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Abstract: The timing, location, intensity, and drivers of forest disturbance and recovery are crucial
for developing effective management strategies and policies for forest conservation and ecosystem
resilience. Although many algorithms and improvement methods have been developed, it is still
difficult to guarantee the detection accuracy for forest disturbance and recovery patterns in southern
China due to the complex climate and topography, faster forest recovery after disturbance, and the
low availability of noise-free Landsat images. Here, we improved the LandTrendr parameters for
different provinces to detect forest disturbances and recovery trajectories based on the LandTrendr
change detection algorithm and time-series Landsat images on the GEE platform, and then applied
the secondary random forest classifier to classify the forest disturbance and recovery patterns in
southern China during 1990–2020. The accuracy evaluation indicated that our approach and im-
proved parameters of the LandTrendr algorithm can increase the detection accuracy for both the
spatiotemporal patterns and multiple events of forest disturbance and recovery, with an overall
accuracy greater than 86% and a Kappa coefficient greater than 0.91 for different provinces. The
total forest loss area was 1.54 × 105 km2 during 1990–2020 (4931 km2/year); however, most of these
disturbed forests were recovered and only 6.39 × 104 km2 was a net loss area (converted to other
land cover types). The area with two or more times of disturbance events accounted for 11.50% of
the total forest loss area. The total forest gain area (including gain after loss and the afforestation
area) was 5.44 × 105 km2, among which, the forest gain area after loss was 8.94 × 104 km2, and the
net gain area from afforestation was 4.55 × 105 km2. The timing of the implementation of forestry
policies significantly affected the interannual variations in forest disturbance and recovery, with
large variations among different provinces. The detected forest loss and gain area was further com-
pared against with inventory and other geospatial products, and proved the effectiveness of our
method. Our study suggests that parameter optimization in the LandTrendr algorithm could greatly
increase the accuracy for detecting the multiple and lower rate disturbance/recovery events in the
fast-regrowing forested areas. Our findings also offer a long-term, moderate spatial resolution, and
precise forest dynamic data for achieving sustainable forest management and the carbon neutrality
goal in southern China.

Keywords: forest disturbance; forest recovery; LandTrendr; parameter optimization; southern China

1. Introduction

Forest dynamic changes not only directly affect the global carbon cycle and carbon
sequestration process, but also have important and far-reaching implications for both
human and biosphere conditions [1,2]. Forest disturbances and recovery are the major
causes of forest dynamics, which can be driven by many natural and anthropogenic factors
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such as fire, windthrow, drought, heatwaves, biotic outbreaks, and harvest [3]. According
to the 2023 Global Ecological Environment Observation Analysis Research Cooperation
(GEOARC), the total global forest loss area was 582.17 Mha, and the total forest gain area
was 342.16 Mha during 1985–2020. The global forest loss and gain rate has shown a signifi-
cant acceleration trend during the past several decades [4,5]. Therefore, the timing, location,
intensity, and drivers of forest disturbance and recovery are crucial for understanding the
dynamic changes of forest structure and functions and developing effective management
strategies and policies for forest conservation and ecosystem resilience [6–8].

The free availability of the United States Geological Survey (USGS) has catalyzed
Landsat time-series analysis for forest change detection [4]. Unlike the traditional method
of visually interpreting dual-temporal or multi-temporal satellite images to determine
forest disturbance and recovery [9,10], Landsat time-series analysis can be used to more
accurately track changes in forests, and even identify multiple disturbances that have
occurred over a period of time [11,12]. Based on Landsat images, many automated anal-
ysis algorithms have been developed, such as a Vegetation Change Tracker (VCT) [13],
Breaks For Additive Season and Trend (BFAST) [14], Exponentially Weighted Moving
Average Change Detection (EWMACD) [15], Continuous Change Detection and Classifi-
cation (CCDC) [16], and Landsat-based detection of Trends in Disturbance and Recovery
(LandTrendr) [17], among which, the LandTrendr is the most widely-used annual-scale
algorithm in detecting forest disturbance and recovery. Some studies have also compared
the difference and advantage of these algorithms, and identified the best algorithm at differ-
ent application regions [18,19]. For example, Ding and Li [19] compared the performance
of VCT, LandTrendr, BFAST, and CCDC in detecting forest disturbances in a region of
southeastern China, and concluded that the LandTrendr algorithm performed the best and
was more suitable for forest disturbance detection in this region. The LandTrendr algorithm
has also evolved from a single input variable [17,20] to eight or more variables [21,22], and
from LandTrendr only to integrated LandTrendr and the random forest (RF) method [22,23].
The secondary classification method of RF can effectively synthesize the advantages of
multiple vegetation indices (VIs) and other assisting factors, and constrains the detected
disturbance and recovery patterns using the observational plot data. Thus, this can help
avoid the possible noises caused by a single VI, such as the most commonly used NBR
(Normalized Burn Ratio) [22,23].

In addition, some studies have also tried to improve the LandTrendr performance to
detect forest disturbance and recovery. For example, Qiu et al. [24] modified the LandTrendr
algorithm (mLandTrendr) by combining multiple VIs and multi-season indices and improv-
ing the Savitzky–Golay (SG) filtering method. Their results indicated that the detection
accuracy increased by 21%. However, fewer studies have paid attention to calibrating the
LandTrendr parameters, which could affect the fitting trajectories of various VIs and the
identification of vertices [24]. And eventually, these parameter settings will affect the detec-
tion accuracy for exact disturbance timing and multiple disturbance events. Most studies
chose the default parameters in the LandTrendr algorithm when applying the LandTrendr
algorithm for forest disturbance and recovery detection in different regions [25,26]. As sug-
gested in Kennedy et al. [17], the parameter values could vary in a wide range and greatly
affect the detection accuracy. For example, the max segment parameter in LandTrender
can control the number of recognized disturbance events, and the setting range of this
parameter generally varies from 4 to 10. In addition, the Recovery Threshold parameter can
vary between 0.25 and 1.0 [24], representing that the minimum recognized recovery year
is 1/Recovery Threshold, which could cause a failure to identify the disturbance events
when the recovery time is less than 1/Recovery Threshold. Several studies have suggested
that the LandTrendr parameters should be optimized for better detection accuracy. For
example, de Jong et al. [26] detected the mangrove dynamic and compared the effects of the
Max Segment, Recovery Threshold, and Best Model Proportion on the detection accuracy
using LandTrendr. Liu et al. [25] compared the performance of different Max Segment and
Recovery Threshold values on the detection of fire disturbance and recovery in Australia.
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However, it is still unclear how the recovery rate of trees affected the effectiveness of
LandTrendr parameters in detecting forest disturbances.

Southern China is mainly located in the subtropical and tropical climate zone. The
warm and wet climate in this region leads to a fast recovery of the forest canopy after a
disturbance, especially in the most southern provinces such as the Guangxi and Guangdong
Province. In addition, southern China is now the main timberland base in China and a
large area of fast-growing forest plantations (rotation age is 5–14 years) are planted, such
as the Eucalyptus and poplar trees. For example, the Eucalyptus area accounts for about
20.4% and 14.6% of total forest area in the Guangxi and Guangdong Provinces, respectively.
The Guangxi Province solely produced about 38.6% of the timber supply of the entirety of
China in 2021. The fast rotations of forests could result in multiple forest disturbance and
recovery events in a short period. Furthermore, most of the VIs used in the LandTrendr
such as NBR, NDVI, and TCG (Tasseled Cap Greenness) only reflect the canopy changes
of reflectance, so the fast recovery of the forest canopy in southern China could easily
result in the failed identifications of the actual disturbance and recovery years, especially
when the availability of noise-free Landsat images is low in this high-cloud-cover and
high-rainfall region. Except for the above-mentioned improvements in the Landsat image
quality, the SG filtering method, as well as multi-season and multi-VI integrations, a
cautious calibration of the LandTrendr parameter values will exert magnified effects on
reducing the detection uncertainties of forest disturbance and recovery patterns caused by
the complex climate, topography, forest types, and low availability of noise-free Landsat
images in southern China.

In this study, we targeted the optimization of the LandTrendr parameters to increase
the detection accuracy of forest disturbance and recovery events in fast-recovering southern
China, and further ran the LandTrendr to classify their spatiotemporal patterns. The
specific objectives are to (1) identify the most sensitive parameters and calibrate their
values in LandTrendr algorithms, and assess the accuracy of improved parameter values
in identifying forest disturbances and recovery in southern China; (2) classify the forest
disturbance and recovery patterns by combining the LandTrendr algorithm and RF classifier
on the GEE platform; and (3) analyze the spatiotemporal patterns in forest disturbances
and recovery. This study can provide an improved LandTrendr parameter sets for forest
disturbance and recovery detection and an accurate forest dynamic dataset for forest
management and policy making in southern China.

2. Study Area and Data
2.1. The Study Region

The research area is located in southern China, including seven provinces and one
municipal city: the Yunnan Province, Guizhou Province, Sichuan Province, Chongqing City,
Hunan Province, Guangdong Province, Guangxi Province, and Fujian Province (Figure 1).
To be convenient, Chongqing City is combined in the Sichuan Province for analysis in
this study (we only mention seven provinces thereafter), since Chongqing belonged to
Sichuan Province before 1997 (there are no statistical data before this time). The entire study
area spans about 24◦ longitude, with large differences in the vegetation coverage, terrain,
climate, and hydrology. This region has diverse terrain types, including mountains, hills,
and plains, and is one of the most ecologically diverse and forest-rich regions in China,
covering a vast geographical range in the subtropical zone of China. This region has a
relatively warm and humid climate. The annual average temperature varies between 15
and 22 ◦C. The annual average precipitation gradually increases from the west to the east,
with the annual precipitation exceeding 900 mm in most areas.
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below sections. Due to fewer available Landsat images before 1990, our study focused on 
the 1990–2020 period. Due to there being less accuracy in detecting small fractional dis-
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placing (i.e., >70% tree loss at a 30 m × 30 m pixel) forest disturbance and recovery. 

Figure 1. The locations of the study area, provinces, and the sampling plots representing persistent
forest, forest gain, forest loss, and non-forest areas.

The forest coverage is about 50% for this study region, and the total forest area
accounts for approximately 39% of the national forest area. The forest types mainly include
subtropical evergreen broadleaf, evergreen needleleaf, and mixed broadleaf and needleleaf
forests, as well as a small portion of tropical broadleaf rainforests. Due to natural disasters,
population growth, economic development, agricultural expansion, and other human
activities, forest disturbances frequently occurred in this region and the disturbance regimes
are complicated. Meanwhile, different provinces have also implemented a series of forestry
policies and regulations to protect and restore forest resources, such as the Natural Forest
Protection Program (NFPP), the Grain for Green Program (GFGP), the Mid-Upper Reaches
of the Yangtze River Shelterbelt Project, the Pearl River Shelterbelt Project, and the Coastal
Shelterbelt Project.

2.2. The Work Flow

The work flow of this study is summarized in Figure 2 and described in detail in the
below sections. Due to fewer available Landsat images before 1990, our study focused
on the 1990–2020 period. Due to there being less accuracy in detecting small fractional
disturbances at a grid scale for the LandTrendr algorithms, we only detected the stand-
replacing (i.e., >70% tree loss at a 30 m × 30 m pixel) forest disturbance and recovery.
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Figure 2. The work flow of this study. Note: NFI: national forest inventory; LFMI: local forest
management inventory; GEE: Google Earth Engine.

2.3. The Time-Series Landsat Images and Preprocessing

The acquisition and processing of remote sensing images and the operation of algo-
rithms were conducted on the GEE platform (https://earthengine.google.com/, accessed
on 16 April 2024), covering the time range from 1990 to 2020. The collected data were
the surface reflectivity of Landsat5 TM, Landsat7 ETM+, and Landsat8 OLI sensors. The
LEDAPS algorithm was used for atmospheric correction for Landsat5 TM and Landsat7
ETM+ data, and the LaSRC algorithm was used for Landsat8 OLI data. Considering the
impact of phenological changes on forest disturbance detection, this study selected all avail-
able images during the growing season from June to September. A total of 5537 scenes of
Landsat images were included in this study. After a series of preprocessing steps, including
cloud masking, shadow removal, stitching, and cropping, we generated a mosaicked image
for each year, and built a reliable time-series image stack. For each image, the six bands
of Landsat data (Blue, Green, Red, Near Infrared, Shortwave Infrared 1, and Shortwave
Infrared 2) were used to compute the multiple VIs.

2.4. Training and Test Sampling Plot Data

To evaluate the performance of the forest mask for the study region, we used the
all-season sample set data developed by the Finer-Resolution Observation and Monitor-
ing of Global Land Cover (FROM-GLC) project [27]. In total, 4268 training plots and
1757 validation plots were included.

For training and evaluating the detection of forest disturbance and recovery, we col-
lected sampling plot data from three sources including local forest management inventory

https://earthengine.google.com/
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(LFMI) plots, NFI (National Forest Inventory) plots, and the visual interpretation plots
based on the high-resolution satellite images from the Google Earth Pro platform. For the
LFMI, we have the forest watershed data from three counties in the Guizhou Province, and
we identified 105 plots from these counties. For the NFI, we have the fourth NFI (1989–1993)
plot data and a total of 310 plots (178 records with forest disturbances and the rest are
non-forest plots). For the visual interpretation, we first used the LandTrendr-calculated
NBR trajectory data to preliminarily determine the year of forest disturbance/recovery
occurrence. And then, we identified the actual forest disturbance plots based on the high-
resolution (<5 m) images (e.g., aerial photos, Quickbird, IKONOS, and SPOT images) on
Google Earth Pro. At least two images spanning less than 5 years (due to a lack of enough
high-resolution images) before and after forest disturbance were selected to confirm the oc-
currence timing of the disturbance. The plots were chosen at the areas with tree loss > 70%
(standing-replacing disturbance) and with a loss area greater than 30 m × 30 m (bigger than
a pixel). Three types of sampling plots were divided, including forest loss, forest gain, and
persistent (no change) forest plots. A total of 3590 sample plots were generated, including
871 forest loss plots, 884 forest recovery plots, and 1835 persistent forest plots (Figure 1). In
total, 70% plots were used for training the RF method and the rest of the plots, the other
30%, were used for validation.

2.5. Forest Distribution Area Mask

To reduce the impact of non-forest areas such as farmland and grassland on forest
disturbance and recovery monitoring, a forest mask was generally first developed before
running the LandTrendr change detection algorithm. We collected the 1990–2020 China
Land Cover Datasets (CLCD) [28], covering eight periods (1980s, 1990, 1995, 2000, 2005,
2010, 2015, and 2018) of national land cover datasets (NLCD) [29] at a spatial resolution of
30 m and the 2017 land cover data at a 10 m resolution (FROM-GLC10) [30]. The FROM-
GLC10 data were further aggregated to a 30 m spatial resolution and reclassified into forest
and non-forest covers. The maximum extent of the forest distribution area was generated
by including all pixels with forest distribution in all above datasets during 1990–2020. The
statistical forest area (95.1 × 104 km2) based on the ninth NFI (2014–2018) was further used
to constrain the total forest area in 2020 and ensure that the forest area is accurate. Based
on the FROM-GLC training and validation plots, we assessed the overall accuracy of the
developed forest mask data. The overall accuracy was 0.91, which was precisely enough
since this forest mask was just used for screening out the non-forest area.

3. Methods
3.1. LandTrendr Change Detection Algorithms

LandTrendr is an algorithm designed for analyzing time-series of remote sensing
images, primarily employed in detecting surface changes, disturbances, and recovery
trends [17,31], and can detect both slow and abrupt disturbance events, which may include
forest fires, harvesting, land use changes, insects and diseases, and windthrow. The
fundamental concept of this algorithm revolves around constructing a time-series dataset
from multi-temporal remote sensing imagery and conducting time-series analysis on
individual pixels. These time-series data are partitioned into a series of interconnected line
segments, representing changes in surface reflectivity over time. Subsequently, LandTrendr
algorithm applies regression analysis and curve fitting techniques to model the trend of
each segment. Change detection is achieved by analyzing the slope and peak of time-series
data. The specific processes include removing noise interference, identifying potential
breakpoints, fitting spectral trajectories, simplifying, and selecting the best model. The more
detailed mechanisms of LandTrendr algorithms are referred to in much of the previous
literature [17].

The NBR is the most common VI used to detect forest disturbance and recovery in
LandTrendr [22,23]. Due to the low availability of cloud-free scenes and frequent noises of
Landsat images in the subtropical China, a single VI may result in the failure to detect all
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disturbance events. Cohen et al. [22,23] found that the secondary classification combining
various wave bands and spectral indices can effectively improve the accuracy of forest
disturbance monitoring and effectively reduce the classification errors. Based on the initial
running and comparisons of LandTrendr at sample plots, our study finally chose four bands
and 5 VIs to detect forest disturbance and recovery. The VIs include NBR, Normalized
Difference Moisture Index (NDMI), Tasseled Cap Brightness (TCB), Greenness (TCG), and
Wetness (TCW). The bands include B2 (Green band), B4 (NIR; Near Infrared), and B5
(SWIR1; Short-wave Infrared Band 1). The outputs of LandTrendr were an array of datasets
with six bands including yod (identified year of disturbance), mag (change magnitude of
spectral values), dur (duration of a disturbance event), preval (pre-values of spectrum),
dsnr (Detection Signal-to-Noise Ratio), and rate (rate of spectral change). These outputs
were used as input variables for subsequent secondary classification.

3.2. LandTrendr Parameter Calibrations

All LandTrendr processes involved some parameters, which affects the fitting tra-
jectories of various VIs and the identification of breakpoints. Therefore, it is necessary
to recalibrate parameters to ensure the accuracy of LandTrendr change detection when
applying at different regions. To optimize the parameters of LandTrendr, we first chose
20 plots with forest disturbance and recovery records from the sampling plots in each
province (totaling 140 plots for the study region), then we ran LandTrendr at these locations
with modified parameter values. Through evaluations using the sampling plot data, we
determined the best parameter values. Finally, the calibrated parameter values are shown
in Table 1. We found that Max Segments and Recovery Threshold were more sensitive. The
analysis indicated that the changes of Max Segments and Recovery Threshold parameter
values can increase the accuracy for detecting multiple disturbance events and fast-recovery
plantation. Due to the fast rotation of forests in the study region, there were several times of
disturbance for many areas during 1990–2020. When the max segment parameter increased
from 4 to 8, the fitted segments increased and thus we can detect multiple disturbance
events. In addition, due to the difference of disturbance extent and severity, many VIs could
be recovered to pre-disturbance levels within 2–5 years. This phenomenon was particu-
larly notable in Guangxi and Guangdong provinces due to the larger area of fast-growing
Eucalyptus plantations (which generally rotate every 5–14 years) and relatively higher
temperature and humidity levels [32]. Consequently, forest canopy recovery for many
timberlands tended to be less than 4 years. If a segment has a recovery rate which is faster
than 1/Recovery Threshold (in years), then the segment is not considered as disturbance.
This means that the forest disturbance events that recover in a time shorter than 4 years will
not be detected if the Recovery Threshold is set as 0.25. Therefore, the Recovery Threshold
was adjusted from 0.25 to 0.5 for Guangxi and Guangdong provinces.

Table 1. Calibrated parameters and values for the LandTrendr algorithm.

Parameter Parameter Description Ranges Default Value Optimized Value

Max Segments Maximum number of segments to be
fitted on the time-series 4–10 10 8

Spike Threshold

To attenuate peaks or outliers in the
pixel value trajectory, if the percentage
difference between the values of two
adjacent time points is less than that

value, the value will be considered an
outlier and needs to be eliminated

0.75–1.0 0.9 0.9

Vertex Count Over Shoot
The number of nodes that can be

exceeded in the regression of potential
nodes in the initial stage

0–3 3 3
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Table 1. Cont.

Parameter Parameter Description Ranges Default Value Optimized Value

Recovery Threshold

If a segment has a recovery rate faster
than 1/Recovery Threshold (in years),
then the segment is not considered as

disturbance

0.25–1.0 1.0
0.5 (Guangxi,
Guangdong)
0.25 (the rest)

Pval Threshold

If the p-value of the fitted model
exceeds this threshold, then the
current model is discarded and

another is fitted using the optimizer

0.05, 0.1, 0.2 0.05 0.05

Best Model Proportion

Takes the model with most vertices
that has a p-value that is at most this

proportion away from the model with
lowest p-value

0.5–1.2 0.75 0.75

Change Magnitude
Threshold for

stand-replacing loss

The minimum change magnitudes
used to remove the persistent forest

pixels before running the RF method
0–1000 - 200–280

3.3. Secondary Classification Using the RF Classifier

Cohen et al. [22,23] found that the detection accuracy of forest disturbance and recovery
can be improved by performing secondary classification through a two-level classification
model, allowing it to effectively utilize different bands and spectral indices. The RF classifier
was generally used to perform secondary classification on the results obtained from the
single-band or single-index LandTrendr algorithm. RF is a machine learning method
based on ensemble learning. It builds multiple decision trees to perform classification or
regression tasks. The advantages of the RF algorithm are its good adaptability to high-
dimensional data and large-scale datasets, the ability to handle multi-class classification
problems, good robustness, less influences from noise and outliers, and less prone to
overfitting [33]. It usually does not require complex parameter adjustment. Except for the
yod band (the year of disturbance), another five bands of LandTrendr outputs including
mag, dur, rate, dsnr, and preval were integrated into an image stack and used as the input
features for RF. Therefore, a total of 40 variables (5 outputs × 8 spectral indices) were used.

All sampling plots were used to either train or validate the RF classifier, in which
70% (2513 plots) were randomly selected for training, and 30% (1077 plots) were used for
validation. The number of decision trees is an important parameter that directly affects the
performance and behavior of the RF model. Too few decision trees may lead to underfitting,
which cannot capture the complex relationships in the data. If the tree number is too large,
it may lead to overfitting, resulting in good performance on the training data, but poor
classification performance. In this study, cross-validation was applied on GEE to explore
the influence of the number of different decision trees on the model performance, and we
found that the optimal number of selected decision trees was 35 when the model accuracy
reached 93.8%.

We further calculated the relative importance of input variables in the RF model after
modifying the number of decision trees. We found that the contributions of variables varied
in different provinces. For example, the change rate of TCW and B2 (Green band) and NBR
magnitude had the highest importance for Guangxi Province. The magnitudes of NBR
and NDMI had the highest importance for Sichuan Province (Figure A1; only showing
the top 10 variables). The NIR magnitude and dsnr of NDMI were the most important
for Fujian Province. The magnitude and prevalue of NDMI were the most important for
Guangdong Province. The magnitudes of NDMI and NBR, as well as NDMI change rate
were the most important for Yunnan Province. These suggested that the major contributing
factors for various provinces were different due to the difference in climate, vegetation
cover, topography, and disturbance regimes.
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3.4. Accuracy Assessment

The 2513 sample plots for validation were used to evaluate the detection accuracy. We
first chose the evaluation metrics of overall accuracy (OA), user accuracy (UA), producer
accuracy (PA), and Kappa coefficient. These metrics collectively offered a comprehensive
evaluation of diverse facets of the model’s performance [34]. The overall accuracy metric
encapsulated the model’s overall classification precision, while user accuracy and pro-
ducer accuracy scrutinized the model’s precision in classifying specific categories and its
proficiency in capturing samples of particular categories, respectively. The Kappa coeffi-
cient measured the agreement between the model’s classification outcomes and random
classification, thereby enabling a more holistic appraisal of the model’s performance [34].
In addition, we also chose 5 sites with available high-resolution images and disturbance
occurrence to visually compare the consistency between images and our detected results
and between the global forest change (GFC) disturbance product [4] and our results. The
GFC product during 2001–2023 has an OA greater than 80% for disturbance area detection.

To quantitatively evaluate the performance of forest disturbance and recovery detec-
tion at spatial scale, we also conducted the Intersection over Union (IoU) analysis. IoU
analysis is a commonly used metric for evaluating the performance of object detection
models. It assesses the accuracy of detection results by comparing the intersection and
union of predicted bounding boxes with ground truth bounding boxes. Mathematically,
the IoU calculation formula is:

IoU =
Intersection

Union
(1)

Here, Intersection denotes the matched grid numbers between predicted and observed
results, and Union denotes all the grid numbers of both predicted and observed results.

We randomly selected an area with available high-spatial-resolution (<5 m) images
on the GEE platform, and then we digitized the boundary of forest loss area (observed
disturbance area). Then our detected forest disturbance product was overlaid and compared
with the observed disturbance area to calculate the Intersection and Union grid cell numbers,
and finally the IoU was calculated by following Equation (1).

3.5. Analysis Methods

Based on the classified annual disturbance and recovery data, we further calculated
the disturbance times (frequency) within each pixel during the study period. To more
clearly present the disturbance patterns, the 30 m forest disturbance and recovery data
were further converted to 10 km using the aggregation method, which represented the
disturbance severity. A sensitivity and uncertainty analysis for the detected forest loss
and gain area was conducted by tuning the most sensitive Max Segment and Recovery
Threshold parameters. We applied the similar approaches and parameter value ranges in
Liu et al. [25] to do the sensitivity and uncertainty analyses. A rectangular region with
50 km2 from each province was selected at the areas with denser sampling plots. The
combined changes of Max Segment (4, 6, 8, 10, and 12) and Recovery Threshold (0.25, 0.5,
0.72, and 1.0) were applied, and in total, 20 LandTrendr simulation experiments based
on NBR were run. The standard deviations (δ) were further calculated based on the 95%
confidence interval, and the uncertainty ranges owing to parameters were represented by
mean values ±2δ.

The GEE platform, Microsoft excel, SPSS 20.0 (SPSS Inc., Chicago, IL, USA), and
ArcGIS 10.8 software were applied to process data, draw figures and maps, and conduct
statistical analyses.

4. Result
4.1. Accuracy Assessment

The accuracy assessment results using the validation sampling plots indicated that the
optimized LandTrendr parameters and the combination of the LandTrendr algorithm and



Remote Sens. 2024, 16, 2240 10 of 28

the RF secondary classification can improve the accuracy of forest disturbance and recovery
monitoring. For the detection of forest loss, the overall accuracies were all greater than
91%, and the Kappa coefficients were all higher than 0.86 for all provinces (Table 2). For the
detection of forest recovery, the overall accuracies were all greater than 93%, and the Kappa
coefficients were higher than 0.88 for all provinces (Table 3). The highest accuracy in the
Guizhou Province was because this province has fewer human impacts on forests and thus
has fewer disturbance events. In addition, this province has mostly mountainous terrains
and thus the boundary between forest and other land cover types can be easily separated,
which reduces the classification errors for land cover changes. These demonstrated that our
method can effectively capture the stand-replacing forest disturbance and recovery area in
terms of the sampling plot data.

Table 2. Accuracy assessment for detected forest loss area. OA1 and Kappa: overall accuracy and Kappa
coefficients based on optimized parameters; OA2: overall accuracy based on default parameters.

Regions Producer Accuracy User Accuracy OA1 Kappa OA2 OA Change (%)

Hunan 95% 93% 95% 0.89 87% 9.20
Yunnan 91% 94% 91% 0.88 89% 2.25
Guizhou 97% 97% 97% 0.94 89% 8.99

Guangdong 93% 91% 92% 0.88 86% 6.98
Sichuan 97% 92% 95% 0.89 87% 9.20
Fujian 90% 95% 92% 0.91 89% 3.37

Guangxi 89% 95% 92% 0.86 85% 8.24

Table 3. Accuracy assessment for detected forest gain area.

Province Producers Accuracy User Accuracy Overall Accuracy Kappa

Hunan 98% 92% 94% 0.88
Yunnan 97% 92% 95% 0.90
Guizhou 98% 93% 96% 0.93

Guangdong 95% 92% 93% 0.89
Sichuan 97% 96% 97% 0.94
Fujian 97% 95% 96% 0.92

Guangxi 92% 98% 95% 0.89

To further evaluate the performance of the classification at a spatial scale, we ran-
domly selected five scenes of high-resolution images from Google Earth Pro and visually
digitized the forest loss boundaries (Figure 3). For most scenes, our detected forest loss
boundary matched well with the visually-interpreted loss polygons, and were also gener-
ally consistent with the GFC-classified forest loss area at a spatial scale; however, for the
locations with lower rates of forest loss (i.e., about 70% tree loss), the GFC product failed
to capture the actual forest loss areas (e.g., Figure 3a). This suggested that our combined
method and improved parameters can more accurately detect the spatiotemporal patterns
of forest disturbance.
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Figure 3. Comparison of classified forest loss/gain area with the visually interpreted loss/gain area
and GFC forest loss product based on NBR at five locations (a–e) with available high-resolution
images. Note: GFC is the global forest change product [4]. The red dashed line is the identified
disturbance year based on the fitted trajectory of Normalized Burned Ratio (NBR).

The spatial consistency between our detected and observed disturbance area was
conducted by randomly selecting an area for IOU analysis. The randomly selected area has
experienced forest disturbances two times between 2015 and 2020 (Figure 4). Compared
with the visually interpreted disturbance boundary, we found that the IoU of our classified
results was 65.2%, while the IoU of the GFC product was 40.5%, indicating a better perfor-
mance than the widely applied GFC product. The lower IoU rate was due to the mixed
pixels with both disturbed and non-disturbed patches within a grid cell.
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Figure 4. The selected area for IoU analysis in Taojiang County, Hunan Province, during 2015–2020.
Note: (a): The manually digitized disturbed areas (loss year 2015: zones 1 and 4; 2017: zones 2, 3,
and 5) based on the Google Earth Pro high-resolution images; (b): our classified disturbed areas;
(c): disturbed area from the Global Forest Change (GFC) product.

4.2. The Effects of Optimized Parameters

A sensitivity analysis was conducted for the detected forest loss and gain area using
the different parameter values of the Max Segment and Recovery Threshold. The results
indicated that the changes of two parameters can significantly affect the detected forest loss
and gain area (Tables A1 and A2). The identified pixel numbers for both the forest loss and
gain area generally increased with the increasing parameter values of the Max Segment
and Recovery Threshold. The maximum difference in the disturbance pixel numbers can
be over 6 and 30 times for the forest loss and gain area, respectively. The identified pixel
numbers using the optimized parameter values were at the lower range of the detected loss
and gain area. These suggested that parameter calibration is very important for improving
the accuracy of forest disturbance and recovery detection in southern China.

To further look at the effects of changing parameter values, we conducted a compari-
son at a plot level. The results indicated that the optimized parameters can more accurately
detect the smaller fractional loss and multiple loss events (Figure 5). From Figure 5a,c,
the refitted NBR curves can detect the fast (<3 years) canopy recovery disturbance events,
while the fitted trajectories using default parameters failed to identify this disturbance
event. From Figure 5b, the refitted curves can identify two consecutive stand-replacing
disturbance events spanning 7 years, indicating an increased performance to detect the mul-
tiple disturbance events within a short period. From Figure 5d, the lower-rate disturbance
events can also be detected based on the optimized parameters.
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Figure 5. The LandTrendr identified breakpoints for disturbance events with the optimized and the
default (original) parameter values at four randomly-selected sampling plots (a–d) based on the fitted
NBR change magnitudes.

For the entire study region, the mean overall accuracy and Kappa coefficient increased
by 6.89% and 3.65%, respectively, compared with the detection accuracy using the default
parameters (Table 2). The higher increases of accuracy occurred in the Hunan and Sichun
provinces, which have less forest loss area. The final detection accuracy was compounded
by the RF secondary classification process; therefore, we further compared the LandTrendr
results using the single NBR as an indicator (Figure 6). Using the Guangxi Province as an
example, we found that the fraction of the forest loss area with two or more disturbance
times before and after parameter optimization was 23.65% and 36.79%, respectively. The
overall accuracy before and after parameter optimization was 57% and 76%, respectively.
This indicated that parameter optimization can significantly increase the detection of
multiple disturbance times and the overall accuracy. Notably, the overall accuracy using
the single NBR was very low because the image quality was poor in southern China.
The detected total forest loss area in the Guangxi Province during 1990–2020 was 10,488
and 55,002 km2, respectively, which was either significantly lower or greater than the
finally detected forest loss area (41,024 km2) in Guangxi. This implied that there was large
uncertainty in detecting forest disturbances in this region. In addition, it also suggested that
NBR alone was not accurate enough to detect forest disturbances and it was necessary to
apply the secondary classification method by combining multiple spectral bands or indices
when applying the LandTrendr algorithm in this region.
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Figure 6. The comparison of the detected forest loss area and the fraction of disturbance times using
default parameters (a) and optimized parameters (b) in Guangxi Province.

4.3. Spatiotemporal Patterns in Forest Loss Area

The total forest disturbance area including both temporary (e.g., loss due to harvest,
fire, pest, and windthrow) and permanent (land use change) forest loss was 1.54 × 105 km2

during 1990–2020, which accounted for 34.9% of the total forest area in 1990 (Figure 7).
The mean annual loss area was 4.98 × 103 ± 1.15 km2. The mean coefficient of variation
(CV) was 23.12% due to the variations of the Max Segment from 4 to 10 and the Recovery
Threshold from 0.25 to 1.0. This implied that the parameter calibration is very important
to increase the detection accuracy. The greatest and smallest loss area occurred in 1992
(9882 km2) and 2001 (2697 km2), respectively. The forest loss area showed a decline from
1990–1992 and a significant increasing trend (slope = 69.5 km2/year) from 1993 to 2020,
though the interannual variations in the loss area were very large (Figure 7).

At provincial levels, the Guangxi and Guangdong Provinces had the greatest loss
areas of 4.10 × 104 km2 and 3.46 × 104 km2, respectively, while the Guizhou and Hunan
Provinces had the smallest loss areas of 0.61 × 104 km2 and 1.22 × 104 km2, respectively
(Figure 7). The loss rates relative to the forest area in 1990 were the highest in Guangxi
(78.5%) and Guangdong (71.1%) and the smallest in Sichuan (13.0%) and Hunan (18.1%). All
provinces showed the largest forest loss area in 1992. The Guizhou, Guangxi, Hunan, and
Sichuan Provinces showed significant increasing trends of 14.7 km2/year, 40.5 km2/year,
9.9 km2/year, and 11.3 km2/year, respectively, during 1993–2020, with more obvious
increasing trends since 2000, while other provinces showed no significant changing trends
during 1993–2020.

On a spatial scale, most of the lost forest areas were located in the southern provinces
of Guangxi, Fujian, and the Guangdong Province, and a concentrated loss area was found
in the central Sichuan Province (Figure 8). From the magnified areas, we can more clearly
see that the forest loss area of each year was mainly concentrated as many clustered patches
since the main stand-replacing disturbance type in this region is harvesting. Forest loss
severity is calculated by the fraction of the total loss area during 1990–2020, accounting for
2020’s total forest area within each 10 km × 10 km pixel (Figure 9). The results indicated
that the Guangxi, Guangdong, and Fujian Provinces had large areas with a disturbance
severity higher than 80%, while a few areas in the Yunnan and Sichuan Provinces also had
very high loss severity.
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4.4. Spatiotemporal Patterns in Forest Recovery Area

The total forest recovery area including both the gain after loss area and the af-
forested area (land use change) was 5.44 × 105 km2 during 1990–2020, which accounted
for 122.9% of the total forest area in 1990 (Figure 7). The mean annual forest gain area
was 1.75 × 104 ± 0.29 km2. The mean CV was 16.51% due to the variations of the Max
Segment from 4 to 10 and the Recovery Threshold from 0.25 to 1.0. The greatest and
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smallest gain area occurred in 1993 (3.93 × 104 km2) and 2003 (7429 km2), respectively,
which were one or two years after the greatest and smallest forest loss areas, respectively.
The forest gain area also showed a decline from 1990–1993, and a significant increasing
trend (slope = 302 km2/year) from 1994 to 2020, though the interannual variations of the
gain area were also very large (Figure 7).

At provincial levels, the Sichuan and Guangxi Provinces had the greatest gain area of
1.51 × 105 km2 and 1.01 × 104 km2, respectively, while the Hunan and Fujian Provinces
had the smallest loss area of 3.53 × 104 km2 and 3.92 × 104 km2, respectively (Figure 7).
The gain rates relative to the forest area in 1990 were the highest in Guangxi (193%) and
Guizhou (271%) and the smallest in Hunan (58.1%) and Fujian (70.6%). All provinces
showed the largest forest gain area in 1993. Similarly, the Guizhou, Guangxi, Hunan, and
Sichuan Provinces showed significant increasing trends of 47.9 km2/year, 96.7 km2/year,
50.0 km2/year, and 45.8 km2/year, respectively, during 1994–2020, while other provinces
showed no significant changing trends.

On a spatial scale, forest gain was more widely distributed than forest loss (Figure 10).
Similar to the loss area, the forest gain areas were relatively more distributed in the forest
edge areas. Most of the recovered forest areas were located in the loss area since forest
recovery after loss is the main gain regime. From the magnified areas, we can also more
clearly see that the forest loss area of each year is mainly concentrated as large patches since
both forest recovery after loss and afforestation occurred with clustered patterns. Scaled-up
to a 10 km spatial resolution, the forest gain fraction was further analyzed (Figure 11). The
results indicated that central Sichuan, eastern Guangdong, southeastern Guizhou, and
western Guangxi had the largest forest gain fractions which were higher than 80% at a
10 km spatial resolution.
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4.5. Forest Disturbance Frequency

With a detection window of 5 years, the frequency of forest disturbance during
1990–2020 was mainly dominated by one or two disturbance times (Figure 12). For the en-
tire study region, about 88.5% of the forest loss areas were one-time disturbance and 11.50%
of the forest loss areas were disturbed twice or more times. At a provincial scale, there were
large differences in the proportions of disturbance frequency. Guangxi and Guangdong
had the highest proportions of two or more times of forest disturbance, especially in the
Guangxi Province where 21.05% of the forest loss areas have experienced two or more
disturbance times, which is significantly higher than other provinces. The proportion of
twice or more forest loss areas was the lowest in the Sichuan Province (5.32%).
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4.6. Overall Forest Dynamic in Southern China

By combining the detected forest disturbance and gain area, we further calculated the
overall forest dynamic in southern China (Figure 13). During 1990–2020, the net forest loss
area (land conversion from forest to other land covers) was 6.39 × 104 km2. This accounted
for about 42.1% of the total forest loss area and about 14.4% of the forest area in 1990.
The forest gain after loss area was 8.94 × 104 km2. The forest gain area was significantly
greater than that of loss and thus the net gain area was 4.55 × 105 km2, which accounted
for 58.8% of the total forest gain area and about 72.2% of the forest area in 1990. The net
gain forest area in each province matched well with the NFI statistical total afforestation
area (Figure 13), indicating the adequate accuracy of our detected forest dynamic pattern in
southern China.
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5. Discussion
5.1. Comparisons with Previous Studies

Although many studies have explored and concluded that the increasing forest area
in southern China was the main contributor to the greening trend and carbon sink of
China, these studies are mainly based on the statistical forest area data and the inversion
using Vis [35,36]. At present, few accurate geospatial forest dynamic data in China can
actually capture the spatial and temporal change patterns of the forest area due to the coarse
spatial resolution or the lack of tracking of the forest disturbance and recovery dynamic
information [37], for example, the widely used CLCD [28], NLCD, and China Annual Land
Use/cover Dataset (CLUDA) [36], datasets which have all underestimated the forest gain
during the past several decades. Our classified forest area and annual change patterns
were comparable to the NFI statistical forest area at both regional and provincial scales
(Figure 14). The comparisons indicated that our data were close to the NFI statistical data,
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with a slight overestimation for forest area in the early period, primarily because many
fractional (not standing-replacing) disturbance and recovery events were not detected in
this study. However, the overall forest area and annual change rate detected using the
default parameters were significantly lower than the NFI data, implying an underestimation
of the forest area change. Our detected interannual forest loss area was further compared
with the GFC forest loss product during 2001–2020 (Figure 15). A significant positive
correlation (R2 = 0.67; p < 0.01) existed between our results and the GFC product; however,
the mean annual forest loss area of the GFC product was 4806 km2, which was lower than
our estimation (4931 km2) during this period. This was mainly because the GFC product
classified a lower forest loss area in the Sichuan and Yunnan Provinces.

Remote Sens. 2024, 16, x FOR PEER REVIEW 21 of 29 
 

 

 
Figure 14. The comparison of the detected forest area during 1990–2020 using improved parameters 
(black line) and default parameters (dotted line) with the National Forest Inventory (NFI) statistical 
data (discrete points). 

 
Figure 15. Comparisons of our detected annual forest loss area in different provinces with the global 
forest change (GFC) product [4]. 

Most of the previous studies based on the Landsat time-series imagery have found a 
significant decrease in the forest loss area during 1986–1990 [38,39], and we also found 
this phenomenon (Figure 7). Liu et al. [38] classified the patterns and trends of forest dis-
turbances in China from 1986 to 2020 also using the coupled LandTrendr and RF methods, 
and concluded that there was no significant trend in the forest disturbance area in south-
ern China. However, we found a significant increasing trend in the forest disturbance area 
in southern China during 2000–2020, which was primarily attributed to the significant in-
creasing patterns in the Guangxi, Hunan, and Guizhou Provinces. In our previous study 
[39], we used the default LandTrendr parameters and also found no significant change 
trend in the forest loss area during 2000–2020. 

5.2. Effectiveness of Improved Parameters on Forest Disturbance Detection 
In recent years, many methods have been put forward to increase the LandTrendr 

accuracy for disturbance and recovery detection, such as the segment filtering method, 
input variables, the combination of multiple seasons, integrated classifiers, and the com-
bination of multiple VIs [17,20–24]. However, few studies have specifically addressed the 
impacts of parameter values on the detection accuracy for spatiotempral patterns and the 
frequency of the forest loss area. Kennedy et al. [17] conducted a sensitivity analysis for 

Figure 14. The comparison of the detected forest area during 1990–2020 using improved parameters
(black line) and default parameters (dotted line) with the National Forest Inventory (NFI) statistical
data (discrete points).

Remote Sens. 2024, 16, x FOR PEER REVIEW 21 of 29 
 

 

 
Figure 14. The comparison of the detected forest area during 1990–2020 using improved parameters 
(black line) and default parameters (dotted line) with the National Forest Inventory (NFI) statistical 
data (discrete points). 

 
Figure 15. Comparisons of our detected annual forest loss area in different provinces with the global 
forest change (GFC) product [4]. 

Most of the previous studies based on the Landsat time-series imagery have found a 
significant decrease in the forest loss area during 1986–1990 [38,39], and we also found 
this phenomenon (Figure 7). Liu et al. [38] classified the patterns and trends of forest dis-
turbances in China from 1986 to 2020 also using the coupled LandTrendr and RF methods, 
and concluded that there was no significant trend in the forest disturbance area in south-
ern China. However, we found a significant increasing trend in the forest disturbance area 
in southern China during 2000–2020, which was primarily attributed to the significant in-
creasing patterns in the Guangxi, Hunan, and Guizhou Provinces. In our previous study 
[39], we used the default LandTrendr parameters and also found no significant change 
trend in the forest loss area during 2000–2020. 

5.2. Effectiveness of Improved Parameters on Forest Disturbance Detection 
In recent years, many methods have been put forward to increase the LandTrendr 

accuracy for disturbance and recovery detection, such as the segment filtering method, 
input variables, the combination of multiple seasons, integrated classifiers, and the com-
bination of multiple VIs [17,20–24]. However, few studies have specifically addressed the 
impacts of parameter values on the detection accuracy for spatiotempral patterns and the 
frequency of the forest loss area. Kennedy et al. [17] conducted a sensitivity analysis for 
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Most of the previous studies based on the Landsat time-series imagery have found
a significant decrease in the forest loss area during 1986–1990 [38,39], and we also found
this phenomenon (Figure 7). Liu et al. [38] classified the patterns and trends of forest
disturbances in China from 1986 to 2020 also using the coupled LandTrendr and RF methods,
and concluded that there was no significant trend in the forest disturbance area in southern
China. However, we found a significant increasing trend in the forest disturbance area
in southern China during 2000–2020, which was primarily attributed to the significant
increasing patterns in the Guangxi, Hunan, and Guizhou Provinces. In our previous
study [39], we used the default LandTrendr parameters and also found no significant
change trend in the forest loss area during 2000–2020.
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5.2. Effectiveness of Improved Parameters on Forest Disturbance Detection

In recent years, many methods have been put forward to increase the LandTrendr
accuracy for disturbance and recovery detection, such as the segment filtering method,
input variables, the combination of multiple seasons, integrated classifiers, and the combi-
nation of multiple VIs [17,20–24]. However, few studies have specifically addressed the
impacts of parameter values on the detection accuracy for spatiotempral patterns and the
frequency of the forest loss area. Kennedy et al. [17] conducted a sensitivity analysis for
the LandTrendr parameters and provided the parameter ranges. However, due to the
difference in the climate, forest condition, and topography, the most suitable parameter
sets should be calibrated for every piece of research using the LandTrendr algorithm. In a
study of mapping mangrove dyanmics using LandTrendr, de Jong et al. [26] concluded that
the success and robustness of the LandTrendr algorithm are controlled by NDVI Recovery
Threshold values and the number of allowed breakpoints (max segment) in the time-series.
They found that the effect of decreasing the Recovery Threshold from 0.5 (2 years) to 0.25
(4 years) has a deteriorating effect because mangrove areas that are visually identified
as recovering are excluded, leading to the wrong identification of recovery timing. Qiu
et al. [24] conducted a sensitivity analysis for different LandTrendr parameters for distur-
bance detection in China, and concluded that the optimal parameters for the Max Segments,
Pval threshold, Recovery Threshold, and Best Model Proportion were 6, 0.01, 0.5, and 0.5,
respectively, and the F1 score for these parameters did not differ very much except for
the Max Segments and Recovery Threshold parameters. However, our study indicated
that a Recovery Threshold of 0.25 was better for most provinces and 0.5 was better for
the fastest recovery regions (Guangxi and Guangdong). Based on our evaluations, our
optimized parameter values have higher accuracy for forest disturbance detection in south-
ern China with faster recovery and a lower availability of noise- and cloud-free images.
Most tree species in southern China need more than 4 years for the tree canopy to recover.
In addition, the noise- and cloud-free images are less available in our study region due
to high precipitaton. Therefore, the setting of too-short recovery years (e.g., 2 years) will
result in the false identification of disturbance timing. Instead, the canopy of Eucalyptus
trees can recover within 3 years in the Guangxi and Guangdong Provinces, and due to
their larger planting areas and shorter rotation age, the Recovery Threshold parameter
value of 0.5 was better for these two provinces. In a study of surface water dynamics using
LandTrendr, Lothspeich, and Knight [40], we also found that a Recovery Threshold value
of 0.25 was better for identifying water dynamics in Minnesota. Liu et al. [25] assessed the
sensitivity of the Recovery Threshold parameters to the identification of fire disturbance
and recovery in Australia and indicated that parameter values of both 0.5 and 0.25 were
best for most ecosystems; they also implied that climate conditons affected the effectiveness
of the parameter values.

The Max Segment parameter denotes the maximum number of segments to be fitted in
the time-series. The greater Max Segment means more disturbance events can be detected
within the study period. Generally, the higher Max Segmets can result in more disturbance
times. The studies by de Jong et al. [26] and Kennedy et al. [17] found that the detection
accuracy increased with the Max Segment numbers. But de Jong et al. [26] also argued that
too many segments increased the chances of false-positives (the non-change area is wrongly
identified as a disturbed area). In our study, we found that the best value of the Max
Segment was eight, which is higher than the setting of Qiu et al. [24]. We found that this
parameter is not very sensitive in the slower recovering region, while it is very sensitive in
the faster recovering region, where more disturbance times can be identified after increasing
the Max Segment parameter value. The study of Lothspeich and Knight [40] indicated that
the Max Segment value of 11 was the best for identifying surface water dynamics; while
Liu et al. [25] tested the sensitivity of a gradient of Max Segment parameters and indicated
that either 6, 8, or 10 was good for identifying vegetation disturbances and recovery after
fires in most of the study ecosystems.
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The Magnitude Change Threshold was also found important to remove the false dis-
turbance signal caused by variations of climate and low-intensity disturbances; therefore, it
is especially useful in detecting stand-replacing disturbance events. Li et al. [41] found that
different forest types and VIs should have different thresholds for the change magnitude
ranging from 103 to 935, while our study found that this parameter should range from 200
to 280. We also found that the improved parameters of LandTrendr can not only increase
the detection accuracy for the spatiotemporal patterns of forest loss and gain, but also
increase the detected area of multiple disturbance events. Except for the above-mentioned
parameters, other parameters in LandTrendr such as the Pval Threshold and Best Model
Proportion can affect the performance of disturbance detection [17,25]; however, they are
generally not very sensitive to variations within their value ranges.

According to the Chinese forestry operration standard (LY/T2908–2017), the rotation
ages for the fast-growing and high-yield plantations generally range from 6 to 41 years
in southern China. For example, the rotation ages for the main Chinese fir (Cunninghamia
lanceolata) and masson pine (Pinus massoniana Lamb.) plantations are about 16–20 years
and the Eucalyptus and poplar plantations are about 5–14 years in the Guangxi Province
and the Guangdong Province. The timber production in the Guangxi Province accounts
for over 40% of China’s timber supply. Therefore, most timberlands in southern China
experienced 1–5 times the disturbance during 1990–2020. Our results suggest that over
21.06% of the forest loss area has experienced disturbance events at least twice, implying the
vital importance of the accurate detection of multiple disturbance events. Several previous
studies [17,25,26] have also suggested that the parameter values could vary with the study
regions. The LandTrendr algorithm is more widely applied recently due to the expanded
users of the GEE platform. Therefore, we suggest that future applicators should also pay
attention to optimizing the LandTrendr parameters over their study regions, in addition to
improving the input variables, image quality, and trajectory fitting methods.

5.3. Effects of Forestry Policies and Projects

Some studies have indicated that the terrain, climate, and human activities were the
major factors influencing the spatiotemporal distribution patterns of forest disturbance
and recovery in China [19,24,38,42]. For most provinces in southern China, the policies
could be the leading factor. For example, the income of the forestry sector in Guangdong
and Guangxi accounts for a higher portion of the GDP due to the governmental policy
for promoting the planting of commercial and economic forests. The terrain could be the
second contributing factor since most disturbance events were caused by human activities,
so the remote or inaccessible regions generally have lower disturbance rates, such as the
Guizhou and Sichuan Provinces. In addition, the steep-slope and low-land-quality areas
are often planned as protected regions and thus few disturbance events occur in these
regions. In contrast, climate is less of an important factor since large-scale extreme climate
events are relatively fewer in southern China.

Although there were some uncertainties caused by the quality of Landsat images,
image preprocessing, changes detection algorithms, parameter values, and other sources,
we can still find that the major forestry policies, regulations, and projects can significantly
affect forest dynamics in southern China [43,44]. Since the 1980s, Chinese state authori-
ties have successfully implemented a series of forestry policies and projects, as listed in
Table A2. The highest forest loss area during 1990–1992 was the legacy effects from the
“three determination” policy put forward in 1981 [45–48]. Under this policy, the forest right
was transferred from nation-owned to the collective-owned (e.g., villages or administrative
units) (Figure A2). The low forest loss area was mainly due to the legacy effects from the
policy for enhancing forest management and the ban on indiscriminate tree felling in 1987,
which reversed the effects from the “three determination” policy [49]. The trial imple-
mentation of the collective forest tenure reform (CFTR) policy in several provinces and
the High-yield Plantation in Key Areas (FHPKA) policy in the Guangxi and Guangdong
Provinces caused a continuous increase in the forest loss area. The mature forests owned
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by private parties were harvested for profits under the impacts of CFTR. The increasing
short rotation forest plantation area also caused an increasing harvesting area. The ful
implementation of CFTR for all provinces in southern China further resulted in a long-term
increase in the forest loss area during 2009–2017. The implementation of the National Forest
Conservation Program (NFCP) in 2010, the public welfare forest conservation policy in 2013,
the Reform of State-owned Forest Farms (RSFF) in 2015, and the stricter implementation of
the forestry law in 2016 has caused a declining forest loss area since 2017. Van Den Hoek
et al. [44] also applied the Tasseled Cap indices and a decision tree classifier and evaluated
the effectiveness of NFCP and RSFF policies on forest cover in the Yunnan Province.

The interannual variation pattern of the forest recovery area generally showed a 1-to-
3-year lag behind that of the forest loss area, since a large portion of forests was recovered
from the forest loss areas. The forest conservation and protection policies can further
enhance or counteract the variations [43,46]. For example, the policy for “Notice on Further
Strengthening of Afforestation Progress” implemented in 1993 caused a peak forest gain
area in 1994. The implementations of the Green for Grain Project (GFGP) policy in 1998 and
the NFCP policy in 2010 resulted in a peak forest gain area in 1999 and 2011, respectively. In
particular, the implementation of the second amendment of Forestry Law in 2016 resulted
in a peak forest gain area in 2017.

6. Conclusions

The detection of forest disturbance and recovery was more challenging for southern
China due to the complex climate, topography, forest conditions, fast-recovery of forests,
and less availability of cloud-free Landsat images. Based on the plentiful sample plots, this
study identified the most effective spectral information and optimized the parameters of
the LandTrendr algorithm to achieve a more accurate detection of forest disturbance and
recovery. The accuracy assessment against the plot data, statistical data, and other similar
products at both temporal and spatial scales proved the good performance of our methods.
The results indicated that the mean annual forest loss and gain area was 4981 km2 and
1.75 × 104 km2, respectively, and a large uncertainty can be caused by the parameter values.
An increased trend of the forest gain and loss area was found during 2000–2020 for southern
China, mainly owing to the significant increasing trends of the forest disturbance and
recovery area in the Guizhou, Guangxi, and Hunan Provinces. The improved parameters
help detect multiple forest disturbance events, implying that about 11.50% of the forest loss
areas have been disturbed more than twice. The developed forest dynamic data based on
the forest gain and loss area matched well with the provincial statistical data and thus can
be effectively applied to assess forest resources, carbon cycling, and the impacts of forest
policies and management. The temporal variations in the forest loss and gain area were
mainly affected by the forestry policies, projects, and regulations. Compared to the default
parameters, the overall accuracy of the optimized parameters can improve by 6.89% and
3.65%, respectively. In addition, the spatiotemporal patterns of the forest gain and loss area
after parameter optimization matched better with the visually interpreted, the NFI, and the
GFC datasets. All these implied that parameter optimization can greatly improve the forest
disturbance and recovery detection performance in southern China. Certainly, due to the
Landsat image quality, the preprocessing methods, the trajectory fitting and smoothing
methods, the change detection algorithms and parameters, and the possible overfitting
in RF, our detected forest loss and gain area could somehow deviate from the actual
conditions; however, the uncertainty caused by these factors is difficult to fully quantify.
Our study partially assessed the uncertainty resulting from LandTrend parameter values,
and the results implied that the applications of LandTrendr in similar regions with fast-
regrowing vegetation should pay more attention to improve the Max Segment and Recovery
Threshold parameters, which will cause a lot of uncertainty, and their optimization can
increase the accuracy for detecting multiple and lower-rate disturbance/recovery events.
Considering that there are broader users of the LandTrendr algorithm and many previous
studies generally applied the default parameters, we suggested that future users should
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carefully calibrate the LandTrendr parameters during regional applications. Furthermore,
the importance of input factors in the RF Classifier varies with the regions, so it is better to
separately run the secondary RF classification at subregional scales.
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Figure A1. The ranking of relative importance (top 10) of different input variables in detecting
forest disturbance and recovery in the RF classifier for Sichuan (top) and Guangxi (bottom) Province.
Note: dur: duration of spectral change; preval: pre-disturbance spectral value; mag: spectral change
magnitude; rate: spectral change rate; and dsnr: signal-to-noise ratio of spectral change.
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Table A1. The sensitivity analysis for detected mean annual forest loss pixel numbers during
1990–2020 using different parameter values for Max Segment and Recovery Threshold in selected
regions of all provinces. Note: the italic and bold numbers are values from the default and optimized
parameter values, respectively.

Max Segment Recovery Threshold

0.25 0.5 0.75 1

4 741 1213 1501 1919
6 1035 1829 2436 3113
8 1229 2318 3182 3946
10 1367 2640 3645 4421
12 1463 2845 5225 4683

Table A2. The sensitivity analysis for detected mean annual forest gain pixel numbers during
1990–2020 using different parameter values for Max Segment and Recovery Threshold in selected
regions of all provinces. Note: the italic and bold numbers are values from the default and optimized
parameter values, respectively.

Max Segment Recovery Threshold

0.25 0.5 0.75 1

4 135 536 788 1292
6 239 964 1520 2379
8 332 1378 2187 3182
10 401 1652 2609 3636
12 466 1847 2848 3877
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Table A3. The major forestry policies and projects, and their implementation time and major effects.

Symbol Time Forestry Policies or Projects Major Effects

1 1990 Outline of the National Afforestation
Program for 1989–2000

Implementation of major afforestation
projects across China

2 1993 Notice on Further Strengthening of
Afforestation Progress

Push forward for the implementation of
forestry projects

3 1998 Pilot implementation of the Green for Grain
Project (GFGP)

Promote afforestation through land
conversion from farmland

4 2002 Natural Forest Conservation Program
(NFCP)

Promote the conservation of existing natural
forest resources

4 2002 Project for Fast-growing and High-yield
Plantation in Key Areas (FHPKA)

Shifting timberland base from the north to
the south

5 2003 The trial time for the collective forest tenure
reform (CFTR)

Forestland ownership change from collective
to private rights in some cities in Sichuan
and Fujian

6 2008 Ful implementation of CFTR Realize the multiple functions of forests and
increase household income

7 2010 The starting time for second stage of the
NFCP

More strict implementation of the natural
forest conservation policy

8 2013 The starting time for conserving the public
welfare forests

To protect forests with important ecological
functions

9 2015 Reform of state-owned forest farms (RSFF) Forest farms shift from a profit-making
agency to protection agency

10 2016 Regulations on the Implementation of the
Forestry Law (Amendment 2016)

Protect forest resources and realize ecological
civilization
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