28 6.24 ± 0.64 13.98 ± 5.00 13.94 ± 3.71 22.40 ± 0.02 5.49 ± 0.00 7.31 ± 0.50 11.30 ± 1.12 18.35 ± 0.29 2.42± 0.03

Road 4.77 ± 0.30 16.75 ± 1.39 5.85 ± 0.20 4.07± 0.52 54.30 ± 0.24 70.20 ± 0.02 4.62 ± 0.19 17.70 ± 1.76 10.00 ± 0.24 4.14 ± 0.12

Mean SAD 9.45 ± 0.31 9.90 ± 1.55 11.08 ± 0.72 13.25 ± 0.91 33.16 ± 0.09 32.33 ± 0.01 10.57 ± 0.83 13.21 ± 1.23 9.24 ± 0.14 3.93± 0.03

RMSE

Tree 9.29 ± 0.17 8.21 ± 0.55 16.16 ± 0.07 13.36 ± 0.44 18.89 ± 1.71 14.21 ± 0.01 7.06± 0.43 14.28 ± 1.94 12.05 ± 0.23 7.68 ± 0.09

Water 9.03 ± 0.03 6.3 ± 0.52 19.91 ± 0.58 17.34 ± 0.67 8.42 ± 0.87 8.01 ± 0.00 6.64 ± 0.98 8.17 ± 1.05 6.20± 0.05 6.40 ± 0.03

Dirt 11.09± 0.15 20.41 ± 0.90 12.58 ± 0.24 12.15 ± 0.31 25.61 ± 1.43 26.03 ± 0.01 23.34 ± 2.69 14.31 ± 1.17 23.51 ± 0.35 11.41 ± 0.08

Road 6.46± 0.12 19.85 ± 1.00 12.45 ± 0.56 12.04 ± 0.32 21.70 ± 0.60 24.92 ± 0.00 22.76 ± 0.00 10.70 ± 0.77 31.60 ± 0.32 9.65 ± 0.04

Mean RMSE 9.12 ± 0.07 15.15 ± 0.51 15.59 ± 0.15 13.89 ± 0.34 19.74 ± 0.81 19.78 ± 0.00 17.05 ± 0.82 17.05 ± 1.08 20.82 ± 0.20 8.99± 0.04
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Figure 13. Abundance maps of tree, water, dirt, road on the Jasper Ridge dataset obtained by different methods.

Figure 14. Extracted endmember comparison between the different algorithms and the corresponding GTs in the Jasper Ridge dataset.
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Table 6. Valuation metrics SAD and RMSE results of Urban dataset (×10−2). Best results are bold.

Urban FCLSU DeepTrans uDAS SGSNMF NAE rNMF 3DAEU A2SAN USTNet Proposed

SAD

Asphalt 9.98 ± 0.24 15.36 ± 0.71 15.89 ± 2.88 27.64 ± 1.09 20.40 ± 0.02 19.30 ± 0.43 17.01 ± 0.45 14.86 ± 0.65 6.28± 0.04 7.90 ± 0.02

Grass 22.41 ± 2.25 16.43 ± 1.54 114.0 ± 1.60 120.4 ± 7.80 63.40 ± 3.51 49.88 ± 3.87 20.03 ± 0.83 12.85 ± 0.80 9.79± 0.04 17.36 ± 0.03

Tree 4.81 ± 0.21 10.36 ± 0.71 11.86 ± 2.60 8.56 ± 0.10 11.46 ± 0.13 11.78 ± 0.10 9.94 ± 0.12 9.29 ± 0.23 2.88 ± 0.01 2.60± 0.01

Roof 4.04 ± 0.16 28.03 ± 3.19 27.31 ± 0.85 19.71 ± 3.24 81.15 ± 0.38 79.13 ± 0.58 47.44 ± 0.99 9.08 ± 0.51 3.46 ± 0.03 3.14± 0.03

Mean SAD 10.31 ± 0.53 17.54 ± 1.42 42.27 ± 1.58 44.08 ± 1.00 44.20 ± 0.89 44.02 ± 0.70 23.60 ± 0.31 11.52 ± 0.41 5.60± 0.02 7.75 ± 0.01

RMSE

Asphalt 38.26 ± 0.14 13.09 ± 0.46 32.32 ± 1.26 30.08 ± 0.65 28.90 ± 0.05 26.91 ± 0.14 32.18 ± 0.87 12.79± 0.57 15.29 ± 0.12 13.07 ± 0.31

Grass 54.05 ± 0.46 14.00 ± 0.71 45.31 ± 1.71 45.08 ± 0.36 25.76 ± 1.02 47.40 ± 0.20 27.50 ± 0.77 14.50 ± 0.65 13.53 ± 0.13 13.11± 0.53

Tree 22.54 ± 0.77 11.65 ± 0.49 28.50 ± 2.42 26.15 ± 0.40 24.79 ± 0.22 40.15 ± 0.63 23.78 ± 0.21 13.83 ± 0.20 7.44± 0.06 10.84 ± 2.86

Roof 21.83 ± 0.16 11.67 ± 0.32 20.73 ± 0.41 19.50 ± 0.26 19.97 ± 1.14 15.94 ± 0.02 14.86 ± 0.65 11.13 ± 0.44 8.47 ± 0.07 8.08± 0.20

Mean RMSE 36.64 ± 0.24 12.60 ± 0.43 31.71 ± 0.59 30.20 ± 0.41 25.07 ± 0.10 34.77 ± 0.21 25.39 ± 0.44 13.13 ± 0.40 11.66 ± 0.08 11.46± 0.98

Figure 15. Abundance maps of asphalt, grass, tree, roof on the Urban dataset obtained by different methods.
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Figure 16. Extracted endmember comparison between the different algorithms and the corresponding GTs in the Urban dataset.
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Table 7. The processing time (in seconds) of each method on three datasets. Best results are bold.

FCLSU DeepTrans uDAS SGSNMF NAE rNMF 3DAEU A2SAN USTNet Proposed

Samson 1.21 6.56 13.24 12.83 4.95 10.65 44.77 11.83 75.22 27.39

Jasper Ridge 1.93 12.86 62.95 16.63 6.62 19.34 98.89 9.12 227.43 71.01

Urban 9.20 78.04 429.65 192.83 41.00 113.02 7855.08 79.44 1261.15 331.91

5. Conclusions

In this paper, we propose a global spatial-spectral feature fused autoencoder for
nonlinear hyperspectral unmixing. The network extracts spatial and spectral structural
information of HSI separately through dual-stream networks and captures global feature
dependencies via two consecutive MHSAMs. Pixel-wise correlations are achieved through
linear projection, enabling the network to learn more comprehensive spatial information.
The data-driven learning approach ensures that the decoder does not rely on existing mod-
els, and the meticulously designed decoder module can handle various complex nonlinear
scenarios simultaneously. Additionally, a stable and fast endmember initialization method
is employed, which enables robust endmember extraction even in the presence of outliers
and noise interference. The proposed method achieves the first-ever global spatial-spectral
information extraction, albeit with increased computational costs. Developing simpler
and more efficient global attention mechanism modules, or selectively extracting more
valuable spatial information instead of global extraction, could be potential directions for
future research.
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