Mapping Seasonal Tree Canopy Cover and Leaf Area Using Worldview-2/3 Satellite Imagery: A Megacity-Scale Case Study in Tokyo Urban Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. WordView-2 and WorldView-3 (WorldView-2/3) Datasets
2.3. Tree Canopy Extraction from Background
2.4. Reference Data of Tree Canopy Cover
2.4.1. Field Investigation
2.4.2. Aerial Photograph Interpretation
2.4.3. Tokyo Green and Water Coverage Ratios (Tokyo GWC-Ratio Data) Based on Aerial Photograph Interpretation
2.5. Approximate Model for the Relationship between Leaf Area Index (LAI)–Vegetation Indices (VI)
2.6. In Situ Tree LAI Measurement
2.7. LAI Estimates Using Landsat5-TM and Landsat8 Satellite Data
3. Results
3.1. Determination of Masking Thresholds and Band Combinations for Tree Canopy Extraction
3.2. Accuracy Assessment
3.3. Tree Canopy LAI Mapping from VI
4. Discussion
5. Conclusions
- The WorldView-2/3 imagery has the ability to map tree canopy cover in a highly heterogenic urban environment with acceptable accuracy. The error margin of the tree canopy cover can reach 5.5% at the 3.0 km2 small district level, 5.0% at the 60.9 km2 municipality level, and 1.2% at the 625 km2 city level, compared to the values based on aerial photograph interpretation.
- LAI was estimated with acceptable accuracy for the leaf-on season (September–November, corresponding to a vegetation declining period in autumn) and the leaf-off season (January–February, corresponding to a vegetation non-active period in winter) using the LAI−VI relationships.
- The estimated LAI and the total leaf area in Tokyo urban area was 1.9–6.2 times higher than the results from the Landsat5-TM and Landsat8 images using the LAI−NDVI relationships reported in a previous study.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grote, R.; Samson, R.; Alonso, R.; Amorim, J.H.; Cariñanos, P.; Churkina, G.; Fares, S.; Le Thiec, D.; Niinemets, Ü.; Mikkelsen, T.N.; et al. Functional traits of urban trees: Air pollution mitigation potential. Front. Ecol. Environ. 2016, 14, 543–550. [Google Scholar] [CrossRef]
- Endreny, T.A. Strategically growing the urban forest will improve our world. Nat. Commun. 2018, 9, 1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roeland, S.; Moretti, M.; Amorim, J.H.; Branquinho, C.; Fares, S.; Morelli, F.; Niinemets, Ü.; Paoletti, E.; Pinho, P.; Sgrigna, G.; et al. Towards an integrative approach to evaluate the environmental ecosystem services provided by urban forest. J. For. Res. 2019, 30, 1981–1996. [Google Scholar] [CrossRef] [Green Version]
- Shrivastava, M.; Andreae, M.O.; Artaxo, P.; Barbosa, H.M.J.; Berg, L.K.; Brito, J.; Ching, J.; Easter, R.C.; Fan, J.; Fast, J.D.; et al. Urban pollution greatly enhances formation of natural aerosols over the Amazon rainforest. Nat. Commun. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisenman, T.S.; Churkina, G.; Jariwala, S.P.; Kumar, P.; Lovasi, G.S.; Pataki, D.E.; Weinberger, K.R.; Whitlow, T.H. Urban trees, air quality, and asthma: An interdisciplinary review. Landsc. Urban Plan. 2019, 187, 47–59. [Google Scholar] [CrossRef]
- Endreny, T.; Santagata, R.; Perna, A.; De Stefano, C.; Rallo, R.F.; Ulgiati, S. Implementing and managing urban forests: A much needed conservation strategy to increase ecosystem services and urban wellbeing. Ecol. Model. 2017, 360, 328–3354. [Google Scholar] [CrossRef]
- Bréda, N.J.J. Ground-based measurements of leaf area index: A review of methods, instruments and current controversies. J. Exp. Bot. 2003, 34, 2403–2417. [Google Scholar] [CrossRef]
- Myeong, S.; Nowak, D.J.; Duggin, M.J. A temporal analysis of urban forest carbon storage using remote sensing. Remote Sens. Environ. 2006, 101, 277–282. [Google Scholar] [CrossRef]
- Pu, R. Mapping urban forest tree species using IKONOS imagery: Preliminary results. Environ. Monit. Assess. 2011, 172, 199–214. [Google Scholar] [CrossRef]
- Song, Y.; Imanishi, J.; Sasaki, T.; Ioki, K.; Morimoto, Y. Estimation of broad-leaved canopy growth in the urban forested area using multi-temporal airborne LiDAR datasets. Urban For. Urban Green. 2016, 16, 142–149. [Google Scholar] [CrossRef]
- Singh, K.K.; Gagné, S.A.; Meentemeyer, R.K. Urban forests and human well-being. In Comprehensive Remote Sensing; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 9780128032206. [Google Scholar]
- Li, X.; Chen, W.Y.; Sanesi, G.; Lafortezza, R. Remote sensing in urban forestry: Recent applications and future directions. Remote Sens. 2019, 11, 1144. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Internal Affairs and Communications Japan. Stastistical Handbook of Japan 2015; Statistics Bureau Ministry of Internal Affairs and Communications Japan: Tokyo, Japan, 2015.
- Updike, T.; Comp, C. Radiometric Use of WorldView-2 Imagery Technical Note; DigitalGlobe: Longmont, CO, USA, 2010. [Google Scholar]
- Kuester, M. Radiometric Use of WorldView-3 Imagery; DigitalGlobe: Longmont, CO, USA, 2016. [Google Scholar]
- Raju, P.D.; Neelima, G. Image Segmentation by using Histogram Thresholding. Ijcset 2012, 2, 776–779. [Google Scholar]
- Li, M.; Zang, S.; Zhang, B.; Li, S.; Wu, C. A review of remote sensing image classification techniques: The role of Spatio-contextual information. Eur. J. Remote Sens. 2014, 47, 389–411. [Google Scholar] [CrossRef]
- Pal, M.; Mather, P.M. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sens. Environ. 2003, 86, 554–565. [Google Scholar] [CrossRef]
- Fang, H.; Liang, S. Leaf Area Index Models. In Encyclopedia of Ecology, Five-Volume Set; Elsevier: Amsterdam, The Netherlands, 2008; ISBN 9780080914565. [Google Scholar]
- Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ. 1991, 35, 161–173. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R. Linearization of NDVI based on its relationship with vegetation fraction. Photogramm. Eng. Remote Sens. 2010, 76, 965–975. [Google Scholar] [CrossRef]
- Viña, A.; Gitelson, A.A.; Nguy-Robertson, A.L.; Peng, Y. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sens. Environ. 2011, 115, 3468–3478. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 7, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Birky, A.K. NDVI and a simple model of deciduous forest seasonal dynamics. Ecol. Model. 2001, 143, 43–58. [Google Scholar] [CrossRef]
- Qiao, K.; Zhu, W.; Xie, Z.; Li, P. Estimating the Seasonal Dynamics of the Leaf Area Index Using Piecewise LAI-VI Relationships Based on Phenophases. Remote Sens. 2019, 11, 689. [Google Scholar] [CrossRef] [Green Version]
- Pinty, B.; Lavergne, T.; Widlowski, J.L.; Gobron, N.; Verstraete, M.M. On the need to observe vegetation canopies in the near-infrared to estimate visible light absorption. Remote Sens. Environ. 2009, 113, 10–23. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; Progress Report RSC 1978-1; Texas A&M University, Remote Sensing Center: College Station, TX, USA, 1973. [Google Scholar]
- Pu, R.; Landry, S. A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species. Remote Sens. Environ. 2012, 124, 516–533. [Google Scholar] [CrossRef]
- Gitelson, A.A. Wide Dynamic Range Vegetation Index for Remote Quantification of Biophysical Characteristics of Vegetation. J. Plant Physiol. 2004, 161, 165–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Welles, J.M.; Norman, J.M. Instrument for Indirect Measurement of Canopy Architecture. Agron. J. 1991, 83, 818–825. [Google Scholar] [CrossRef]
- Dufrêne, E.; Bréda, N. Estimation of deciduous forest leaf area index using direct and indirect methods. Oecologia 1995, 104, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Hoshi, N. Estimation of leaf area index in natural deciduous broad-leaved forests using landsat TM data. Nihon Ringakkai Shi/J. Jpn. For. Soc. 2001. [Google Scholar] [CrossRef]
- Kimm, H.; Ryu, Y. Seasonal variations in photosynthetic parameters and leaf area index in an urban park. Urban For. Urban Green. 2015, 14, 1059–1067. [Google Scholar] [CrossRef]
- Tillack, A.; Clasen, A.; Kleinschmit, B.; Förster, M. Estimation of the seasonal leaf area index in an alluvial forest using high-resolution satellite-based vegetation indices. Remote Sens. Environ. 2014, 141, 52–63. [Google Scholar] [CrossRef]
- Potithep, S.; Nagai, S.; Nasahara, K.N.; Muraoka, H.; Suzuki, R. Two separate periods of the LAI-VIs relationships using in situ measurements in a deciduous broadleaf forest. Agric. For. Meteorol. 2013, 169, 148–155. [Google Scholar] [CrossRef]
- Justice, C.O.; Townshend, J.R.G.; Holben, A.N.; Tucker, C.J. Analysis of the phenology of global vegetation using meteorological satellite data. Int. J. Remote Sens. 1985, 6, 1271–1318. [Google Scholar] [CrossRef]
- Gu, Y.; Wylie, B.K.; Howard, D.M.; Phuyal, K.P.; Ji, L. NDVI saturation adjustment: A new approach for improving cropland performance estimates in the Greater Platte River Basin, USA. Ecol. Indic. 2013, 30, 1–6. [Google Scholar] [CrossRef]
- Chen, P.Y.; Fedosejevs, G.; Tiscareño-López, M.; Arnold, J.G. Assessment of MODIS-EVI, MODIS-NDVI and VEGETATION-NDVI composite data using agricultural measurements: An example at corn fields in western Mexico. Environ. Monit. Assess. 2006, 119, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Suzuki, R.; Kobayashi, S. Reflectance seasonality and its relation to the canopy leaf area index in an eastern Siberian larch forest: Multi-satellite data and radiative transfer analyses. Remote Sens. Environ. 2007, 106, 238–252. [Google Scholar] [CrossRef]
- Badgley, G.; Field, C.B.; Berry, J.A. Canopy near-infrared reflectance and terrestrial photosynthesis. Sci. Adv. 2017, 3, e1602244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spanner, M.A.; Piercej, L.L.; Peterson, D.L.; Running, S.W. Remote sensing of temperate coniferous forest leaf area index the influence of canopy closure, understory vegetation and background reflectance. Int. J. Remote Sens. 1990, 11, 95–111. [Google Scholar] [CrossRef]
- Eriksson, H.M.; Eklundh, L.; Kuusk, A.; Nilson, T. Impact of understory vegetation on forest canopy reflectance and remotely sensed LAI estimates. Remote Sens. Environ. 2006, 103, 408–418. [Google Scholar] [CrossRef]
- Meyer, L.H.; Heurich, M.; Beudert, B.; Premier, J.; Pflugmacher, D. Comparison of Landsat-8 and Sentinel-2 data for estimation of leaf area index in temperate forests. Remote Sens. 2019, 11, 1160. [Google Scholar] [CrossRef] [Green Version]
- Pu, R.; Landry, S.; Yu, Q. Assessing the potential of multi-seasonal high resolution Pléiades satellite imagery for mapping urban tree species. Int. J. Appl. Earth Obs. Geoinf. 2018, 71, 144–158. [Google Scholar] [CrossRef]
Phenological Image Category | Satellite | Photographed Date | Solar Azimuth Angle (Deg) | Solar Altitude (Deg) | Observation Angle (In Track) (Deg) | Observation Angle (Cross Track) (Deg) | Image Location in Figure 2 |
---|---|---|---|---|---|---|---|
Leaf-on season | WorldView-2 | 18 October 2016 | 162.3 | 43.1 | −2.8 | 3.0 | (1) |
WorldView-2 | 26 October 2016 | 165.1 | 40.7 | −2.3 | −5.1 | (2) | |
WorldView-2 | 26 October 2016 | 165.2 | 40.7 | 9.1 | −5.4 | (3) | |
WorldView-3 | 13 October 2013 | 164.1 | 45.5 | 11.5 | 18.8 | (4) | |
WorldView-3 | 22 September 2014 | 150.7 | 51.2 | −7.4 | −3.2 | (5) | |
WorldView-2 | 01 November 2015 | 167.7 | 39.4 | 13.7 | −6.8 | (6) | |
Leaf-off season | WorldView-2 | 14 February 2017 | 156.6 | 38.4 | 6.0 | −3.2 | (7) |
WorldView-2 | 04 April 2017 | 147.1 | 56.0 | −8.2 | 10.8 | (8) | |
WorldView-2 | 21 January 2016 | 158.1 | 31.3 | −8.3 | −4.1 | (9) | |
WorldView-2 | 13 January 2014 | 165.4 | 31.7 | 16.5 | −4.9 | (10) | |
WorldView-2 | 21 February 2013 | 162.8 | 42.4 | 7.1 | −10.8 | (11) |
Vegetation Indices | Algorithm | Abbreviation | Reference |
---|---|---|---|
Normalized Difference Vegetation Index | (NIR − red)/(NIR + red) | NDVI | [27] |
Red Edge NDVI | (NIR − Red edge)/(NIR + Red edge) | RE−NDVI | [28] |
Wide Dynamic Range Vegetation Index | (0.1 × NIR − Red)/(0.1 × NIR + Red) | WDRVI1 | [29] |
Wide Dynamic Range Vegetation Index | (0.2 × NIR − Red)/(0.2 × NIR + Red) | WDRVI2 | [29] |
2-Band Enhanced Vegetation Index | 2.5 × (NIR − Red)/(NIR + 2.4 × Red + 1) | EVI2 | [30] |
Classification Step | Classification Category | Normal Differential Index (NDI) | Threshold | Season | Image No. In Figure 2 |
---|---|---|---|---|---|
1 | (high NDVI)/(low NDVI) | −0.28 | leaf-on | (1)–(6) | |
leaf-off | (7)–(11) | ||||
2 | (vegetation)/(high NDVI non-vegetation) | −0.12 | leaf-on | (1)–(6) | |
leaf-off | (7)–(11) | ||||
3 | (tree canopy)/(grass) | 0.2 | leaf-on | (1)–(6) | |
leaf-off | (7)–(11) | ||||
4 | (dense grass)/(sparse grass) | −0.58 | leaf-on | (1)–(6) | |
leaf-off | (7)–(11) | ||||
5 | (non-vegetation in sunlight)/(shadow and water) | 0.45 | leaf-on | (1)–(6) | |
leaf-off | (7)–(11) | ||||
6 | (shaded vegetation)/(shaded non-vegetation) | 0.01 0.02 0.11 0.14 | leaf-on | (1) and (2) (3)–(6) | |
leaf-off | (7)–(9) (10) and (11) |
Region | Area | Season | Tree Canopy Cover Ratio | Difference | ||
---|---|---|---|---|---|---|
WorldView-2/3 imagery | Field investigation | Tokyo GWC-ratio data | ||||
Figure 4 | 0.3 km2 | Leaf-on | 42.4% | ― | 36.9% | 5.5% |
Leaf-off | 22.0% | 24.0% | ― | 2.0% | ||
WorldView-2/3 imagery | Aerial photograph | Tokyo GWC-ratio data | ||||
Figure 5 | 3.0 km2 | Leaf-on | 11.9% | – | 8.4% | 3.5% |
Leaf-off | 7.5% | 6.8% | ― | 0.7% |
Satellite | Imagery Date | Entire Region of Figure 8 | Tree Colony Region in Figure 8 | All Tokyo Special Wards | LAI−VI model | Ref | |||
---|---|---|---|---|---|---|---|---|---|
Leaf Area | Mean LAI ± SD | Leaf Area | Mean LAI ± SD | Leaf Area | Mean LAI ± SD | ||||
(km2) | (m2 m−2) | (km2) | (m2 m−2) | (km2) | (m2 m−2) | ||||
WorldView-2 | * | 4.4 | 2.4 ± 2.4 | 0.2 | 5.5 ± 1.4 | 632.6 | 1.1 ± 1.6 | (NDVI range: 0–0.8) | |
4.8 | 2.6 ± 3.2 | 0.3 | 6.8 ± 2.9 | 632.8 | 1.0 ± 1.8 | (WDRVI1 range: < −0.15) | |||
4.8 | 2.6 ± 3.0 | 0.2 | 6.4 ± 2.4 | 648.7 | 1.0 ± 1.7 | (WDRVI2 range: < 0.2) | |||
4.6 | 2.5 ± 3.0 | 0.2 | 6.5 ± 2.3 | 553.2 | 0.9 ± 1.8 | (EVI2 range: 0–1.6) | |||
Landsat5-TM | 11 October 2010 | 2.3 | 1.2 ± 1.2 | 0.1 | 4.0 ± 0.4 | 298.0 | 0.5 ± 0.5 | [2] | |
Landsat8 | 27 October 2016 | 1.3 | 0.7 ± 0.8 | 0.1 | 2.4 ± 0.2 | 104.0 | 0.2 ± 0.4 | (LAI range: > 0) | [3] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kokubu, Y.; Hara, S.; Tani, A. Mapping Seasonal Tree Canopy Cover and Leaf Area Using Worldview-2/3 Satellite Imagery: A Megacity-Scale Case Study in Tokyo Urban Area. Remote Sens. 2020, 12, 1505. https://doi.org/10.3390/rs12091505
Kokubu Y, Hara S, Tani A. Mapping Seasonal Tree Canopy Cover and Leaf Area Using Worldview-2/3 Satellite Imagery: A Megacity-Scale Case Study in Tokyo Urban Area. Remote Sensing. 2020; 12(9):1505. https://doi.org/10.3390/rs12091505
Chicago/Turabian StyleKokubu, Yutaka, Seiichi Hara, and Akira Tani. 2020. "Mapping Seasonal Tree Canopy Cover and Leaf Area Using Worldview-2/3 Satellite Imagery: A Megacity-Scale Case Study in Tokyo Urban Area" Remote Sensing 12, no. 9: 1505. https://doi.org/10.3390/rs12091505
APA StyleKokubu, Y., Hara, S., & Tani, A. (2020). Mapping Seasonal Tree Canopy Cover and Leaf Area Using Worldview-2/3 Satellite Imagery: A Megacity-Scale Case Study in Tokyo Urban Area. Remote Sensing, 12(9), 1505. https://doi.org/10.3390/rs12091505