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Abstract: Particulate matter less than 2.5 microns in diameter (PM2.5) is an air pollutant that has
become a major environmental concern for governments around the world. Management and control
require air quality monitoring and prediction. However, previous studies did not fully utilize the
spectral information in multispectral satellite images and land use data in geographic datasets. To
alleviate these problems, this study proposes the extraction of land use information not only from
geographic inventory but also from satellite images with a machine learning-based classification. In
this manner, near up-to-date land use data and spectral information from satellite images can be
utilized, and the integration of geographic and remote sensing datasets boosts the accuracy of PM2.5

concentration modeling. In the experiments, Landsat-8 imagery with a 30-m spatial resolution was
used, and cloud-free image generation was performed prior to the land cover classification. The
proposed method, which uses predictors from geographic and multispectral satellite datasets in
modeling, was compared with an approach which utilizes geographic and remote sensing datasets,
respectively. Quantitative assessments showed that the proposed method and the developed model,
with a performance of RMSE = 3.06 µg/m3 and R2 = 0.85 comparatively outperform the models with
a performance of RMSE = 3.14 µg/m3 and R2 = 0.68 for remote sensing datasets and a performance
of RMSE = 3.47 µg/m3 and R2 = 0.79 for geographic datasets.

Keywords: fine particulate matter; land use regression; optical satellite images

1. Introduction

Fine particulate matter (PM2.5) consists of solid or liquid particles with tiny diameters
(2.5 micrometers) suspended in atmospheric gases. The particles that contain metal and
organic components may induce free radicals to produce oxidized lung cells, which is the
main cause of respiratory system injury [1]. The respiratory injury may affect human health
in the short term (e.g., chronic obstructive pulmonary disease and acute nasopharyngitis)
and in long-term period (e.g., cardiovascular disease and mortality) [2–4]. In the worst
cases, in which the exposure of PM2.5 is high [5–7], the particles threaten not only adults
but also children, because of the immature state of their lungs and immune function [8].
This instance implies that exposure to PM2.5 is detrimental to human health; therefore, the
monitoring of PM2.5 concentrations is critical. Governments generally install stationary air
quality sensors to measure PM2.5 concentrations and other air quality parameters, including
PM10, SO2, O3, CO, NO2. The air quality-monitoring stations are only distributed and
located in specific interesting landscapes, such as the middle of towns, industrial areas,
and forests. Thus, methods to derive PM2.5 concentrations for non-stationary regions are
required for the monitoring of an entire region.
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Land use regression (LUR), which predicts air quality parameters of interest from land
use geographic datasets, was proposed [9], and the method can be adopted to obtain PM2.5
concentrations at non-stationary locations [10–12]. An LUR model for PM2.5 concentration
was created by Lee et al., with several traffic-based predictors such as traffic intensity,
road length, and road proximity [13]. The Eeftens study included population-based data
for six classes of predictors, including high-density residential, low-density residential,
industry, ports, urban green, and natural land [14]. Liu et al. and Yu et al. utilized culture-
specific sources of PM2.5, such as joss paper burning at temples and cooking smoke from
restaurants in East Asian countries, respectively [15,16]. Although these studies achieved
high-accuracy prediction, the estimation of PM2.5 concentrations is hindered by the slow
updating of land use geographic datasets. The updating of land use data is generally
time-consuming and labor sensitive. The time cycle for land use data updating takes
years, which may cause biases in the modeling of PM2.5 concentrations. Tunno’s study
extended the predictors by using other chemical particles, including ammonia, carbon
monoxide, and sulfur dioxide [17], based on the fact that PM2.5 exposure is explained as the
secondary product of the aforementioned particles, the data of which can be obtained in air
quality-monitoring stations [18,19]. To assess the non-stationary points, an interpolation
technique, such as inverse distance weighting (IDW) or kriging, is performed [20–22].

Passive remote sensing satellite sensors record the reflected sunlight radiances in vary-
ing wavelengths, including visible and infrared spectral ranges, from the Earth’s ground
surface. The satellite revisit time is around 2–20 days, depending on the design of the
satellite orbit and constellation. The variation in radiances in spectral bands enables the
detection and classification of ground objects and the extraction of the Earth’s surface
features, which are useful for Earth observation and remote sensing applications. For
instance, Wu et al. utilized the normalized difference vegetation index (NDVI), calculated
from moderate resolution imaging spectrometer (MODIS) images with 1 km spatial res-
olution [23]. The NDVI was set as one of the predictors in the development of the LUR
model for PM2.5 concentration estimation in Taiwan. The NDVI, based on the red and
near-infrared spectral bands which can absorb pollutants, is used to represent the density
of vegetation covers and greenness [24–26]. In addition to NDVI, the satellite images can
provide information on artificial covers and water bodies from multispectral bands. The
revisit time of MODIS, which can increase the temporal resolution of satellite images, is two
days. However, the spatial resolution of MODIS images is 500 m × 500 m, implying that
small objects, including small waterbodies and residential regions, cannot be represented
well in the images. Consequently, the spatial resolution of land covers in MODIS images
cannot match well with that in the geospatial dataset.

The main idea of this study is to integrate the geospatial data, which contain land
use, landmarks, digital road networks, and digital terrain models (DTM), and the optical
satellite data, which contain NDVI and land cover classification, in the modeling of PM2.5
concentrations. This integration can complement the advantages in the geospatial datasets
and remote sensing images. The study proposes the use of a Landsat-8 operational land
imager (OLI) sensor instead of MODIS because of its higher 30 m spatial resolution, which
improves the classification of small objects. In addition, cloud pixels of a satellite image on
a particular acquisition date are masked out and replaced with the spectral information of
corresponding pixels from other acquisition dates to generate a cloud-free image. Thus,
the proposed method provides the following contributions: (1) the integration of satellite
images with a geographic dataset, which provides suitable temporal and spatial resolu-
tion land use information and contributes to PM2.5 concentration estimation; and (2) the
generation of cloud-free images, which enables the classification of land covers without
missing regions. The remainder of this paper is organized as follows. Section 2 introduces
the study area and datasets, and Section 3 proposes the methodology. Section 4 shows the
experimental results, and Section 5 provides the conclusions.
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2. Study Area and Datasets
2.1. Taipei Metropolis and Air Quality Dataset

Taipei Metropolis, which consists of Taipei City and New Taipei City and is located
in northern Taiwan, was selected as the study area. Since the capital movement in 1884,
Taipei Metropolis has been the hub of governmental, economic, and cultural activity in
Taiwan, and has more than one-fourth of Taiwan’s total population [22,27]. To maintain the
air quality alongside the large-scale human activity, the Environmental Protection Agency
(EPA) of Taiwan installed 17 automatic air quality-monitoring stations in Taipei Metropolis
(Figure 1a) to understand and maintain the air’s characteristics and quality. The stations
are classified into three categories: general, traffic, and national park stations. The general
and traffic stations are found in populous and heavy traffic areas, respectively, whereas the
national park stations are installed in the national parks that are far from residential areas.

Figure 1. Study area and PM2.5 monitoring stations. (a) Locations of the study area (Taipei Metropo-
lis) and PM2.5 monitoring stations. (b) Time series of the PM2.5 concentrations from 2013–2017
(17-monitoring stations).

The stations record several air quality parameters, including PM2.5 concentrations.
The time series trends of the collected PM2.5 concentrations from 2013 to 2018 are shown in
Figure 1b. The PM2.5 concentrations at the 17 stations range from 10 to 40 µg/m3, levels
which are of moderate air quality in terms of health concerns. The air quality is acceptable,
but may affect people who are sensitive to air quality. In addition to PM2.5, the stations also
provide other air quality parameters, including the concentrations of ozone (O3), particulate
matter (PM10), carbon monoxide (CO), sulfur dioxide (SO2), and nitrogen dioxide (NO2),
rainfall, wind speed, and wind direction. These parameters are set as potential predictors
in the development of a model for the estimation of PM2.5 concentrations in this study. A
total of 102 air quality records were collected from the 17 stations from 2013–2018. Since
the air quality parameters are available only at monitoring stations, these parameters,
excluding PM2.5, in non-station regions were interpolated by means of inverse distance
weighting interpolation (IDW). These interpolated data are used for the estimation of PM2.5
concentrations at the non-station points.

2.2. Geographic Dataset

Five geographic datasets, including the national land use inventory, the digital road
network map, landmark dataset, a map of the industrial park, and DTM, as described
in Table 1, were used. The national land use inventory was generated by using aerial
images from 2006 to 2008 with 1:5000 scale and stored as a polygon layer in a geographic
information system [28]. The inventory includes four land use classes: agriculture, pure
residential, commercial residential, and industrial–commercial residential. The last two
classes refer to residential areas that contain artificial buildings for small industries and
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commercial activities, respectively. The digital road network produced by the Ministry of
Transportation and Communication, Taiwan, was utilized. The roads are reclassified into
three different classes, that is, local roads, major roads, and expressways. The landmark
dataset consists of more than 0.25 million records that refer to the locations of restaurants,
temples, and others.

Table 1. Geographic datasets of Taipei Metropolis and related predictors used in PM2.5 estimation.

Geographic Datasets Types Predictor Notations

National land use inventory Pure residential (pR), commercial residential (cR),
industrial–commercial residential (iR), agricultural (A)

{pR250m, · · · , pR2000m},
{cR250m, · · · , cR2000m},
{iR250m, · · · , iR2000m},
{A250m, · · · , A2000m}

Map of industrial park Industrial parks in the year of 2010 (iP) {iP250m, · · · , iP2000m}

Landmark 0.25 million landmarks including Chinese restaurant (CR),
night market (NM), temple (Te)

{CR250m, · · · , CR2000m},
{NM250m, · · · , NM2000m},
{Te250m, · · · , Te2000m}

Digital road network Local roads (LR), major roads (MR), and expressways (EW)
{LR250m, · · · , LR2000m},
{MR250m, · · · , MR2000m},
{EW250m, · · · , EW2000m},

DTM DTM with the 20 m spatial resolution (DTM)

Buffer analysis is an essential spatial analysis function in GIS. This analysis constructs
a zonal area, which may include points, lines, and areas, by identifying all areas that are
within a certain specified distance of a specified object [29]. A buffer analysis with different
radii that range from 250 m to 2000 m was used for the first three datasets to determine the
total area of each land use class, the length of each road class, and the number of landmarks
over the buffering region centered in air quality-monitoring (AQM) stations. Meanwhile,
the map of the industrial park was obtained from the Industrial Development Bureau,
Taiwan. The map was produced in 2010 and utilized to assess the distance of a point to
the nearest industrial park. The DTM with 40-m spatial resolution was provided by the
Aerial Survey Office, Forestry Bureau. The DTM represents the topographic altitudes of the
study area [30]. Figure 2a shows that the potential predictors from the geographic dataset
are the area of each land use class, the length of each road class, the number of landmarks,
the distance to the nearest industrial park, and the altitude of a point obtained in different
buffer sizes.

2.3. Satellite Image Data

Landsat-8 is a satellite launched by the National Aeronautics and Space Administration
(NASA) in collaboration with the United States Geological Survey (USGS) that continues
its former satellites in the Landsat Data Continuity Mission. The Landsat-8 features an
OLI sensor, which provides eight spectral bands with the wavelengths that range from
0.43–1.38 µm, and a thermal infrared sensor that contains two thermal bands with the
wavelengths that range from 10.60–12.51 µm. NASA and USGS provide the satellite images
in two different product levels, that is, level 1 and level 2. The level 1 product contains
digital number information which can be calibrated into radiance or reflectance at the
top of the atmosphere, that is, no atmospheric correction is applied. The level 2 product
includes radiance or reflectance at the bottom of the atmosphere, or at the Earth’s surface,
where a built-in atmospheric correction has been implemented. Therefore, the surface
radiance or reflectance can represent the true ground information. In this study, the use of
the surface reflectance information of Landsat-8 satellite images with a level 2 product is
proposed for classification and adopted for the normalized differentiate vegetation index
(NDVI) extraction. The classification aims to determine and distinguish the general land
uses in satellite images, including vegetation, water bodies, and artificial buildings, while
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the NDVI extraction intends to estimate the density and vitality of vegetation. All available
Landsat-8 level 2 images acquired from 2013–2018 were used to generate yearly cloud-free
images. The cloud covers, which will reduce the classification accuracy, were filtered out
from the images in this process. The cloud-free images containing the visible bands and
near infrared bands are then utilized to generate the yearly NDVI image by using the
formula (NIR-Red)/(NIR+Red), where NIR and Red represent the near infrared and red
bands, respectively.

Figure 2. Buffering analyses with a radius that ranges from 250 m to 2000 m within Taipei Metropolis.
(a) Buffering analyses using the potential predictors from a geographic dataset. (b) Buffering analyses
using satellite image dataset.

The details of the classification and the cloud-free image generation are described
in Section 3. Furthermore, the image classification results will be used as predictors in
PM2.5 modeling. Buffer analysis with a radius of 250 m to 2000 m is used to determine
the total area of classification results in each class, that is, the total area of artificial build-
ings, vegetation, and water bodies. Figure 2b depicts the buffering analysis using the
potential predictors {B250m, · · · , B2000m}, where B250m represents the first buffering region
(radius = 250 m) and B2000m denotes the last buffering region (radius = 2000 m). The predic-
tors of vegetation are denoted as {V250, · · · , V2000}, where V250m represents the first buffer-
ing region (radius = 250 m), and V2000m denotes the last buffering region (radius = 2000 m).
The predictors of water body are denoted as {W250, · · · , W2000}, where W250m represents
the first buffering region (radius = 250 m), and W2000m denotes the last buffering region
(radius = 2000 m).

3. Methodology

In this study, a land use classification is applied to a cloud-free image derived from
multi-temporal images within a year. Subsequently, the land use image is used in inte-
gration with land use classes from a geographic dataset for the estimation of the PM2.5
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concentration in Taipei metropolis. Section 3.1 describes the generation of cloud-free images
for classification, and Section 3.2 defines the PM2.5 concentration model’s development.

3.1. Generation of Cloud-Free Image for Classification

Cloud cover in satellite images is inevitable and hinders the sensor’s collection of spec-
tral responses from the Earth surface. Surface reflectance (SR) improves image comparison
by accounting for atmospheric effects such as aerosol scattering and thin clouds, which
can aid in the detection and characterization of Earth surface changes. The amount of light
reflected by the Earth’s surface is referred to as surface reflectance. It refers to a surface
radiance to surface irradiance ratio that is unitless and ranges from 0–1, and its value
increases due to the cloud cover. In addition, if the surface reflectance value and cloud
cover are nearly constant and located at different places between two consecutive images,
the atmospheric conditions are stable and the cloud cover is not changing significantly
over time. This phenomenon could be due to factors, such as the time of day, season,
or location [31]. However, it is important to note that cloud cover can vary rapidly and
unpredictably over short periods of time, and two images were possibly acquired during
different cloud conditions. In addition, the presence of thin clouds or aerosol can affect
the accuracy of surface reflectance values because these particles scatter and absorb light
differently than clouds, and this can result in errors in the estimation of surface reflectance.
To account for these effects and improve the accuracy of surface reflectance values, the use
of atmospheric correction algorithms which attempt to remove the effects of atmospheric
scattering and absorption from the satellite data, is commonly practiced. These algorithms
typically rely on radiative transfer models and atmospheric measurements to estimate the
atmospheric conditions and correct the satellite data accordingly. Overall, the accuracy
of surface reflectance values can be affected by various factors, including cloud cover,
atmospheric conditions, and sensor calibration. The careful evaluation of these factors is
important when comparing satellite images and interpreting changes in the Earth’s surface
over time.

To deal with the cloud covers in satellite images and to generate a cloud-free image, a
simple cloud detection with a pixel replacement strategy is performed. The basic idea is
to composite a cloud-free image from a set of cloudy images over a year. Specifically, the
reflectance values of cloud pixels in a satellite image are replaced by the corresponding
cloud-free pixels in other images (i.e., the same position but a different acquisition time).
For simplicity, the pixel with the lowest reflectance value is regarded as a cloud-free pixel
(i.e., a low probability of being a cloud pixel) and is used to fill in that position. This process
is applied to each pixel in the image, and a nearly cloud-free image is generated. Notably,
this process did not guarantee that the generated image would be cloud-free, and a near
cloud-free image is sufficient for land use classification.

After the image composition process, the maximum likelihood classification is adopted
for land use classification. The classification employs the statistical features of the data.
The mean and standard deviation of each spectral band and textural indices of the image
are computed first, and the likelihood of each pixel that belongs to individual classes is
then computed using some classical statistics and probabilistic relationships and a normal
distribution for the pixels in each class. Finally, the pixels are assigned to a class of features
based on their likelihood. In this study, the training and testing datasets use the surface
reflectance of all spectral bands as the input and its land use class as the label, which is
manually selected by visual inspection. The workflow of the cloud-free image generation
and land use classification is shown in Figure 3.
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Figure 3. Workflow of cloud-free image generation and classification. This process involves mul-
tiple steps, including image acquisition, pre-processing and analysis, n represents the number of
used images.

3.2. PM2.5 Concentration Model Development

The modeling of PM2.5 concentration consists of two successive steps: a Spearman
correlation (r) analysis and stepwise variable selection, as illustrated in Figure 4. The
correlation analysis is performed to examine the bivariate relationship between PM2.5
concentrations and potential predictors, including the air quality parameters from the
air quality dataset and the predictors from the geographic and satellite image datasets
discussed in Section 2.2. The analysis concerns the magnitude and direction of correlation
between the PM2.5 concentration and a potential predictor. The correlation direction
means the positive or negative relationship between the two variables. A predictor is
eliminated when its direction is incorrect. The correctness of the direction of each predictor
is based on a priori knowledge of its analytic relationship to the PM2.5 concentration. For
instance, suppose that the two variables are PM2.5 concentration and vegetation, where
the vegetation is likely to absorb the PM2.5 exposure. Then, the existence of vegetation can
reduce the concentration of PM2.5, that is, they should have negative correlation. If the
determination of correlation based on the dataset is opposite, then the vegetation is further
removed. In addition, the magnitude of correlation represents the strength of positive
or negative relationships between variables. Therefore, the thresholds to determine the
suitable strength relationship between the PM2.5 concentration and each potential predictor
are r ≤ −0.4 and r ≥ +0.4, respectively. The potential predictors that did not satisfy one of
the two concerns will not enter the next part.

In the stepwise variable selection, the potential predictors from the previous part
were included in the model development and further evaluated based on the p-value and
variance inflation factor (VIF). The p-value and VIF indicate the significance of a particular
predictor to the model and the multi-collinearity between that and the other predictors,
respectively. The p-value ranges from 0 to 1, whereas VIF ranges from 0 to infinite. A
value close to 0 in both measures means that the particular predictor is more significant
and has less multi-collinearity. Therefore, predictors with a p-value smaller than 0.1 are
kept and reselected for the model development, whereas the opposite is removed from
the model. The reselection and elimination based on the p-value are repeated until the
potential predictors in the model satisfy the p-value threshold. Furthermore, the VIF of
potential predictors is determined, and those predictors with VIF larger than 3 were kept
and set as the final predictors for the estimation of PM2.5 concentration. The formulation of
the estimation is expressed as follows:

PM2.5 = β0 + β1 × X1 + . . . + βn × Xn, (1)

where PM2.5 is the concentration of PM2.5 exposure; β0 represents the regression bias; and
[X1, . . . , Xn] and [β1, . . . ,βn] are the n final predictors and their corresponding regression
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coefficients, respectively. To develop the model, 90% of air quality-monitoring sites were
utilized, while the remaining 10% were employed for evaluation. In order to evaluate
the model, the root mean square error (RMSE), and ordinary and adjusted coefficients of
determination (R2) were used. The evaluation process was carried out using a 10-fold cross-
validation approach to determine the accuracy and performance of the model. Additionally,
a second methodology was utilized to verify the accuracy of the model, where data collected
in 2018 were considered as out-of-sample data, and the model’s precision was confirmed
by estimating PM2.5 concentrations from out-of-sample observations and comparing them
to known observations.

Figure 4. Framework of model development and evaluation for PM2.5 concentration estimation.

4. Experimental Result and Discussion

This study proposed to utilize and integrate the land use information in geographic
and remote sensing datasets along with air quality parameters, including the concentrations
of O3, PM10, CO, SO2, and NO2 collected from 17 stations from 2013–2018, to model the
PM2.5 concentration in the Taipei Metropolis. The land cover information in the remote
sensing dataset was obtained by applying a maximum likelihood classification to the
generated cloud-free images. The results of cloud-free image generation and the image
classification are presented in Section 4.1. The estimation of PM2.5 concentrations using the
proposed method is described in Section 4.2. The performance of the developed model was
compared with the related methods, that is, the models using land use information in the
geographic and remote sensing datasets, separately. The comparison results are reported
and discussed in Section 4.3.

4.1. Cloud-Free Image and Classification

One of the main challenges for satellite image applications is the existence of cloud
cover that hinders partial ground information. To address this issue, several cloudy images
are merged to generate a near cloud-free image. Figure 5 shows the original satellite
images and cloud-free images that were acquired from 2013–2018, in which cloud cover
was spotted at several places. High coverage of clouds can be found in the images of
2013, 2014, and 2016. Therefore, three satellite images were used in each of these years to
obtain cloud-free images with satisfactory results, and only two images were utilized for
the generation of cloud-free images in the other years. With a simple merging strategy, the
cloud cover is significantly reduced, and near cloud-free images are generated.
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Figure 5. Original (top) and cloud-free satellite images (bottom) from 2014 to 2018.

The near cloud-free images were used to extract land use information in Taipei
Metropolis by using maximum likelihood classification. The selected land use types
are water bodies, vegetation, and artificial building. The training and testing sets for
the classification were determined by using manual visual selection. Figure 6 shows the
classification results, and Figure 7 presents the trend of land use coverage changes in
terms of total coverage area in the unit of Ha during 2013 to 2018. The results show that
the coverage of artificial buildings is gradually decreasing, whereas that of vegetation is
gradually increasing, except for the year 2015. This phenomenon may be caused by several
parks that were created during those six years. As for the cover of water bodies, the total
coverage area slightly decreased.

To evaluate the classification results, a confusion matrix is calculated and shown in
Table 2. Notably, the indicators of accuracy in matrix confusion are overall accuracy and
the Kappa coefficient. These two indicators represent the ratio between the numbers of
correct classified pixels to the numbers of training and testing pixels, respectively. From
the statistical numbers in Table 1, the overall accuracy is more than 95%, and the Kappa
coefficient is higher than 90%, indicating that the classification results are suitable for the
generation of PM2.5 concentration predictors.

Figure 6. Land coverage information from satellite images using maximum likelihood classification.
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Figure 7. Land cover distribution area and their changes during 2013–2018.

Table 2. Accuracy of satellite image land cover classification. P.A. and U.A. represent the producer
and user accuracies, respectively.

Land Use
Type

2013 2014 2015 2016 2017 2018

P.A. U.A. P.A. U.A. P.A. U.A. P.A. U.A. P.A. U.A. P.A. U.A.

in Percentage (%)

Artificial
buildings 99.9 89.3 99.6 94.9 99.9 91.7 96.8 97.5 93.2 88.9 97.4 84.1

Vegetation 96.3 99.9 98.5 99.9 97.2 99.9 99.4 98.8 96.7 98.0 94.8 99.2
Water bodies 98.7 100.0 98.2 100.0 98.7 100.0 98.0 100.0 100.0 100.0 100.0 100.0

Overall acc. 97.4 98.70 98 98.70 96 95.5
Kappa coef. 95 98 96 98 90 90

4.2. PM2.5 Concentration Model with Geographic and Satellite Image Integration

The development of the estimation model for PM2.5 concentration in Taipei Metropolis
starts from analyzing the correlation between PM2.5 exposure and the potential predictors
by means of Spearman correlation. Table 3 provides the Spearman correlation between
the PM2.5 exposure and the land cover predictors from the satellite image datasets. The
statistic numbers reveal that the predictors of artificial buildings {B250m, · · · , B2000m} and
vegetation {V250m, · · · , V2000m} show strong positive and negative correlations, respectively.
Therefore, these two sets of predictors are included for further selection by using stepwise
variable selection. Meanwhile, for those from the class of waterbodies, only three predictors
with weak correlation, namely, W250m, W500m, and W750m, were selected.

A similar process is applied to the potential predictors from the geographic dataset. A
total of 50 predictors, namely, PM10, NOx, NO2, wind speed, ambient temperature, relative
humidity, NDVI{ ndvi250m, · · · , ndvi2000m}, pure residential {pR500m, pR750m}, mixed resi-
dential {mR500}, expressway {EW1250m, EW1500m, EW1750m, EW2000m}, major road {MR500, },
local road {LR500}, industrial-commercial residential {iR500, iR750, }, elevation {DTM},
airport within distance, artificial building predictors {B250m, · · · , B2000m}, vegetation pre-
dictors {V250m, · · · , V2000m}, and water body predictors {W250m, W500m, W750m}, satisfy the
correlation criterion. These 50 predictors are further utilized and evaluated in the stepwise
variable selection. Table 4 shows the estimation model for PM2.5 concentrations with five
final predictors, which are selected after the evaluation in the stepwise variable selection.
Three of the final predictors, namely, the concentration of PM10, wind speed, and the
concentration of SO2, are obtained from the air quality dataset. The remaining predictors
include B2000m (the predictor of artificial building with the radius = 2000 m) and pR500m
(the predictor of pure residential with the radius = 500 m), which are obtained from the
satellite image and geographic datasets, respectively. In the buffering analysis, these two
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predictors represent the total area of artificial buildings and pure residential areas with
radius = 2000 m and 500 m, respectively.

Table 3. Spearman correlation between PM2.5 exposure and the potential predictors from the satellite
image datasets. The buffering analysis is denoted as BA.

Class
Potential Predictors

r
Radius in BA Notation

Artificial buildings 250 m B250m 0.57
500 m B500m 0.63
750 m B750m 0.65

1000 m B1000m 0.67
1250 m B1250m 0.66
1500 m B1500m 0.65
1750 m B1750m 0.66
2000 m B2000m 0.66

Water bodies 250 m W250m −0.19
500 m W500m −0.02
750 m W750m −0.04

1000 m W1000m 0.06
1250 m W1250m 0.16
1500 m W1500m 0.05
1750 m W1750m −0.19
2000 m W2000m −0.02

Vegetation 250 m V250m −0.56
500 m V500m −0.63
750 m V750m −0.66

1000 m V1000m −0.69
1250 m V1250m −0.55
1500 m V1500m −0.70
1750 m V1750m −0.71
2000 m V2000m −0.71

Table 4. Coefficient of predictors in the final model for PM2.5 concentrations estimation.

Predictor β p-Value VIF Part. R2 R2 Adj. R2 RMSE

β0 (Intercept) 2.03 0.26 - - 0.85 0.72 3.06
PM10 0.28 <0.001 1.67 70.7%
B2000m 0.01 × 10−3 <0.001 1.41 21.2%

Wind speed −1.00 <0.01 1.01 12.2%
SO2 1.86 <0.01 1.82 7.4%

pR500m −0.71 × 10−4 <0.1 1.01 0.7%

The adjusted R2 = 0.72 implies that the final model has a high positive correlation with
the PM2.5 concentrations. The regression coefficients of the predictors B2000m and pR500m
are 0.01 × 10−3 and −0.71 × 10−4, indicating that the PM2.5 concentration is increased
by 0.01 × 10−3 µg/m3 when the area inside the circular buffer with a radius of 2000 m is
all artificial building, and is decreased by 0.71 × 10−4 µg/m3 if the land use class is pure
residential in a circular buffer with a radius of 500 m. Moreover, the PM10 concentration
can dominantly explain the variation in PM2.5 concentration because the partial (part.) R2 is
70.7%. For the other selected predictors, such as B2000m, wind speed, the SO2 concentration,
and pR500m, the part. R2 is 21.2%, 12.2%, 7.4%, and 0.7%, respectively. In addition, the R2

of the developed model is 0.85, and the scatterplot of the observed and estimated PM2.5
concentrations is shown in Figure 8.
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Figure 8. Scatterplot of observed (y-axis) and estimated (x-axis) PM2.5 concentration. The PM2.5

estimation model developed by using land use information from the geographic and satellite im-
age datasets.

Furthermore, a tenfold cross-validation was performed to evaluate the developed
model for the estimation of PM2.5 concentrations. Approximately 10 to 11 samples at
each fold were used to determine model accuracy. The results are shown in Figure 9. On
average, the RMSE at all folds is 3.06 µg/m3, whereas the R2 is 0.76. They are in line with
the accuracy obtained from the model, that is, the RMSE and R2 are 3.06 µg/m3 and 0.85,
respectively. This finding indicates that the developed model is effective in estimating
PM2.5 concentrations. Subsequently, the developed model is used to estimate the PM2.5
concentrations of the entire Taipei Metropolis from 2013 to 2018. The results are shown in
Figure 10. The colors that range from yellow to red represent the lowest (5 µg/m3) and
highest (30 µg/m3) concentrations of PM2.5, respectively. Comparing Figures 6 and 10, the
red colors are mostly located on the areas in which the land use class is artificial building,
and the yellowish colors are located in the areas of vegetation cover. PM2.5 pollution levels
can be observed to exhibit fluctuating trends over time due to various factors such as
weather pattern, human activities, and natural events. For instance, in regions with high
traffic, industrial activity or during specific seasons, PM2.5 levels may be consistently higher
than in other areas or at other times. Therefore, it is essential to consider these factors and
analyze the cause of the observed fluctuations in PM2.5 levels. To verify the accuracy of
the model used for PM2.5 concentration estimation, a comparison of the predicted PM2.5
concentration with the actual measurements was performed (Figure 8). By comparing the
predicted and actual PM2.5 concentrations, the accuracy of the model and its effectiveness
in predicting PM2.5 levels could be assessed.

Figure 9. Accuracy assessment of the developed model using tenfold cross-validation. The measure-
ment RMSE (left) and R2 (right) are used.
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Figure 10. Prediction maps of the spatial–temporal variability of PM2.5 concentration using the
developed model.

4.3. Comparison with Related Models

One of the contributions of this study is to integrate the land use information of
the geographic and satellite image datasets into one model for the estimation of PM2.5
concentration. To evaluate this contribution, the model developed using the land use
information from both datasets was compared with the models that use predictors from a
single dataset. The data preprocessing, correlation analysis, and stepwise variable selection
are the same as those from the three compared models. The difference is that the input to
the compared models is the land use predictors from the satellite image dataset (denoted
as Model A) or geographic dataset (denoted as Model B), that is, the two datasets are
used separately.

In Model A, 32 potential predictors, including the land cover predictors from the
satellite image dataset and the air quality predictors from the air quality dataset, are
reported. After the correlation analysis by means of Spearman correlation, 26 predictors,
namely, SO2, CO, CO3, PM10, NOx, NO, NO2, artificial building {B250m, · · · , B2000m},
vegetation {V250m, · · · , V2000m}, and water body {W250m, W500m, W750m}, are selected from
the elimination. Furthermore, four predictors, PM10 concentration, SO2 concentration,
B2000m, and W250m, satisfy the thresholds in the stepwise variable selection. Meanwhile, in
Model B, 68 predictors consisting of the land use predictors from the geographic dataset
and the air quality predictors from air quality dataset were accepted after the correlation
analysis, and they are further considered in the stepwise variable selection. After the
stepwise variable selection, four predictors, PM10 concentration, SO2 concentration, wind
speed, and pR1500m, are selected, and they are set as the input to the estimation model.

Tables 5 and 6 present the statistical details of the comparison of Models A and B,
respectively. As expected, the PM10 concentration played a significant role in the estimation
of PM2.5 concentrations (part. R2 = 59.0% in Model A, part. R2 = 33.2% in Model B). This
finding is in line with the developed model, in which the part. R2 is 70.7%. For accuracy,
the R2 and RMSE in Model A are 0.68 and 3.14 µg/m3, and those for Model B are 0.79 and
3.47 µg/m3, respectively. The R2/RMSE in these two compared models are lower/higher
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than those of the developed model. This result indicates that the integration of land use
predictors in the geographic and satellite image datasets can increase the accuracy of PM2.5
concentration modeling. In addition, Figures 11 and 12 show the comparison between
the observed and estimated PM2.5 concentrations along with their results in the tenfold
cross-validation from the two compared models, respectively. Furthermore, the precision
of the proposed model is compared with two alternative models, as model A and model
B, by analyzing the regressed prediction data from the year 2018, as depicted in Figure 13.
The results presented in Figure 13a demonstrate the effectiveness of the proposed model
by showcasing its superior performance in comparison to Model A and Model B. This has
been established through a linear regression analysis, which has revealed a notably higher
R-squared value for the proposed model. These results serve as a strong indication of the
efficacy of the proposed algorithm, and its potential to enhance the predictive capabilities
of existing models. The findings presented here may have implications for future research,
particularly in the field of predictive modeling, wherein the development of more effective
models is of critical importance.

Table 5. Predictor coefficients in Model A for PM2.5 concentration estimation.

Predictor β p-Value VIF Part. R2 R2 Adj. R2 RMSE

β0 (Intercept) 1.29 0.43 - - 0.68 0.7 3.14
PM10 0.29 <0.001 1.80 59.0%
B2000m 0.01 × 10−3 <0.001 1.56 13.0%

SO2 1.75 <0.01 1.82 8.0%
W250m −0.01 × 10−2 <0.01 1.18 0.7%

Table 6. Predictor coefficients in Model B for PM2.5 concentration estimation.

Predictor β p-Value VIF Part. R2 R2 Adj. R2 RMSE

β0 (Intercept) 0.55 0.8 - - 0.79 0.62 3.47
PM10 0.33 0.001 1.62 33.2%
SO2 3.25 0.001 1.61 16.9%

Wind Speed −1.12 0.002 1.02 7.4%
pR1500m 0.01 × 10−1 0.01 1.04 5%

Figure 11. External verification using the PM2.5 data of the year 2018. (a) Observed (y-axis)
and estimated (x-axis) PM2.5 concentration from Model A. (b) Accuracy assessment using
tenfold cross-validation.
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Figure 12. External verification using the PM2.5 data of the year 2018. (a) Observed (y-axis) and
estimated (x-axis) PM2.5 concentration from Model B. (b) Accuracy assessment using tenfold cross-
validation scheme.

Figure 13. The relationship between the observation and the predictors is evaluated through re-
gression analysis in 2018. (a) Observation regressed against predictors with integration between
geographic and remote sensing datasets. (b) Observation regressed against predictors with a remote
sensing dataset. (c) Observation regressed against predictors with a geographic dataset.

5. Conclusions

The contributions of this study include the integration of land use classes from geo-
graphic and satellite image datasets into an estimation model for PM2.5 concentration, the
use of Landsat-8 images with better spatial resolution, and the generation of cloud-free
images for land use classification using satellite images. The model was developed by
means of predictor selection, which was based on two successive analyses, correlation anal-
ysis and stepwise variable selection. Among all the potential predictors, only five of them,
including the PM10 concentration, wind speed, and the SO2 concentration from air quality
datasets, as well as B2000m and pR500m from the satellite image and geographic dataset,
survived the selection. The last two predictors indicate the total area of artificial buildings
and pure residential areas under a circular buffer of 2000 m and 500 m, and represent the
integration of geographic and satellite image datasets. Based on their accuracy assessment,
the RMSE and R2, which were 3.06 µg/m3 and 0.85, respectively, imply that the developed
model can estimate the PM2.5 concentration with satisfactory accuracy. Moreover, the
developed model was compared with two related models that utilized land use classes,
either from the geographic dataset or from the satellite image dataset separately. The
comparison shows that the developed model outperformed the two related models, that is,
the integration between land use classes from the geographic and satellite image datasets
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can improve the performance of the estimation model. Using the model that was created by
integrating geographic and satellite image datasets, the PM2.5 levels of Taipei Metropolis
between 2013 and 2018 were estimated. The concentration of PM2.5 was depicted using
colors ranging from yellow to red, with the former indicating the lowest (5 µg/m3) and
the latter the highest (30 µg/m3) concentrations. In the future, the potential predictors
from the satellite image dataset can be extended in more detail (i.e., by adding other classes
such as agricultural, bare land, shrub, and bush land). Therefore, the estimation of PM2.5
concentrations may improve.
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