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Abstract: China launched the Three-North Shelterbelt Forest Program (TNSFP) in 1978 in northern
China to combat desertification and dust storms, but it is still controversial in ecologically fragile arid
and semi-arid areas, which is partly due to the uncertainties of monitoring of the spatial-temporal
changes of forest distribution. In this study, we aim to provide an overall retrospect of the forest
changes (i.e., forest gain and forest loss) in northern China during 2007–2017, and to analyze the
forest changes in different precipitation zones. We first generated annual forest maps at 30 m spatial
resolution during 2007–2017 in northern China through integrating Landsat and PALSAR/PALSAR-2
data. We found the PALSAR/Landsat-based forest maps outperform other four existing products
(i.e., JAXA F/NF, FROM-GLC, GlobeLand30, and NLCD-China) from either PALSAR or Landsat
data, with a higher overall accuracy 96% ± 1%. The spatial-temporal analyses of forests showed a
substantial forest expansion from 316,898 ± 34,537 km2 in 2007 to 384,568 ± 35,855 km2 in 2017 in
the central and eastern areas. We found a higher forest loss rate (i.e., 35%) in the precipitation zones
with the annual mean precipitation less than 400 mm (i.e., the arid and semi-arid areas) comparing
to that (i.e., 25%) in the zones with more than 400 mm (i.e., the humid areas), which suggests the
lower surviving rate in the drylands. This study provides satellite-based evidence for the forest
changes in different precipitation zones, and suggests that the likely impacts of precipitation on
afforestation effectiveness should be considered in future implementation of ecological restoration
projects like TNSFP.

Keywords: forest loss and gain; optical and SAR data integration; spatial-temporal changes; precipi-
tation; northern China

1. Introduction

China has made important contributions to the world’s greening pattern through
afforestation and ecological engineering projects [1–3]. As the largest and most represen-
tative ecological engineering project in scale in China, the Three-North Shelterbelt Forest
Program (TNSFP) was launched in northern China in 1978 in order to combat sandstorms
and desertification [4–6], and northern China covers about two-thirds of Chinese arid and
semi-arid regions [7]. So far, China has invested about 7129 million dollars for the TNSFP,
the accumulated forestation area has reached 30 million hectares until 2018, and the rate of
forest coverage has increased from 5.05% in 1979 to 13.57% in 2018 in northern China [8].

Information on the forest distribution spatial-temporal changes is vital for forest
management. Considerable studies paid attention to detecting the trends of vegetation
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in northern China to evaluate the effectiveness of the TNSFP [6,7,9,10]. However, the
rationality of ecological engineering in ecologically fragile arid and semi-arid areas is still
controversial [5,11]. With the progress of the TNSFP, increasingly more media outlets and
studies reported the high mortality of trees [12]. Moreover, since 1949, the overall surviving
rate of trees in the arid and semi-arid regions in northern China was only 15% [13]. Until
now, information on spatial-temporal changes of forests distribution in northern China
is still unclear, especially in different precipitation zones in recent years. Given the great
environmental impacts of ecological engineering projects in northern China, it is crucial
to acquire detailed and timely information of forest gain as well as forest loss, especially
in the recent period that would be helpful for decision-making in forest management and
continuous implementation of the project.

Optical remote sensing images have been widely used in the generation of forest
distribution maps, which include low spatial resolution images derived from Advanced
Very High Resolution Radiometer (AVHRR) [14,15] and Moderate Resolution Imaging
Spectroradiometer (MODIS) [16–18], and moderate spatial resolution data like Landsat
TM/ETM+ images [19–22]. Although coarse spatial resolution data could reveal the spatial-
temporal dynamics of forests, they have an obvious limitation in identifying small and
fragmented forests patches. As the release of the USGS Landsat archive [23], Landsat
data have been widely applied to generate forest maps from regional to global scale and
assess forest distribution dynamics [19,20,24–26]. In comparison with AVHRR and MODIS
images, the 30 m forest products derived from Landsat data enable capturing more specific
details of the spatial-temporal dynamics of forest patches. However, due to the obstacles
of clouds, fog, and cloud shadows, the usage of optical data is largely restricted by the
availability and quality of observations [27,28]. Although the combined use of multiple
years of optical data might overcome this problem, it will reduce the temporal resolution in
forest dynamic monitoring [20]. Moreover, some green plants (e.g., crops with high biomass
and bushes) might have similar spectral characteristics as forests. In this case, Landsat data
have a high sensitivity to canopy layer characteristics, but a low sensitivity to estimation of
forest structural attributes, which may have a large misclassification error [28].

Compared to optical remote sensing, active microwave remote sensing can observe
land surface in almost all weather and environmental conditions [29]. The long band
wavelength Synthetic Aperture Radars (SARs) (e.g., L-band) enable penetrate forest canopy
and obtain detailed information on forest structure [30,31]. For example, the Phased Array-
type L-band Synthetic Aperture Radar (PALSAR) global orthorectified mosaic dataset
generated by Japan Aerospace Exploration Agency (JAXA) are unaffected by the weather
conditions and can provide wall-to-wall imagery covering a large area regularly [32], and
have been used to monitor forest dynamics in hotspots around the world [33–35]. However,
as SAR-based backscatter signals depend on the physical structure features, the SAR-based
forest mapping has some limitations in identifying urban buildings, rocky landcover, and
forests, as they have similar backscatter coefficient [36,37].

Several researches have shown the advantages of integrating optical and SAR images
to map forests and monitor forest distribution dynamics [38,39]. Briefly, optical images
offer the information of forest canopy coverage and SAR data offer information on forest
physical structure (e.g., forest trunk and branch). For example, by integrating the Landsat
data and PALSAR Fine Beam Dual Polarization mode (FBD) mosaic dataset, Qin et al. [38]
generated annual forest maps from 2007 to 2010 in Oklahoma, and obtained the high
overall accuracy and Kappa coefficient of 88.2% and 0.75, respectively. Chen et al. [39]
combined the Landsat, PALSAR, and PALSAR-2 data, and monitored the spatial-temporal
dynamics of forests during 2007–2015 in Hainan, China. In northern China, the use of
PALSAR/PALSAR-2 data is less affected by the terrain, as the area of mountainous terrain
is relatively small in this region. Besides, Landsat data are less affected by clouds and
cloud shadows because of the high latitude in this region. Therefore, there have been few
researches on forest mapping by integrating the SAR data and optical data in this region.
Given the success of previous studies and the natural conditions in northern China, the
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combination of optical and SAR remote sensing images might be effective for mapping
forest distribution changes in this region.

In this context, our study aims to provide an overall retrospect of the forest changes
(i.e., non-forest to forest and forest to non-forest) in northern China from 2007 to 2017 and
attempts to address the following question: How does the forest changes (i.e., forest gain
and forest loss) in different precipitation zones? It includes three parts:

• mapping forests by integrating Landsat and PALSAR/PALSAR-2 images based on a
decision tree algorithm,

• analyzing the spatial-temporal pattern of forest gain and loss, and
• investigating the forest changes in different precipitation zones.

2. Data and Methods
2.1. Study Area

The project area of TNSFP (i.e., northern China) covers an area of 4.1 million km2 and
consists of 13 provinces, accounting for about 42% of China’s total land area (Figure 1).
Northern China (34◦20′–50◦11′N and 73◦27′–128◦13′E) spans about 4480 km from east to
west, and spans about 560–1460 km from north to south. Its climate conditions (e.g., arid,
semi-arid, and semi-humid) and vegetation cover types (e.g., grass, croplands, and forest)
vary greatly [40]. The climate ranges from semi-humid (east) to semi-arid (middle) and
arid (west). The annual mean precipitation increases from 25 mm in the west to 800 mm in
the east [40]. In addition, the arid and semi-arid regions (i.e., regions with the annual mean
precipitation less than 400 mm) account for about 2/3 of the project area.
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2.2. Data Collection and Preprocessing
2.2.1. PALSAR/PALSAR-2 Dataset and Preprocessing

The Advanced Land Observing Satellite-1 (ALOS) PALSAR images with 25 m spatial
resolution [32] used in this study were derived from JAXA and the Earth Observation
Research Center (EORC). Polarized signals of SAR data can be transmitted and received in
the horizontal or vertical dimensions through the L-band, including the transmission and
reception in horizontal dimension (HH) and the transmission in horizontal dimension and
the reception in vertical dimension (HV). The PALSAR/PALSAR-2 dataset included the
mosaic of HH and HV polarization data, local incidence angle, and mask information (i.e.,
void area, layover, effective area, ocean flag, and shadowing). By applying the 90 m Shuttle
Radar Topography Mission (SRTM) digital elevation model (DEM), the slope correction
and ortho-rectification were performed on the HH and HV backscatter data with a about
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12 m geometric accuracy [41]. In this study, all the available PALSAR/PALSAR-2 HH and
HV dataset from 2007 to 2017 covering the project area was used. By using the calibration
coefficients from JAXA, the Digital Number (DN) values (i.e., amplitude values) in HH or
HV were transformed into backscattering coefficients (γo) in decibels (dB) as [42,43]

γ◦(dB) = 10 log10 DN2 + CF (1)

where γo represents the backscattering coefficient, DN represents the digital number in
HH and HV, and CF represents the absolute calibration coefficient of −83 [43].

In addition, the Difference and Ratio layers are widely applied for classification and
the calculation is as follows [34]:

Difference = HH−HV (2)

Ratio =
HH
HV

(3)

where HH represents the transmission and reception in horizontal dimension, and HV rep-
resents the transmission in horizontal dimension and the reception in vertical dimension.

To match Landsat data at 30 m spatial resolution, the PALSAR/PALSAR-2 data (i.e.,
HH, HV, Difference, and Ratio layer) at 25 m spatial resolution were resampled to 30 m
through the nearest neighbor method [44]. Then, we combined the preprocessed HH, HV,
Difference, and Ratio and Landsat images to generate a data cube.

2.2.2. Landsat Dataset and Preprocessing

In this study, we used all available surface reflectance data of Landsat 5/7/8 covering
the study area from January 2007 to December 2017. The bad observations caused by clouds
and cloud shadows were eliminated using the CFmask algorithm [45]. Then, almost all the
pixels have good-quality observations more than 10 times from 2007 to 2017 (Figure S1) and
we used to all good-quality observations to compute the Normalized Difference Vegetation
Index (NDVI), and the annual maximum NDVI values (NDVImax) were then calculated.

NDVI =
NIR− RED
NIR + RED

(4)

where NIR and RED represent the Landsat surface reflectance in the near-infrared and red
bands, respectively.

2.2.3. Precipitation Dataset and Preprocessing

The Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) Daily
data were applied in this study. The dataset incorporates satellite data at 0.05◦ spatial
resolution with in situ station data to generate gridded precipitation time series, which
can provide timely and reliable precipitation data. We obtained daily precipitation data
from 1 January 2007, to 1 January 2018, and calculated the annual mean precipitation from
2007 to 2017. Then, northern China was divided into five precipitation zones according to
equal intervals of 200 mm in the annual mean precipitation range: 0–200, 200–400, 400–600,
600–800, and >800 mm (Figure 2).

2.3. Forest Changes by Precipitation Zones in Northern China

The overall workflow for monitoring the spatial-temporal changes of forests by pre-
cipitation zones in northern China is presented in Figure 3. It is worth noting that the forest
changes mentioned in the study referred to two changes, including forest gain (i.e., the
change from non-forest to forest) and forest loss (i.e., the change from forest to non-forest),
but not including those within-forest changes from one type of forest to another. The
overall workflow consists of four steps: (1) producing the annual forest maps (namely,
PALSAR/Landsat-based forest maps) based on SAR-based metrics (i.e., HH, HV, Differ-
ence, and Ratio) and Landsat NDVImax time series; (2) validating the resulting forest maps
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and forest changes using ground truth samples; (3) comparing the PALSAR/Landsat-based
forest maps with four existing forest maps (i.e., JAXA F/NF, FROM-GLC, GlobeLand30,
and NLCD-China); and (4) investigating the forest gain, loss, and net changes and an-
alyzing the forest changes by different precipitation zones. The detailed information is
presented hereafter.
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2.3.1. Forest mapping

The forest definition proposed by the Food and Agriculture Organization (FAO) is a
region (>0.5 ha) where tree canopy cover of >10% and tree height of >5 m [46]. Our method
for monitoring the spatial-temporal changes of forests in northern China during 2007–2017
adapted this definition but did not consider the limitation of the minimum mapping unit
(i.e., 0.5 ha), which involved two aspects of forests: tree height and forest canopy.

The first step is to generate the PALSAR-based forest baseline maps. Previous studies
have proved that the PALSAR-based forest mapping algorithm is robust and efficient in the
fragmented and fragile Loess Plateau in China [47], sparse agroforests region in the North
China Plain [48], and sub-humid and semi-arid regions in Oklahoma, USA [38]. These
studies applied a generalized and simple rule to identify forests (Equation (5)).

(−16 < HV < −8) AND (2 < Difference < 8) AND (0.3 < Ratio < 0.85) (5)

In order to confirm the rationality of this rule in our study area, we collected and
interpreted visually 1722 regions of interest (ROIs) for four typical land cover types (i.e.,
469 samples for forest, 432 samples for cropland, 429 samples for built-up land, and 392
samples for water), and generated the histograms of HV, Difference, and Ratio for each
land cover type. Then, we matched the three sets of thresholds (Equation (5)) with the
histograms of backscatter coefficient of different land cover types (Figure 4) and found this
rule is suitable for our study.
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In the second step, we also used the above 1722 samples to generate the histograms
of annual NDVI maximum (namely, NDVImax) for each land cover type (Figure 4a). We
found that the threshold of 0.7 (Equation (6)) derived from the previous studies [38,47]
is suitable for our study area. The Landsat-based NDVImax was used to mask the land
cover types in PALSAR-based forest baseline maps, which have the similar backscattering
coefficients with forests, such as urban buildings, farmlands, and rocky lands. Because
of the high sensitivity of NDVI to forest canopy and chemical content [49], we used the
NDVImax threshold (Equation (6)) for extracting forests and decreasing the commission
errors. Finally, PALSAR-based forest layer (Equation (5)) and Landsat-based forest layer
(Equation (6)) were overlaid to obtain the annual forest maps during 2007–2010 and
2015–2017.

NDVImax > 0.7 (6)
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2.3.2. Sample Collection for Accuracy Assessment of Forest Mapping and Changes

We used the Very High Resolution (VHR) images from Google Earth (GE) and time
series of inter-annual and intra-annual vegetation indices generated with Landsat and
MODIS imagery in Collect Earth to evaluate the resulting forest map and forest changes
from 2007 to 2017. First, the stratified random sampling method was used in this study.
Following the good practices for estimating and assessing accuracy of forest change [50],
we stratified the sampling according to the forest class and non-forest class in the resultant
forest map of each year in our study and generated the random points by using ArcGIS
software. Second, we used augmented visual interpretation to visually interpret the
samples based on the VHR images in GE and time series of vegetation indices data in
Collect Earth [51–53]. We discarded the samples with uncertain land cover information
to ensure the reliability of the samples. Finally, we obtained 539 forests samples and
2246 non-forest samples in 2007, 542 forests samples and 2243 non-forest samples in 2008,
547 forests samples and 2238 non-forest samples in 2009, 554 forests samples and 2234
non-forest samples in 2010, 570 forests samples and 2217 non-forest samples in 2015, 571
forests samples and 2214 non-forest samples in 2016, and 573 forests samples and 2213
non-forest samples in 2017. The samples in 2010 were used for accuracy assessment and
comparison of multiple forest products (Figure 5a). We adjusted the area of forest and
non-forest with the corresponding confidence interval (95%) [50].
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Figure 5. Spatial distribution of validation samples for accuracy assessment (a) 554 forests samples and 2234 non-forest
samples in 2010. (b) Four examples of samples selected from Google Earth VHR images of 2010. (c) Four classes of samples
to assess the forest changes from 2007 to 2017.

In addition, to assess the forest changes from 2007 to 2017, we conducted stratified
sampling via four strata (i.e., stable forest, forest to non-forest, non-forest to forest, and
stable non-forest) in the entire northern China. Then, the random samples were visually
interpreted according to the VHR images from Google Earth taken circa 2007 and 2017.
Finally, 558 stable non-forest samples, 334 non-forest to forest samples, 363 forest to non-
forest samples, and 409 stable forest samples were obtained (Figure 5c).

On the basis of the confusion matrix, the producer’s accuracy (PA), user’s accuracy
(UA), and overall accuracy (OA) were computed and adjusted by a 95% confidence interval
to evaluate the annual forest maps from 2007 to 2017 and the forest change map from 2007
to 2017.

2.3.3. Comparison of Multiple Forest Products in Northern China and
Accuracy Assessment

We selected four forest products at relatively high spatial resolutions in 2010, and
qualitatively and quantitatively compared them with our forest maps in northern China to
assess the performance of our products, including (1) JAXA FNF forest map [32], (2) FROM-
GLC forest map [54], (3) GlobeLand30 forest map [55], and (4) NLCD-China forest map [56]
(Table 1). Based on the samples in Figure 5a, we first computed the PA, UA, OA, and Kappa
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coefficient to assess the accuracy of the five forest maps using the confusion matrix method
and adjusted the accuracy assessment by a 95% confidence interval [50]. We also evaluated
our forest map by computing a consistency index between our forest map and each of
the other four products. The consistency index refers to the ratio of the number of mu-
tual forest (or non-forest) samples to the total number of forest (or non-forest) samples in
Figure 5a. Moreover, we visually compared the forest spatial details among these for-
est maps.

Table 1. Summary information of forest products in northern China in 2010.

Forest Products Forest Definition Spatial
Resolution

Classification
Algorithms Data Resources References

JAXA F/NF Tree height ≥ 5 m
Canopy cover ≥ 10% 25 m Decision Tree PALSAR [32]

FROM-GLC Tree height ≥ 3 m
Canopy cover ≥ 15% 30 m Supervised

Classification Landsat [54]

Globe Land30 Canopy cover ≥ 10% 30 m

Pixel-Object-
Knowledge

(POK)-based
approach

Landsat,
HJ-1 [55]

NLCD-China Canopy cover ≥ 10% 100 m Visual interpretation
approach

Landsat, CBERS,
HJ-1

and HJ-1A
[56]

PALSAR/Landsat-
based
map

Tree height ≥ 5 m
Canopy cover ≥ 10% 30 m Decision Tree PALSAR/PALSAR-2,

Landsat This study

2.3.4. Forest Cover Changes Analysis in Different Precipitation Zones

To understand the forest changes in different precipitation zones in northern China,
we first overlapped the forest maps in 2007 and 2017, and generated the map of forest
dynamics consisting of stable forest, non-forest to forest, forest to non-forest, and stable
non-forest. Here, forest loss refers to the change at pixel level from forest in 2007 to non-
forest in 2017, and forest gain refers to the change at pixel level from non-forest in 2007 to
forest in 2017. Then, the study area was divided into five precipitation zones (Figure 2). We
also simply divided the region into two zones according to the threshold of 400 mm annual
mean precipitation, i.e., semi-arid and semi-humid zones. A total of seven precipitation
zones were generated, including 0–200, 200–400, 400–600, 600–800, >800, 0–400, and >400.
Finally, for each precipitation zone, we computed the area of the forest in 2007, forest in
2017, forest gain, and forest loss.

Furthermore, to investigate the statistical relationship between precipitation and forest
loss in northern China during 2007–2017, we used the finer interval in the annual mean
precipitation range (i.e., 20 mm) and generated 43 precipitation zones. We overlapped
the ratio of forest loss (i.e., forest loss from 2007–2017 divided by forest in 2007) with
the 43 precipitation zones, and analyzed the variation in the ratio of forest loss along the
precipitation gradients. In addition, a linear least-squares regression with 43 observations
of the ratio of forest loss vs. the annual mean precipitation in the period 2007–2017
was performed.

3. Results
3.1. Accuracy Analysis of PALSAR/Landsat-Based Forest Map of Northern China and Comparison
with Other Four Forest Maps

Results of the accuracy assessment of the five forest products in 2010 are presented
in Table 2. We provided the complete confusion matrixes for the PALSAR/Landsat-
based forest map and other four forest products in 2010 (Tables S1–S5). Clearly, the



Remote Sens. 2021, 13, 543 9 of 19

PALSAR/Landsat-based forest map had the highest OA and Kappa coefficient (96% ± 1%
and 0.66, respectively). The OA of the other four forest products is similar, ranging from
87% to 89%. Although all forest maps had high OA (i.e., more than 80%), the PA of the
forest indicated a larger difference and that of the non-forest class a smaller difference.
Specifically, for the forest class, the PA of PALSAR/Landsat-based forest map in this study
was 56% ± 6%, while that in other forest maps was less than 31%. That meant the omission
error of other forest maps in the study area was far higher than the PALSAR/Landsat-based
forest map. In addition to the NLCD forest map, the UAs of the forest class in other forest
maps were greater than 80%. The UA of our result was 80% ± 3%. That meant there
would be some commission errors in both our results and the NLCD forest maps. Spatial
consistency analyses based on the samples showed that the highest spatial consistency
index of forest is presented between the PALSAR/Landsat-based and FROM-GLC forest
maps (50.54%), while the lowest spatial consistency index of the forest is shown between
PALSAR/Landsat-based and JAXA F/NF forest maps (44.40%).

Table 2. Accuracy assessment and consistency of PALSAR/Landsat-based map and the other four
forest products in 2010. The consistency refers to the ratio of the number of mutual forest (or non-
forest) samples to the total number of forest (or non-forest) samples in Figure 5a. Accuracy measures
are adjusted and presented by a 95% confidence interval.

Forest Products
Land
Cover
Types

UA PA OA Kappa Consistency

PALSAR/Landsat
Forest 80% ± 3% 56% ± 6%

96% ± 1% 0.66 -
Non-

Forest 97% ± 1% 99% ± 0%

GlobeLand30
Forest 88% ± 3% 31% ± 3%

89% ± 1% 0.43
47.47%

Non-
Forest 90% ± 1% 99% ± 0% 93.06%

FROM-GLC
Forest 87% ± 3% 30% ± 3%

89% ± 1% 0.42
50.54%

Non-
Forest 89% ± 1% 99% ± 0% 93.38%

NLCD-China
Forest 77% ± 4% 28% ± 3%

89% ± 1% 0.37
46.28%

Non-
Forest 89% ± 1% 98% ± 0% 93.27%

JAXA F/NF
Forest 84% ± 3% 26% ± 2%

87% ± 1% 0.29
44.40%

Non-
Forest 87% ± 1% 99% ± 0% 93.64%

UA: user’s accuracy, PA: producer’s accuracy, OA: overall accuracy.

Figure 6 presents the forest spatial distribution in northern China in 2010 derived from
the five forest products. In general, the forest spatial distribution is similar, and most of
forest patches are distributed in the southern and eastern areas of northern China. Figure 7
presents a visual comparison between the Google Earth image and the five forest products.
Although the overview of the forest spatial distribution was similar (Figure 6), there are
evident differences in small forest patches or fragmented forest areas. For example, in the
case of Subarea A, the forests observed in the JAXA F/NF, NLCD-China, and FROM-GLC
forest maps were very few. In contrast, the PALSAR/Landsat-based map and GlobeLand30
forest map showed more details of forest dispersion that were more similar with Google
Earth image. In the case of Subarea B, the forests were not observed by JAXA F/NF
forest map, and some forest details were ignored in the NLCD-China, FROM-GLC, and
GlobeLand30 forest maps. Moreover, in the case of Subarea C, arrayed forest patches in
urban area were not captured in NLCD-China, FROM-GLC, and GlobeLand30 forest maps,
and the JAVA F/NF forest map cannot correctly identify the forest distribution. Overall,
JAXA F/NF, NLCD-China, FROM-GLC, and GlobeLand30 missed more information of
forest distribution, especially in areas with high forest fragmentation. Compared with
them, PALSAR/Landsat-based forest map was most similar with Google Earth image.
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Subarea C: 0.11 km2.
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3.2. Areal Changes of PALSAR/Landsat-Based Forest Map

Based on the resulting forest maps in this study, the total forest areas in northern
China were 316.89 ± 34.54, 331.12 ± 34.67, 340.58 ± 35.58, 290.24 ± 29.20, 396.68 ± 37.95,
404.50 ± 37.45, and 384.57 ± 35.86 thousand km2 in 2007, 2008, 2009, 2010, 2015, 2016, and
2017, respectively (Figure 8). The averaged forest area during 2015–2017 (395.25 thousand
km2) was higher than that during 2007–2010 (319.71 thousand km2) (Figure 8). It is worth
noting a remarkable decrease in the forest area of 2010, which could be related the rapid
urban and industrial expansion [57]. In the 2015–2017 period, the forest area in 2016 peaked
with a subsequent decrease in 2017. Moreover, the forest area in 2017 was smaller than that
in 2015. We study the spatial distribution of forest gain, forest loss, stable forest, and stable
non-forest between 2015 and 2017(Figure S2). Forest loss (2015–2017) occurred mainly in
Northeast China. Northeast China is the most important wood production region and
industrial area in China, so large-scale logging of trees for wood. Such a fact might not
imply that part of the afforestation has been unsuccessful as the Three-North Shelterbelt
Forest Program pays attention to the afforestation effect of the entire northern China.
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Figure 8. Forest area variation in northern China from 2007 to 2017. The forest area from 2007 to 2017
was adjusted based confusion matrix by 95% confidence intervals.

3.3. Forest Spatial Changes during 2007–2017
3.3.1. Accuracy Assessment of Forest Spatial Changes during 2007–2017

According to the four types of samples in Figure 5c, we assessed the accuracy of forest
changes from 2007 to 2017. The results showed that the high OA and Kappa value of forest
changes were 98% ± 1% and 0.97, respectively (Table 3). The PA and UA of the four classes
(i.e., Non-Forest to Forest, Forest to Non-Forest, stable forest and stable non-forest) are
more than 70%. The overall result of forest changes from 2007 to 2017 was highly consistent
with the real land cover change random samples.
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Table 3. Confusion matrix for the forest change map from 2007 to 2017.Class 1 is Non-Forest to
Forest, class 2 is Forest to Non-Forest, class 3 is stable forest, and class 4 is stable non-forest. Accuracy
measures are presented with a 95% confidence interval.

Class
Reference

1 2 3 4 Wi UA PA OA

Map

1 317 4 18 86 0.03 75% ± 5% 74% ± 18% 98% ± 1%
2 4 356 20 51 0.01 83% ± 4% 80% ± 8%
3 11 2 370 47 0.04 86% ± 3% 89% ± 9%
4 2 1 1 374 0.92 98% ± 1% 99% ± 0%

Total 334 363 409 558
UA: user’s accuracy, PA: producer’s accuracy, OA: overall accuracy.

3.3.2. Forest Spatial Changes during 2007–2017

In our study, we generated the annual forests maps in the northern China during
2007–2010 and 2015–2017 (Figure S3). Most of the forests were distributed in the eastern
part of the region, such as Shaanxi Province, Shanxi Province, and the Beijing-Tianjin-Hebei
region. There were few forest patches in the central and western regions.

The spatial distribution of forest gain, forest loss, stable forest, and stable non-forest
between 2007 and 2017 was shown in Figure 9. Most of the forest area (73.67%) did not
change from 2007 to 2017. Those stable forests were mainly distributed in the east and
south of the study area, such as southern Shaanxi Province, central Shanxi Province, central
Hebei Province, Beijing, and the eastern part of the northeast region, where the climate was
humid and suitable for tree growth. The forest loss occurred mainly in Northeast China,
including Heilongjiang, Jilin, and Liaoning, whereas the forest gain was mainly occurred
in northern Shaanxi, Shanxi, the Beijing-Tianjin-Hebei region, and Jilin.
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3.4. Forest Changes by Different Precipitation Zones during 2007–2017

Figure 10 and Table 4 presented the forest area and forest changes in different precipita-
tion zones in northern China. We computed the ratio of forest area in different precipitation
zones to the forest area in entire study area. For 2007 and 2017, 89% and 86% forests were
located in the areas with annual mean precipitation ranging from 400 mm to 800 mm,
respectively. Forest gain occurred in each precipitation zone (Figure 10h–n and Table 4).
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We found that forest gain proportion in the humid areas (8.06%, Table 4, Figure 10m,n)
is higher than that in the arid and semi-arid areas (0.70%). Moreover, the forest loss in
northern China could not be ignored (Figure 10a–g and Table 4). For example, more than
22% of forest in 2007 was lost in the entire study area (Figure 10a–e), and the highest
percent occurred in the zone with annual mean precipitation less than 200 mm (i.e., 41.91%)
(Figure 10a). It is worth noting that the forest loss proportion was 35.01% in the zone with
annual mean precipitation less than 400 mm (i.e., the arid and semi-arid areas in northern
China) (Figure 10).
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Figure 10. Forest changes (loss and gain) in different precipitation zones from 2007 to 2017.
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Table 4. Forest area (in km2) in 2007 and forest changes in different precipitation zones in northern
China from 2007 to 2017. Note that confidence intervals of areal estimates (and derived rates) were
not calculated in this table due to the unavailability of sufficiently covered ground truth data in all
the strata in each precipitation zone in both 2007 and 2017.

0–200 mm 200–400 mm 400–600 mm 600–800 mm >800 mm 0–400 mm >400 mm

Total area 1,873,238 1,027,372 844,123 255,323 6649 2,900,611 1,106,096

Forest in 2007
(percentage 1)

4818
(0.26%)

15,985
(1.56%)

99,704
(11.81%)

87,356
(34.21%)

2181
(32.80%)

20,803
(0.72%)

189,241
(17.11%)

Forest in 2017
(percentage 2)

11,718
(0.63%)

21,865
(2.13%)

120,525
(14.28%)

92,458
(36.21%)

2114
(31.79%)

33,583
(1.16%)

215,097
(19.45%)

Forest gain

(percentage 3)
8919

(0.48%)
11,144

(1.10%)
46,683

(6.27%)
26,810

(15.96%)
431

(9.65%)
20,063

(0.70%)
73,924

(8.06%)

Forest loss
(percentage 4)

2019
(41.91%)

5263
(32.93%)

25,862
(25.94%)

21,708
(24.85%)

497
(22.80%)

7283
(35.01%)

48,067
(25.40%)

Net change

(percentage 5)
6899

(143.19%)
5880

(36.78%)
20,820

(20.88%)
5102

(5.84%)
−66

(3.03%)
12,780

(61.43%)
8919

(4.71%)

1 The percentage refers to the ratio of forest area in 2007 to the total area of each precipitation zone. 2 The
percentage refers to the ratio of forest area in 2017 to the total area of each precipitation zone. 3 The percentage
refers to the ratio of forest gain area to the non-forest area in 2007 of each precipitation zone. 4 The percentage
refers to the ratio of forest loss area to the forest area in 2007 of each precipitation zone. 5 The percentage refers to
the ratio of net change area to the forest area in 2007 of each precipitation zone.

Moreover, a significant negative relationship between the ratio of forest loss and
annual mean precipitation was found, with the slope of 0.03%/mm (p-value < 0.01 and
R2 = 0.47) (Figure 11). That is to say, the forest loss proportion decreased from more arid
zones towards more humid zones.
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4. Discussion
4.1. Forest Mapping Based on PALSAR and Landsat Data Integration in Northern China

In our study, annual forest maps (namely, PALSAR/Landsat-based forest maps in this
study) of northern China with high OA and Kappa coefficient (Table 2) during 2007–2017
were generated, by integrating the Landsat and PALSAR/PALSAR-2 data. Compared
with the other existing forest products based solely on optical data (i.e., GlobeLand30,
NLCD-China, and FROM-GLC) and SAR data (i.e., JAXA F/NF), PALSAR/Landsat-based
forest maps could capture more details of forest pattern that is closest to the actual situation
(Figure 7). Integrating PALSAR/PALSAR-2 and Landsat data is suitable for forest mapping
in northern China that could be explained by the following facts.

First, the forest definition plays a critical part in forest mapping [52], and different for-
est products often used different standards in terms of forest coverage and tree height [58].
Integrating SAR and optical data allows providing two types of information. In our study,
we took into account both tree height and forest canopy cover and integrated the PALSAR
and Landsat data for forest mapping. Our study adopted the forest definition of FAO
(i.e., a region (>0.5 ha) where tree canopy cover of >10% and tree height of >5 m [46]), but
did not consider the limitation of the minimum mapping unit (0.5 ha). The JAXA F/NF
forest product adopted the same forest definition used in our study, but solely used SAR
data [32]. The forest definition used by the FROM-GLC forest map is tree canopy coverage
over 15% and tree height over 3 m, but the land cover mapping is purely based on optical
data [54]. Moreover, the NLCD-China forest product and GlobeLand30 forest product
adopted a looser criteria of forest definition: forest canopy coverage over 10%, regarding to
the limitations of optical data [55,56].

Second, integrating PALSAR/PALSAR-2 and Landsat data captured not only structure
information, but also spectral information, which effectively reduced the omission error.
In fact, mapping forest maps based on Landsat data is susceptible to clouds and cloud
shadows [27], and crops with high biomass and shrubs with high greenness probably
have spectral signatures similar to forest, which cannot be distinguished from the forest
by optical data [28]. PALSAR/PALSAR-2 data are susceptible to the terrain and soil
moisture [32]. Moreover, the SAR-based forest maps rely on the physical structure, and
there have certain limitations in classification due to similar backscattering coefficients
between urban buildings and forests [36,37]. The UA of PALSAR/Landsat-based forest
map was relatively low. This may be the reason for the quality of PALSAR/PALSAR-2
data. The temporal interval of the PALSAR/PALSAR-2 mosaic is generally one year and
the PALSAR data have a big gap in the rainy or dry season. In future, we will consider
optical and microwave remote sensing data with finer temporal and spatial resolution or
determine the thresholds with the histograms of backscatter coefficient by different region.

Finally, the geolocation and terrain features of the study area are two important reasons
for integrating Landsat and PALSAR/PALSAR-2 data in forest mapping in northern China.
In this region, Landsat data are less affected by clouds and cloud shadows due to the high
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latitude, and PALSAR/PALSAR-2 data is less affected by the terrain because of relatively
small area of mountainous terrain.

4.2. Forest Gain and Loss in Northern China during 2007–2017

Although information on the actual polygons and dates of afforested areas is crucial
to assess afforestation effectiveness of TNSFP, unfortunately we could not get access to the
vector polygon data for afforestation especially the TNSFP. In our study, we investigated
spatial-temporal changes of forest distribution (i.e., forest gain and forest loss) in northern
China. The results could provide detailed and timely forest cover information in a recent
period and that were likely related to the TNSFP activity, which were helpful for decision-
making in forest management and continuous implementation of the project.

Forest gain in northern China during 2007–2017 was mainly occurred in the eastern
and southern zones, and it may be caused by the implementation of several ecological
projects, such as the TNSFP. However, forest gain occurred mostly in the areas with
annual mean precipitation over 400 mm (i.e., humid and sub-humid areas); the forest
coverage has no significant increase in the areas with annual mean precipitation less than
400 mm (i.e., arid and semi-arid areas). For example, Northeast China has a temperate
monsoon climate and fertile resources. Forest cover has increased significantly in this region
(Figure 9), which agreed with the previous study on the significant increase of vegetation
cover in Northeast China [59]. The Beijing-Tianjin-Hebei region is the largest and most
dynamic region in northern China with a temperate continental climate. Forest cover has
grown significantly in this region (Figure 9). In Shaanxi and Shanxi, forest cover has grown
significantly (Figure 9), which agrees with previous researches on the Loess Plateau [47,60].

Both natural and anthropic factors caused the forest loss in northern China. The
forest loss could be likely due to deforestation. For example, Northeast China is the
most important region for timber production in China. Due to poor management and
excessive logging, the forest area in this region has been greatly reduced in recent years.
Besides, natural environmental conditions could influence the survival of forest. In this
study, a significant negative relationship between forest loss and annual mean precipitation
(Figure 11) might indicate that the ratio of forest loss in the arid and semi-arid areas (i.e.,
areas with annual mean precipitation less than 400 mm) was significantly greater than
that in the humid and semi-humid areas in northern China. The higher rate of forest loss
drylands was likely caused by many reasons, such as water stress, unreasonable planting
methods, the impact of pests and diseases, human activities, etc. It should be noted that
precipitation frequency and the length of drought period were not included in this study;
they could also contribute to the forest loss. Clearly, forest growth requires suitable water
conditions. Previous studies have shown that forest coverage is relatively high in areas
with the annual mean precipitation above 400 mm, and the value is mostly below 10%
in areas with annual mean precipitation less than 400 mm [61]. Moreover, some studies
showed that in areas with the annual mean precipitation less than 400 mm, soil moisture
is often insufficient for tree planting due to low annual precipitation that leads to large-
scale mortality of plantations in drought years [62,63]. Most of the trees planted in the
TNSFP are poplars [64], which have high water requirements [13]. Harsh environmental
conditions in the arid and semi-arid areas of northern China are insufficient to maintain
poplars. The principal objective of the TNSFP is to increase the forest coverage and decrease
wind erosion. In the early stages of the project, trees were planted on a large scale in arid
and semi-arid areas, and they consumed large amounts of available soil moisture, which
resulted in water scarcity [11].

4.3. Implication of the PALSAR/Landsat-Based Forest Maps for Forest Management in
Northern China

In the context of ecological engineering, the overall forest area in northern China
showed a substantial expansion in the last ten years, which was likely related to the TNSFP
activity. Moreover, it should be noted that the forest loss rate exceeds 35% in areas where
the annual mean precipitation is less than 400 mm (Figure 10f). That is to say, in the arid
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and sub-arid areas of northern China, forest coverage rate is low and forest loss rate is high.
The significant negative relationship between forest loss and annual mean precipitation
(Figure 11) also confirmed the risk of tree planting in arid and semi-arid areas. Besides,
some studies have shown that in the context of global warming, arid regions are becoming
increasingly arid, and humid regions are becoming increasingly humid [65–67]. Due to
the increase in atmospheric water demand caused by climate warming, drought pressure
has increased, and the growth of forests declines in semi-arid area [68]. Therefore, it is
important to take account into the potential influence of natural environments on the
effectiveness of forest restoration. In future research, we will focus specifically on the
actual polygons of afforested areas to assess the afforestation effectiveness of TNSFP more
accurately. In addition, future ecological engineering could focus on natural vegetation
restoration on a large scale that might avoid excessive investment and obtain optimal
returns [59].

5. Conclusions

Accurate information on the forest spatial-temporal changes and its association with
natural environmental conditions are critical for supporting forest management. Taking
northern China as an example, this study generated the 30 m forest maps from 2007 to 2017
by integrating the Landsat TM/ETM+/OLI and PALSAR/PALSAR-2 data. Our results
(namely, PALSAR/Landsat-based forest maps) were qualitatively and quantitatively evalu-
ated based on the ground samples and the comparison with other existing forest products
(i.e., GlobeLand30, FROM-GLC, NLCD-China, and JAXA F/NF). The spatial-temporal
analyses of forests showed a substantial forest expansion from 316,898 ± 34,537 km2 in
2007 to 384,568 ± 35,855 km2 in 2017 in the central and eastern areas. We found a higher
forest loss rate (35%) in the arid and semi-arid regions (i.e., areas with the annual mean
precipitation less than 400 mm) comparing to that (25%) in the humid areas (i.e., areas with
the annual mean precipitation more than 400 mm). The significant negative relationship
between annual mean precipitation and the ratio of forest loss indicates that the ratio of
forest loss in the arid and semi-arid areas was significantly greater than of the humid and
semi-humid areas in northern China. Our results indicate that the PALSAR/Landsat-based
forest maps offer the details in forest pattern, and the association between precipitation
zones and forest changes from 2007 to 2017 suggested that the suitability of tree planting
should be considered in future forest management.
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