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Abstract: The release of tannery wastewater contributes to chromium (Cr) pollution glob-
ally. Herein, we conduct a novel consolidation of research from the Arequipa region of
southern Peru that integrates university theses written in Spanish alongside peer-reviewed
journal articles. The objective is to provide a place-based complement to existing research
in English scientific journals focused on effective tools for Cr treatment from tannery
wastewater. Our consolidation categorized a total of 75 publications (70 theses and five
peer-reviewed) into five distinct strategies for Cr treatment: adsorption (twenty-three
studies), phytoremediation (eighteen studies), bioremediation (thirteen studies), electroco-
agulation (five studies), and other techniques (fifteen studies). This synthesis highlighted
potentially promising approaches that could be sustainably tailored to regional resources
and waste products. This includes sorptive materials derived from food waste such as
native achiote peels (B. orellana) and avocado seeds (P. americana) either used directly or as
a feedstock for biochar. Other technologies include phytoremediation using microalgae
and resident vascular plants and microbial bioremediation that capitalizes on indigenous
bacteria and fungi. Promise was also discerned in studies that incorporated a combination
of abiotic and biotic mechanisms tailored toward the region, such as infiltration using
selective and bioactive materials, wetlands, solar distillation, iron-based coagulation and
flocculation, and bioreactors. These findings provide a sustainable complement to prior
global investigations for effective attenuation strategies by adding novel materials and tech-
niques that could be further explored to assess the viability of implementation at pilot and
larger scales. These promising technologies and the ability to tailor sustainable treatments
toward local resources highlight the opportunity to prioritize the treatment of tannery
wastewater to ensure a cleaner environment by informing policy makers, academics, and
industry on technologies that could be adopted for implementation in the region.
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1. Introduction
Toxicity associated with chromium (Cr) contamination in surface waters is a global

challenge [1]. While natural processes contribute to the presence of Cr in water bodies,
anthropogenic activities are of particular concern. An example of industrial release is the
leather tanning process [2], which relies heavily on Cr salts. When not properly treated, the
discharge of tannery wastewater results in elevated levels of Cr in the receiving waters [3].
These point sources of contamination present meaningful opportunities for in-depth studies
focused on the development and implementation of efficient Cr remediation and removal
techniques. Mitigating the detrimental impact of tannery wastewater discharge on aquatic
ecosystems requires a comprehensive exploration of innovative treatment methodologies.

The mobility and toxicological impact of Cr is influenced by the oxidation state.
Although considered less toxic, short-term human exposure to trivalent chromium (Cr(III))
causes irritation of the eyes and respiratory tract [4]. It can also be oxidized to the more
toxic hexavalent chromium (Cr(VI)) phase in the presence of organic matter under mildly
acidic conditions. Exposure to Cr(VI) in humans has been associated with allergic dermal
reactions; when inhaled, it causes respiratory complications, irritation, bleeding from the
nose, and potentially lung cancer. Cr(VI) ingestion can cause ulcers, weakening of the
immune system, damage to the kidneys and liver, and genetic mutations [5]. Chromium
can also damage aquatic ecosystems and decrease soil fertility where analogous oxidative
and DNA damage can increase mortality in Cr-sensitive microorganisms. Chromium also
affects plant enzyme activity and photosynthesis, causing hindered growth and reduced
yields [6], and bioaccumulates in animal tissues and organs [7].

Chromium pollution is widespread globally [8–13], with a prominence in Latin Amer-
ican countries [4,14–19]. The country of Peru is a clear example of documented anthro-
pogenically sourced Cr contamination, with an unfortunate wealth of studies that have
reported surface water pollution in rivers situated throughout the country (Table 1). Are-
quipa is the largest leather-producing territory in Peru [20]. In 2010, there were 96 tanning
companies in the Arequipa Region, of which 67 were located at the Rio Seco Industrial
Park (RSIP), in the Cerro Colorado District (Regional Ordinance 121). However, more than
400 companies (small, medium, and large) were listed and grouped into 60 associations in
2017, of which nearly 100 operated at RSIP by 2023, generating over 3000 jobs [21].

Table 1. Examples of total Cr-related studies in water and sediments from different Peruvian rivers
(BD: Below detection).

River Administrative Region
Cr Concentration

Source
Water (mg/L) Sediments (mg/kg)

Ichu Huancavelica 0.02 [22]
Opamayo and Sicra Huancavelica 0.05 [23]
Zaña Lambayeque BD [24]
Quiroz Piura 1.3 [25]
Ramis Puno 0.008 [26]
Chili Arequipa 0.004 [27]
Chili Arequipa BD [28]
RSIP effluents Arequipa 4.3–7.7 [29]
Añashuayco Arequipa 3750–9220 [30]
Coata Puno 4–28 [31]
Apurimac Caylloma and Arequipa 1–3 [32]
RSIP effluents Arequipa 10.4 [33]
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Both Moran [27] and Luque [28] reported some degree of Cr pollution in the Chili River,
which crosses the city of Arequipa. In querying a potential source, Salazar-Pinto et al. [29]
and Tejada-Meza et al. [33] analyzed samples in a tributary to the Chili River that transits
through the RSIP. These source waters exceeded Peru’s maximum contaminant limits
(MCLs) of 0.5 mg/L [34], which were established for surface water effluents from industrial
sectors such as materials manufacturing, beverage industries, and tanneries. Similarly, Vilca
and Gordillo [30] investigated Arequipa’s RSIP and the Aashuayco Ravine for a period of
three months, finding Cr associated sediments that were well in excess of the 1000 mg/kg
Peruvian MCL [35].

In April 2023, our research team observed RSIP effluent downstream of processing
activities. This tributary to the Chili River (Figure 1) is a small unlined surface water course
that changed colors over time (from green to brown, most likely a reflection of upstream
industrial dumping), with an unpleasant smell. As reported by Tejada-Meza et al. [33], the
average total Cr content in this effluent was above 10 mg/L, with a flow estimate of 31 L/s
at the time of the visit. While lower than the values reported by Aboulhassan et al. [36]
in wastewaters from Moroccan tanneries, this exceeded the Peruvian MCL of 0.5 mg/L
for total Cr. While speciation was not documented in that analysis, the chromium MCL is
further extended to 0.1 mg/L for Cr(VI) [34], leading to the conclusion that the discharge
of inadequately treated tannery wastewater by companies in RSIP has exacerbated this
environmental challenge and efforts to mitigate the Cr content of RSIP wastewater have
been insufficient. Tejada-Meza et al.’s [33] recent findings on the adverse effects of RSIP’s
tannery wastewaters on bioindicator species reinforce these concerns.
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Figure 1. View of surface water flow (31 L/s) impaired by RSIP wastewater effluent. This tributary
undergoes insufficient treatment and subsequently enters the Chili River. Photo taken in April 2023
by and featuring paper authors.

While international literature reviews on Cr contamination, its negative health and en-
vironmental impacts, and remediation strategies are available [13,37,38], understanding Cr
contamination challenges and identifying technological and sustainable solutions requires
an approach that integrates local knowledge, societal acceptance of solutions [39], and the
unique power of place-based inquiries. This manuscript summarizes and contextualizes
research on Cr remediation, particularly as it relates to wastewater produced at RSIP. The
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analysis draws on Peruvian undergraduate and graduate theses from local academic insti-
tutions in Arequipa, alongside topical peer-reviewed articles identified through Google
Scholar, Scopus, and Web of Science. Special emphasis is placed on Spanish-language
publications, which have received limited international visibility, creating an opportunity
to increase global understanding of place-based approaches toward the treatment of Cr
from tannery wastewaters and foster mechanisms for local adoption.

2. Cr Removal Techniques Evaluated in the Arequipa Region
Although several authors have published international articles on Cr-contaminated

soils in Arequipa [39–42], domestic investigations into the treatment of more complex
tannery wastewater are relevant to this regional challenge. For example, Zapana et al. [42]
used a pilot-scale constructed wetland system to treat RSIP’s tannery wastewater. Treatment
was achieved primarily through bioaccumulation in macrophytes I. cernua and N. aquaticum,
achieving ~98% removal for this industrial wastewater. Another investigation, Herrera-Yari
et al. [43], used a solar parabolic cylindrical concentrator on synthetic RSIP tannery effluents,
reducing 173 mg/L Cr(VI) to ~26 mg/L Cr(VI) (i.e., 85%) to less toxic Cr(III) through
photocatalytic degradation. Zapana-Huarache and colleagues [44] designed and tested the
application of the filamentous fungus P. citrinum, which removed 80% of influent Cr(VI).
Finally, Bejarano-Meza et al. [45] used magnetic iron-based nanoparticles synthesized with
O. europea bone extract to remove nearly all detectable Cr(VI) from RSIP’s tannery effluents.
In addition to these peer-reviewed research articles written in English, Roque et al. [46]
(Spanish) used the native bacterium C. aquaticus to attenuate 89% of the total chromium
(34.8 to 3.82 mg/L) in the RSIP tannery wastewater of which ~70% was and remained
Cr(III) (24.2 to 2.66 mg/L).

Of the total number of publications found in this synthesis (75), 38 experiments focused
on treating total Cr (CrT), 48 on Cr(VI), and 12 on Cr(III) (98 experiments in total, as some
studies analyzed more than one Cr species). However, the peer-reviewed publications about
Cr removal from tannery wastewater in Arequipa summarized above are derived mostly
from English journals. There is however a wealth of additional knowledge contained within
70 Spanish-written graduate (9) or undergraduate (61) theses focusing on Cr removal in the
Arequipa Region. A large portion of the theses came from the faculties of Chemistry and
Chemical Engineering (21%) and Environmental Engineering (25%), followed by Biology
(15%), Biotechnology (11%), and Pharmacy (8%). The published university theses related
to Cr removal applied to wastewater from tanneries increased in number within the last
decade with a potential lull during and after the COVID-19 pandemic (Figure 2). More
recent 2023 and 2024 publications (four and one, respectively) are not formally tallied
because their numbers do not reflect the reality of publications, due to issues of time lapse
between thesis completion and availability in online repositories.

Numerous techniques to remove or remediate the residual Cr content of tannery
wastewaters were found in this synthesis. These techniques were categorized into five main
groups: adsorption, phytoremediation, bioremediation, electrocoagulation, and a catch-all
collection of other methods. Notably, there was no consistent approach across studies
regarding key parameters such as pH, temperature, or treatment time. As a result, direct
comparisons of Cr removal efficiency and rates are challenging. Additionally, studies from
Arequipa indicate that the acidity of treated tannery wastewater from RSIP can vary, likely
due to a combination of upstream dumping practices combined with specific adjustments
for treatment methods, which can alter pH levels to differing extents (Figure 3). Building
on these findings, the following sections describe the progress made in Cr removal research
in Arequipa across different methodological approaches.
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2.1. Adsorption

A total of 23 publications focused on the application of different absorbents to remove
Cr from tannery wastewaters were found in the Arequipa Region. In terms of adsorption
techniques, various plant adsorbents (leaves, fruits, seeds, tubers, shells, etc.) with a variety
of porous sizes ranging from 75 to 350 µm were found with the capacities to absorb Cr.
The extent of removal ranged from a low of 12% (lemon pectin) to removal rendering
Cr non-detectable (achiote peel, avocado seed, and pea pods). Promising results (at least
95% removal) were obtained using materials such as sawdust, Peruvian potatoes, corn
crown, rice peel, and olive pits (see Table 2). Moreover, considering both treatment times
and Cr elimination, adsorption is feasible for large-scale projects. The results suggest that
large amounts of Cr can be removed in short periods. For local waste materials, there are
further potential economic advantages with respect to material acquisition and transport.
For example, Deza and Salinas [47] eliminated 99% of Cr(VI) in 30 min using olive seed,
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while Pacheco [48] and Herrera and Sosa [49] were able to remove the majority of Cr(VI) in
the same amount of time using corn crown and potatoes, respectively. Achiote peels [50]
seem to be particularly efficient, with rapid removal of detectable Cr(VI) in only 5 min,
while avocado seeds [51] were used to eliminate detectable Cr(VI) in 15 min. The latter two
materials represent sustainable options, where common local food waste materials could
be applied in Arequipa. However, while the use of waste products could be economically
compelling, the associated costs of transporting and the application of these materials
are currently unknown. While other materials performed relatively well, they either took
hours to reach an adsorption peak or did not specify treatment times; for example, Paz [52]
removed total Cr (CrT) to BD in 16 h using pea pods.

Table 2. Locally derived and inexpensive materials/waste tested for Cr adsorption capacity from
tannery wastewaters in Arequipa, southern Peru.

Adsorbent Species
Removal

pH T (◦C) Time
(min.)

Particle
Size

Source
(%) (mg/g)

Pea pods (Pisum sativum) * CrT BD NA 1.1 RT 960 NA [52]
Orange pectine (Citrus × sinensis) * CrT 18 NA 5 RT 15 180–250 µm [53]
Lemon pectine (Citrus limon) * CrT 12 NA 5 RT 15 180–250 µm [53]
Arequipan papaya seed (Vasconcellea
pubescens) * Cr(III) 80 NA 3 25 NA NA [54]

Olive seed (Olea europaea) * Cr(III) 68 NA 4 RT 9 250 µm [55]
Shrimp skeleton (Palaemon serratus) * Cr(III) 52 NA 5 19 NA NA [56]
Achiote peel (Bixa orellana) * Cr(VI) BD NA 2 RT 5 75–150 µm [50]
Avocado seed (Persea americana) * Cr(VI) BD NA 2 NA 15 75–150 µm [51]
Olive seed (Olea europaea) * Cr(VI) 99 NA 2 RT 30 70–160 nm [47]
Potato varieties (Solanum tuberosum Var.
Canchan, Unica, Peruanita, and
Perricholi)

Cr(VI) 96 NA 2 25 30 150–850 µm [49]

Sawdust * Cr(VI) 95 2.2 NA 60 180 0.35 mm [57]
Corn crown (Zea mays) and rice husk
(Oryza sativa) * Cr(VI) 95 NA 2 RT 30 Less than

0.42 mm [48]

Coffee seed’s endocarp (Coffea arabica) * Cr(VI) 94 NA 2 RT 120 75–150 µm [58]
Metallic iron nanoparticles using
Eucalyptus sp. Leaves * Cr(VI) 93 NA 3 to 5 RT 60 180 nm [59]

Wheat (Triticum sp.) Cr(VI) 86 NA 2 45 180 200 µm and
125 µm [60]

Potato peel (Solanum tuberosum) * Cr(VI) 86 NA 2 NA 50 <250 mm [61]
Arequipan papaya seed (Vasconcellea
pubescens) * Cr(VI) 78 NA 2 25 NA NA [54]

Olive fruit (Olea europaea) Cr(VI) 78 NA 2 to 6 RT NA 250 µm [62]
Egg shells * Cr(VI) 73 NA 5 RT 15 NA [63]
Sancayo peel (Corryocactus brevistylus) * Cr(VI) 59 NA 3 30 30 NA [64]
Quinoa (Chenopodium quinoa) Cr(VI) 55 NA “Acid” 20 NA 450–250 µm [65]
Shrimp skeleton (Palaemon serratus) * Cr(VI) 46 NA 5 19 NA NA [56]

Activated charcoal from rice husk
(Oryza sativa) * Cr(VI) NA 53 2 20 240

Surface
area
690 m2/g

[66]

(*) Waste products. NA, not available; BD, below detection; RT, room temperature.

Finally, it is worth noting that all these adsorption experiments were conducted under
acidic conditions with a pH between 1.1 and 6), which is lower than what was found
using other treatment methods, or than reported by other studies conducted with RSIP
tannery effluents [31]). Figure 4 presents a synthesis of these regional studies. While these
studies were not explicitly designed to explore the strength of these trends (e.g., sorption
isotherms) and rather were conducted at different pH values for different studies, this
synthesis supports a trend toward more effective sorption under acidic conditions. Hence,
future investigations of promising materials should quantify pH optima with consideration
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of sorption isotherms, synergy with effluent pH, and/or costs associated with chemical pH
adjustments to better understand application viability.
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Figure 4. Synthesis of results of Cr species removal from aqueous solution as a function of pH as
compiled from adsorption-based studies herein. This analysis demonstrates that more effective
attenuation generally relates to lower pH conditions for CrT (R2 = 0.99), Cr(VI) (R2 = 0.50), and Cr(III)
(R2 = 0.99), agreeing with the existing literature.

2.2. Phytoremediation

A total of 18 phytoremediation-associated studies were found for the Arequipa Region.
Both microalgae (Table 3a) and vascular plants (Table 3b) showed a high propensity to
remove Cr from polluted tannery wastewater. Promising examples included the microalgae
D. quadricauda [67], Chlorella sp., and Espirulina sp. [68], and the vascular plants I. cernua
and N. aquaticum [40,67]. Of these, I. cernua was particularly promising, with 98% removal
of Cr(VI) in only 5 days [42]. While other species performed well, they took weeks or
months to reach results, making them less attractive for further large-scale sustainable
applications. Moreover, since only six phytoremediation-based studies found in this
synthesis documented both Cr removal (%) and pH, no clear pattern was identified in
terms of removal capacity and pH values (R2 = 0.14 for CrT). Furthermore, it is pertinent to
note that the pH values tested, when available, correspond to neutral conditions, which
may facilitate plant growth [69].
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Table 3. (a) Phytoremediation survey of different microalgal species as applied toward polluted
tannery wastewaters in Arequipa, southern Peru. (b) Phytoremediation survey of different vascular
plant species as applied toward polluted tannery wastewaters in Arequipa, southern Peru.

(a)

Species Cr
Species

Cr Removal pH Time
(Days)

Incubator
Type Source(%) (Other Units)

Chlorella sp. CrT 96 NA NA 10 Inoculum [68]
Espirulina sp. CrT 95 NA NA 10 Inoculum [68]
Acutodesmus dimorphus CrT 75 NA >7.5 15 Batch [70]
Arthrospira platensis CrT 33 NA >7.5 15 Batch [70]
Desmodesmus quadricauda Cr (VI) 94 1.7 mg/L NA 9 Flow through [67]

(b)

Species Cr
Species

Cr Removal
pH Time (Days) Source

(%) (Other Units)

Eichhornia crassipes root CrT 99 NA NA 25 [71]
Isolepis cernua and Nasturtium
aquaticum CrT 99 NA 7 70 [72]

Eichhornia crassipes leaves and
stems CrT 94 NA NA 25 [71]

Eichhornia crassipes and Lemna
minuta CrT 92 NA 7 32 [73]

Hydrangea macrophylla CrT 88 NA NA 90 [74]
Eichhornia crassipes CrT 49 NA NA 45 [75]
Buddleja sp. CrT 41 NA NA 90 [41]
Eichhornia crassipes CrT 35 NA 7 45 [76]
Ficus carica (fruits) CrT NA 0.1 mg/kg NA 180 [77]
Eleocharis montevidensis (stem) CrT NA 17.4 mg/kg NA 15 [78]
Tagetes sp. CrT NA 560 mg/kg 7.3–8.6 60 [79]
Ficus carica (estate) CrT NA 3.1 mg/kg NA 180 [77]
Medicago sativa CrT NA 0.8 mg/kg NA 90 [80]
Eleocharis montevidensis (leave) CrT NA 22.7 mg/kg NA 15 [78]
Eleocharis montevidensis (root) CrT NA 504 mg/kg NA 15 [78]
Eleocharis montevidensis Cr(III) 23 41.2 µg/gps NA 20 [81]
Baccharis salicifolia Cr(III) 12 27.1 µg/gps NA 20 [81]
Tessaria integrifolia Cr(III) 7 18.9 µg/gps NA 20 [81]
Chenopodium murale Cr(III) 5 27.1 µg/gps NA 20 [81]
Croton ruizianus Cr(III) NA 17.3 mg/kg NA 34 [82]
Isolepis cernua and Nasturtium
aquaticum Cr(VI) 98 NA NA 5 [42] *

Eichhornia crassipes and Lemna
gibba Cr(VI) 93 NA 7 32 [73]

NA: Not available. (*): Peer-reviewed.

2.3. Bioremediation

A total of 13 studies focused on microbial bioremediation (fungi and bacteria) for the
treatment of Cr species from tannery wastewaters were found in Arequipa (Table 4a,b).
While mechanisms may also include bioaccumulation and sorption, microbial reduction
of Cr(IV) to Cr(III), potentially in association of the respiration of other electron acceptors
such as sulfate, seemed particularly promising. Loaiza [83] isolated and cultivated a
sulfate-reducing bacterial consortium using a Cr2(SO4)3 solution followed by cultivation
in a bioreactor containing RSIP tannery effluents, eliminating most detectable Cr(VI).
Additional studies on bacterial potential for Cr removal (Table 4a) included C. aquaticus
and Streptococcus sp. [84], and K. oxycata [85], with 94% (CrT) and 92% (Cr(VI)) removal
(from solution), respectively. Similarly, 89% of Cr(VI) was removed using the bacterium P.
mirabilis [86].
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Table 4. (a) Bioremediation with live bacteria from polluted tannery wastewaters in Arequipa,
southern Peru. (b) Bioremediation with fungi from polluted tannery wastewaters in Arequipa,
southern Peru.

(a)

Species Cr
Species

Cr Removal pH Temp. (◦C) Time (Days) Source(%) (Other Units)

Corynebacterium aquaticus CrT 94 NA NA 32 5 [84]
Streptococcus sp. CrT 94 NA NA 32 5 [84]
Corynebacterium aquaticus CrT 89 NA 7.3 25 3.2 [46] *
Pseudomonas sp. CrT NA 1040 mg/L NA NA 24 [87]
Corynebacterium aquaticus Cr(III) 89 NA 7.3 25 3.2 [46] *
Sulfate-Reducing Bacteria Cr(VI) BD NA 7.7 RT 11 [83]
Klebsiella oxycata Cr(VI) 92 NA NA RT 10 [85]
Proteus mirabilis Cr(VI) 89 NA NA RT 1.5 [86]
Bacillus subtilis Cr(VI) 74 NA NA RT 10 [85]
Streptococcus spp. Cr(VI) 68 NA NA 32 5 [84]
Escherichia coli Cr(VI) 63 NA NA RT 10 [85]
Bacillus pumilus Cr(VI) 46 NA NA RT 1.5 [86]
Streptococcus sp. Cr(VI) 44 NA NA 32 3 [84]
Corynebacterium aquaticus Cr(VI) 40 NA NA 32 3 [84]
Enterobacter cloacae Cr(VI) 37 NA NA RT 10 [85]
Halomonas campaniensis Cr(VI) 37 NA NA RT 1.5 [86]
Pseudomona aeruginosa Cr(VI) 22 NA NA RT 10 [85]
Pseudomonas sp. Cr(VI) NA <0.005 mg/L NA NA 24 [87]

(b)

Species Cr
Species

Cr Removal pH Temp. (◦C) Time (Days) Source(%) (Other Units)

Aspergillus niger CrT 97 48 mg/g NA RT 21 [88]
Filamentous fungi and
activated charcoal CrT 97 NA 4 RT 16 [89]

Filamentous fungi CrT 83 NA 4 RT 16 [89]
Penicillium sp. Cr(III) 96 NA NA NA 10 [90]
Saccharomyces cerevisiae Cr(VI) 87 NA NA 37 2 [91]
Fusarium petroliphylum Cr(VI) 87 NA 4.3 RT 16 [92]
Penicillium citrinum Cr(VI) 80 NA 4.5–5.2 RT 21 [93]
Penicillium citrinum Cr(VI) 80 NA NA RT 5 [44] *
Trichoderma viride Cr(VI) 20 NA NA RT 5 [44] *

NA, not available; BD, below detection; RT, room temperature; (*), peer-reviewed.

Near-complete removal of Cr was also obtained using a system approach that in-
tegrated fungi with adsorption-based technologies (Table 4b). Solis [90] treated RSIP’s
tannery wastewater with the fungus Penicillium sp. (2.2 g/L) under completely mixed con-
ditions to remove 96% of Cr(III). When further combined with the microalga Acutodesmus
dismorphus, zeolite, and activated carbon, the system achieved 99% removal. Similarly, the
application of the fungus A. niger by Aymara [88] and the combination of native fungi and
activated charcoal by Quina [89] resulted in 97% CrT removal.

While overall reduction/removal was laudable, many of these bacteria- and fungi-
based studies required extended treatment times to obtain efficient results, rendering them
less attractive techniques for removing Cr species from tannery wastewater. The most
promising results, when considering both removal extent and treatment time, were obtained
using the bacterium P. mirabilis [86] or the fungus S. cerevisiae [91], which eliminated nearly
90% of Cr(VI) in 36 and 48 h, respectively. Unlike in the sorptive studies, a clear correlation
between Cr removal species and pH was harder to discern because of the limited number
of experiments documenting both variables and a presumed requisite of appropriate and
likely circumneutral pH constraints for effective microbial growth.
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2.4. Electrocoagulation

Five studies in the Arequipa Region evaluated electrocoagulation (see Table 5), in
which the authors applied electrical current with voltages between 0 and 40 volts and
intensities between 0 and 60 amps to treat different Cr species from tannery wastewaters.
Most experiments obtained high removal yields in all Cr species, except for Alvarez and
Vilca [94], who applied a graphite anode and nickel-covered metal cathode, resulting in
low treatment capacity for CrT. However, the authors obtained their results in a shorter
time (only five minutes), compared to the rest of the experiments. Laura and Salinas [95]
removed Cr(III) to BD in 30 min and no clear effects from voltage, intensity, or time on
pollutant removal capacity were detected. This limited number of studies was conducted
across a range of acidic pH values, which made it difficult to discern if there were any
patterns between Cr removal and pH.

Table 5. Electrocoagulation to treat polluted tannery wastewaters in Arequipa, southern Peru.

Cr
Species

Cr Removal
(%) Optimum Conditions pH Voltage (V) Intensity (A) Time (min.) Source

CrT 99 Aluminum electrodes 3.2 NA 0.095 44 [96]

CrT 23
Graphite anode and
nickel-covered metal
cathode

2 9 3 5 [94]

Cr(III) BD Iron anodes and aluminum
cathodes 5 3–20 0–60 90 [97]

Cr(III) BD Aluminum electrodes 4 0–12 0–50 30 [96]
Cr(VI) 99 Aluminum electrodes 5.9 40 14 45 [98]

NA, not available; BD, below detection.

2.5. Other Cr Removal Techniques

Fifteen additional studies implemented technologies that are less clearly linked into
the above classifications (Table 6). In some cases, nature-inspired approaches, such as
biofilters, infiltration strategies, and wetlands, likely operated with a synergy of biological
and/or abiotic reduction, bioaccumulation, and sorption-based mechanisms. Particular
highlights for Cr removal included solar distillation [99], magnetic iron nanoparticles [100],
artificial wetlands [101], iron-based coagulation-incorporating polymers [102], and infiltra-
tion systems [30,103,104]. Similar to the study already mentioned by Almiron et al. [41],
Huillca [78] used a wetland system colonized with the plant species E. montevidensis to
remove Cr from polluted waters, with a bioaccumulation factor of 13.9 and 22.0 through
aerial and root systems, respectively.

Considering only studies with sufficient additional information beyond removal ex-
tent, and besides the already mentioned peer-review studies done by Herrera-Yari et al. [43]
and Bejarano-Meza et al. [45], particularly promising results were obtained using infiltra-
tion approaches. For example, Leguía and Puma [104] used a bio-sand filter to remove
99% of CrT in 46 min. Similarly, Rendón [103] used sodium bentonite filters to remove
94% of Cr(VI) in 30 min, while Paye and Gomez [105] attenuated CrT to below detection in
eight hours using a mixture of zeolite and perlite. Unlike applied sorptive technologies,
these studies tended toward increased efficiency at higher pH values (R2 = 0.20 and 0.94
for Cr(VI) and CrT, respectively), suggesting a potential interaction between multiple
attenuation mechanisms.
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Table 6. Other techniques to treat polluted tannery wastewaters in Arequipa, southern Peru.

Cr Species Treatment
Cr Removal pH Time Source(%) (Other Units)

CrT Zeolite and perlite BD NA “Basic” 8 h [105]
CrT Bio-sand filter 99 NA 8–9 46 min [104]

CrT Artificial wetlands with S. americanus, E.
montevidensis, and H. bonariensis 99 NA 7–9 6 days [101]

CrT Constructed wetlands with Eleocharis
palustris 96 2.5 g/kg NA NA [106]

CrT Sandy-loam soil filter NA 9220 mg/kg 6.9–7.2 NA [30]
CrT Diatoms coated with FeCl3 NA 125 mg/g 6 4.5 h [107]

CrT Shrimp cephalothorax biofilter (C.
caementarius) NA 0.7–0.9 mg/kg Acid NA [108]

Cr(VI) Solar distillation BD NA NA 3 days [99]
Cr(VI) Magnetite nanoparticles BD NA NA 3 weeks [100]
Cr(VI) Magnetic iron-based nanoparticles 100 NA 2 30 min [45] *

Cr(VI) Polymer (Floerger AN 910) and FeCl3
coagulant 96 NA 6 NA [102]

Cr(VI) Sodium bentonite filters 94 NA 4 30 min [103]
Cr(VI) Ionic exchange resins 93 0.15 mg/L 3 30 min [47]
Cr(VI) Ionic exchange resins 93 NA 3–5 30 min [109]
Cr(VI) Cu nanoparticles and copper oxide NA 15 mg/L 2 NA [110]
Cr(VI) Photovoltaic reduction UV/TiO2 85 NA 3.8 4 h [43] *

NA: Not available. BD: Below detection. (*): Peer-reviewed.

3. Discussion
3.1. General Analysis

Several global reviews on how different techniques are used to treat CrT, Cr(III),
and/or Cr(VI) from tannery wastewaters already exist [111–116]. When compared to these
international efforts, the techniques applied in Arequipa to remove Cr species from tan-
nery wastewaters feature place-based adaptations that could be applied sustainably in the
region. The socioeconomic status of southern Peru favors practical treatment strategies for
the removal of Cr from tannery wastewater that rely on inexpensive and easily available
materials and techniques. Nanotechnology, for example, is a common method used to
treat Cr from wastewater [113,117,118], but only two studies [100,110] used this technique
in Arequipa. Similarly, authors have used chemical precipitation of Cr (VI) worldwide
in tannery wastewater [119,120], but no Arequipa-specific studies were found using this
method. However, Portada [121] demonstrated 74% Cr(III) removal from tannery wastew-
aters through chemical precipitation in only 30 min in Puno (southern Peru). Another
common method not found is the use of dry (and presumably limited biological activity)
microbial bacterial biomass for Cr adsorption, as achieved by Rizvi et al. [122] in India,
who used desiccated biomass comprised of P. aeruginosa, B. subtilis, and A. chroococcum
to remove Cr and other metals and highlighted 96% removal by B. subtilis. While not
directly explored, this highlights a potential synergy in sorption with biological processes
for live microbial cells. International studies provide a strong precedent for the need to
further evaluate various treatment methods for tannery wastewaters, including coagulation
and flocculation, electrochemical treatments such as electro-flotation and electro-oxidation
(distinct from electrocoagulation presented herein), ion exchange, membrane filtration,
electrodialysis, photocatalysis, and biological treatments (e.g., trickling filters and aerated
lagoons) [111–120]. While these methods have been studied in various contexts, Arequipa
presents a relevant test case for assessing their applicability to local tannery wastewater con-
ditions.

A direct comparison is unfortunately hindered by the preference of Arequipa authors
to express their results in terms of percent removal as opposed to benchmarks against
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material mass (e.g., mg/kg) and the establishment of adsorption isotherms, making it
difficult to develop a global comparative analysis. Expressing results in material-relevant
units that capture mass treatment capability, isotherms, and normalization or optimization
of treatment conditions such as pH, temperature, and treatment times, as previously dis-
cussed by Garcia-Chevesich et al. [123], would facilitate benchmarking regional treatment
strategies against the global literature to increase this contribution. Nevertheless, this
compilation of place-based studies holds significant value. Rather, this unique place-based
compilation of otherwise not visible research provides trajectories and opportunities that
build on local understanding and acceptance of potential materials and technologies that
could be appropriate for local solutions to this wastewater quality challenge.

Tanning industries (such as those operating in RSIP in Arequipa) generate effluents
that can have highly variable pH values (between 2 and 9) due to the chemical processes
involved in transforming animal hides into leather, which include the use of acids, bases,
and other chemicals [124]. Analogous variability was confirmed in our place-based anal-
ysis across sites in the region. While Tejada-Meza et al. [33] reported that the pH of the
RSIP’s tannery effluents was 8.2 ± 0.4 during their analysis window, this may not be con-
stant because of the changing quality (color/smell) of the surface water effluent observed
by our team during the field visit (see Section 1 for details), most likely a result of up-
stream dumping. The potential variability of tannery wastewater requires effluent-specific
analysis of parameters, such as pH, ionic strength, organic and inorganic concentrations,
temporal variability, and flow, to most effectively select and optimize treatment technolo-
gies (and potential multistage or adaptable approaches) that help achieve environmental
discharge standards.

3.2. Promising Strategies for Cr Attenuation in Arequipa
3.2.1. Adsorption

Adsorption is a frequently applied technique in the treatment of Cr-contaminated
water. In the specific case of treating Cr-contaminated tannery wastewater, adsorption is
used to eliminate Cr ions by binding them to a solid adsorbent material [125]. Sorption
applications that rely on water contact are straightforward is to implement and can be
applied toward the removal of a diverse array of heavy metals, even at trace concentra-
tions [126–130]. They can be further tailored toward specific metals with the capability for
recovery, regeneration, and reuse, which can contribute to cost-effectiveness and provide
a more environmentally benign alternative to chemical dosing [127–131]. However, as
sorbents have a finite supply of active sites, analyses such as sorption isotherms should be
quantified to understand attenuation capacity and then extended to explore the viability of
pilot-scale applications with complex effluent matrices.

With these considerations as well as related investigations into cost-benefit and life-
cycle analysis, adsorption materials could be applied to the region because they can be
derived from locally abundant food waste products or be used as feedstocks for biochar,
supporting broader sustainability themes. With the caveat of limited context to establish
isotherms and equilibrium kinetics, the most promising adsorption results (>95% removal)
were documented for plant materials (achiote peels, avocado seed, pea pods, sawdust,
potatoes, corn crown and rice peel, and olive pits) that are present and, in most cases,
waste products in the Arequipa Region of southern Peru (see Table 2 for details). Achiote
peels [50] and avocado seeds [51] were particularly promising in terms of percent removal
and time. This synergy of locally abundant waste materials and effective attenuation
suggests an opportunity to further explore applications at scale to better ascertain potential
sustainability.
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As previously discussed in Section 3.1 and depicted in Figure 4, the results collec-
tively suggest that more acidic waters tend to eliminate more Cr (in all forms) during
sorption applications, agreeing with studies developed for wastewaters in other parts
of the world [132]. Unfortunately, only one author [66] mentions surface treatment area
(690 m2/g), while the rest simply report particle diameter (75–850 µm). Despite the lim-
itations of the units previously discussed and in considering the available information
(i.e., % removal most commonly), some results listed in Table 2 appear to be competitive
with other Peruvian and international studies that have focused on testing different materi-
als to remove Cr from tannery wastewaters using adsorption-based approaches. Studies
within other regions of Peru identified adsorption onto materials such as wood ash [133],
moringa seeds [134], Eucalyptus sp. leaves [135], and lemon peel [136] as efficient methods
to remediate Cr in water.

Similarly, these Arequipa-centric results are analogous to results obtained in other
countries. For example, similar to Mollinedo and Huanca [51] in Arequipa, Hernandez
et al. [137] were able to achieve Cr(VI) removal to BD levels using avocado waste biomass
in Bolivia, while Boeykens et al. [138] removed 80% of Cr(VI) using avocado seeds from
polluted waters in Argentina. Bansal et al. [139] and Sivakumar [140] achieved 77% and
88% Cr(VI) removal, respectively, from polluted tannery wastewaters in India using rice
husk, which compares favorably to the 95% Cr(VI) removed by Pacheco [48] in Arequipa
using this material. Mass-normalized removal from Arequipa included 2.2 mg/g with
sawdust [57] and 4.3 mg/g with banana peel [141].

As is true for many pollutants, activated carbon and related products such as waste-
derived biochar (when originated from organic matter) are particularly appropriate for Cr
attenuation. This could also limit the ancillary release of nutrients and soluble organics
associated with otherwise unprocessed food waste. Fahim et al. [142] applied activated
carbon to remove up to 99% Cr(III) from Egyptian tannery wastewater and Payel and
Sarker [143] removed 99.8% of CrT from these toxic industrial fluids using banana flower
stalk (rachis) biochar in Bangladesh. A study in Arequipa reported 52 mg/g achieved with
biochar from rice husk [66]. This compares favorably to what Mohan et al. [144] achieved
in India using low-cost biochar derived from agricultural waste materials and cloth-like
deployment, with a 22 mg/g Cr(VI) removal capacity from tannery wastewaters. Moreover,
Estrella [145] used a composite of activated carbon impregnated with multiwalled carbon
nanotubes in Ecuador to remove 28 mg/g of the contaminant in 90 min.

Our local place-based synthesis identified adsorption materials not previously de-
scribed in the Peruvian and international literature, such as Arequipan papaya seed, san-
cayo cacti peel, Peruvian potato varieties, and quinoa (see Table 2). Of these, the former
two materials are considered agricultural waste, whereas the latter two have commercial
value as agricultural products. The most promising materials identified in this synthe-
sis (achiote peels and avocado seeds) add a local novel feedstock for Cr treatment from
tannery wastewater as they are considered waste in Arequipa; although avocado seeds
have been used to treat other types of polluted waters by Mahmoud et al. [146] in Egypt
and Boeykens et al. [138] in Argentina, their application to tannery wastewaters is novel.
Another effective waste product identified in this synthesis is olive seed. In building upon
this theme, Malkoc et al. [147] removed 12.2 mg/g of Cr(VI) in Turkey using pomace (an
industrial olive oil waste product which contains 59–74% olive seed and pulp); even more
promising, El-Aassar et al. [148] removed 137.7 mg/g of Cr(VI) using a blend of olive
seed waste, anthracite, and chitosan. Though shrimp carapace waste material has been
studied for metal removal in India and Saudi Arabia [149,150], our synthesis adds locally
abundant freshwater river shrimp (P. serratus) to this body of knowledge. Indeed, grounded
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shrimp skeleton was shown to be more effective at removing Cr species than commercial
chitin/chitosan, as concluded by Fabbricino and Gallo [151] in Italy.

In addressing potential applications, it is recommended that the most efficient materi-
als mentioned above, in synergy with local abundance as easily acquired waste products
as well as considerations of novelty, be further investigated to explore their ability to
remove Cr and other metals from tannery wastewaters at larger scales, their conversion
and analysis of resultant biochar, and with considerations of transportation, implemen-
tation, and disposal costs and impacts. Similarly, other materials already tested for Cr
removal (e.g., passionfruit by Campos-Flores et al. [152] in Trujillo, Peru, or clay pellets to
increase adsorption in Cameroon [153]) or for the local treatment of other metals (see Garcia-
Chevesich et al. [123] for details) should also be tested in Arequipa for Cr removal from
tannery wastewaters. The place-based investigations would also benefit from exploration
of emerging adsorbent-based techniques applied toward analogous wastewaters elsewhere,
such as nanobiocomposite spheres [117] and polymer-based adsorbents (e.g., Chavez and
Alpaca [102]). Finally, a technoeconomic and sustainability evaluation should complement
the feasibility of using promising materials directly and as feedstocks for biochar to further
explore their applicability toward larger-scale tannery wastewater treatment applications.

3.2.2. Phytoremediation

Phytoremediation is an eco-technological method based on the ability of algae or
larger plants to adsorb, bioaccumulate, and/or degrade aqueous pollutants [154,155].
It offers the potential for an inexpensive method that does not rely on skilled labor for
implementation [156]. The efficacy of Cr removal via phytoremediation depends on various
factors including plant or algal species, the initial concentration of Cr in the treated water,
environmental conditions, and the duration of exposure [155]. While phytoremediation
presents a sustainable and economically favorable approach for the extraction of metals
from contaminated waters, its application is constrained by slower treatment timeframes,
limited capacity, liabilities with resultant bioaccumulation, and reliance on environmental
conditions [157].

Based on percent removal, promising results from Arequipa (Table 3a,b) were achieved
with I. cernua and N. aquaticum [72], and D. quadricauda [67], with further promise in other
Peruvian regions that are using P. persica [158]. The international community has studied
Typha spp. [159] in the USA, C. alternifolius, T. domingensis, P. karaka, and B. aethiopum [160],
P. coccineum, B. mutica, and C. papyrus [161] in Ethiopia, and Trichoderma sp. [162] in India,
with lesser efficiency for E. craassipes in Bangladesh [163].

While most Arequipan reports focused on percent removal, Flores [79] documented
removal of 560 mg/kg using Tagetes sp. The locally cultivated microalga species D. quadri-
cauda [67] was not previously documented in the international literature for this application,
as summarized in the literature review on microalgal applications toward contaminant
remediation by Jácome-Pilco et al. [164]. The Arequipa studies identified other vascular
plant species not previously studied for Cr removal from tannery wastewaters, including
Buddleja sp., I. cernua, N. aquaticum, H. macrophylla, C. murale, E. montevidensis, B. salicifolia,
T. integrifolia, C. ruizianus, and I. cernua. However, as previously discussed, the species
that seems to be the most promising and should be further explored is I. cernua, a native
species from southern Peru that is novel in the field of Cr removal from tannery wastewater.
In embracing a theme of utilizing a combination of different mechanisms and technolo-
gies, I. cernua could be incorporated in constructed wetland-based treatment systems as
reported by Morales-Paredes et al. [165]. However, the implementation of larger-scale
phytoremediation-based treatment systems in Arequipa is accompanied by environmental
and practical constraints such as the need to harvest and dispose of plants that bioaccumu-
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late this toxic metal. Furthermore, Arequipa has an arid climate, which could constrain
water availability. However, recent climate change and anthropogenic projections [166]
suggest that surface water resource availability is expected to increase in the region and
hence could mitigate this concern.

3.2.3. Bioremediation

Bioremediation employs live microorganisms (including bacteria or fungi) to attenu-
ate metal contaminants from polluted waters through mechanisms such as redox cycling,
precipitation, indirect complexation (e.g., with associated iron oxyhydroxides), and bioac-
cumulation [167,168]. Microorganisms are pivotal in bioremediation as they leverage
contaminants as a resource for energy or nutrients [169] or through fortuitous biotransfor-
mation reactions that are more cometabolic in nature with less obvious benefit to metabolic
processes [170,171]. Of particular relevance to bioremediation is the reduction of Cr(VI) to
Cr(III) to limit mobility and toxicity [172] (see details in Section 1). Investigations focusing
on enzymatic processes are of great interest for chromate bioremediation, as they represent
detoxification processes in inherently Cr-resistant microorganisms [173].

The utilization of nature-based solutions that incorporate bioremediation for the treat-
ment of pollutants such as Cr offers an efficient and sustainable alternative. Bioremediation
can be more cost-effective than engineered applications, such as chemical precipitation
or membrane filtration, with lower material, operational, and waste costs [174,175]. De-
spite these benefits, bioremediation can harbor kinetic limitations, potentially requiring
weeks or even months and larger physical treatment footprints when contrasted with
some of the more rapid technologies explored herein and elsewhere [176]. Extended
treatment durations may diminish the efficiency of systems designed for large-scale or
continuous-flow operations, particularly in contexts necessitating larger flows and swift re-
mediation. This issue is particularly pronounced in scenarios involving industrial effluents
from RSIP, where prompt interventions are essential to avert further contamination [177].
Moreover, these processes necessitate additional resources such as energy, nutrients, and
other substrates, thereby escalating operational costs and constraining the scalability of
these systems [166,178]. Microbial or fungal colonies may also be adversely impacted by
environmental stressors, the environmental variability of introduced tannery wastewaters,
and the depletion of metabolic resources during prolonged operations, consequently un-
dermining long-term efficacy and the system resilience [176]. Bioremediation can also yield
toxic or more mobile by-products, potentially exacerbating pollution or adversely affecting
ecosystems [178]. Moreover, the accumulation of heavy metals in resultant biomass can
necessitate effective removal or disposal strategies [174]. Temporal complexities further
necessitate system optimization and continuous monitoring to maintain stability and effec-
tiveness in treatment processes [179,180]. These are all surmountable considerations that
should be kept in mind to optimize bioremediation systems and tailor them toward local
conditions to ensure that overall sustainability metrics are achieved.

Promising results within the Arequipa-specific literature to remove Cr species through
bioremediation (Table 4a,b) came from the use of unspecified sulfate-reducing bacteria [83],
the fungi Penicillium sp. [90] and A. niger [88], and the combination of filamentous fungi
with activated charcoal [89]. These results entailing greater than 97% attenuation of Cr
species from tannery wastewater can be compared with other Peruvian and international
research. At the national level, similar results were obtained using A. niger [181] and
Pseudomona sp. [123,182]. Internationally speaking, similar results were obtained using A.
niger in Mexico [183] and Pseudomona sp. in Ecuador [184], and E. coli and Pseudomonas sp.
in Argentina [185] and China [186]. The Arequipan author Aymara [88] attained 48 mg/g
of Cr removal with A. niger, while Chen et al. [187] exceeded this capacity by applying a
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hydroxyl-functionalized magnetic fungal nanocomposite in China. In addition, sulfate-
reducing bacteria (SRB) have been applied more widely to remove challenging heavy metals
through the formation of metal sulfides, with a powerful precedent in treating mining-
impacted waters [188–190]. Besides Cr, Cu, and Zn, Lloyd et al. [191] used SRB to eliminate
Tc(VII), Cr(VI), Se(IV), and Te(IV) from polluted solutions. The implementation of sulfate
reduction and other bioremediation strategies likely necessitates the construction and
maintenance of an actively managed or passive bioreactor [189,190], while phytoplankton
can work with less infrastructure demand to treat Cr-contaminated tannery wastewater in
the Arequipa Region. A bioremediation application would have to consider footprint, flow
constraints, and potential fouling for optimal removal to be effective.

Furthermore, though some microorganisms used in Arequipa to remove Cr species
from tannery wastewater are not found in the international literature, the results revealed
that the bacterium P. mirabilis [86] and the fungus S. cerevisiae [91] were particularly promis-
ing for further exploration into treatment-relevant investigations that address long-term
viability and large-scale applications. Though the former species has been applied to
remove Cr from polluted waters [192], we are not aware of its application toward tannery
wastewaters outside of these Arequipa-specific studies. S. cerevisiae, as documented by
Benazir et al. [193] in Indian tannery effluents, attained similar results to those obtained in
Arequipa and improved overall treatment through mixed consortia, which is an approach
that should be explored in southern Peru.

3.2.4. Electrocoagulation

Electrocoagulation has been applied in industrial wastewater treatment facilities for
discharge or recycling. This technique entails applying an electric current to the wa-
ter, prompting the coagulation and precipitation of suspended and dissolved contami-
nants [194]. Most of the surveyed experiments employing electrocoagulation resulted in
nearly complete Cr removal (Table 5). A highlight was led by Laura and Salinas [95], who
applied aluminum electrodes (locally the most common method) to remove all Cr species
to below detection limits from tannery wastewater in only 30 min. Juarez and Osorio [97]
achieved similar results using iron anodes and aluminum cathodes. However, lower Cr
removal was documented by Alvarez and Vilca [94] using a graphite anode and nickel-
covered metal cathodes, while near complete Cr removal was achieved in other Peruvian
regions applying aluminum cathodes/anodes pairs [195–199], as well as copper cathodes
and lead anodes [195]. Among competitive international results, Gao et al. [200] and Aoudj
et al. [201] combined electrocoagulation and electroflotation to remove Cr in Hong Kong
and Algeria, respectively, both decreasing Cr concentrations below national standards.

Electrocoagulation presents several advantages for metal extraction from contami-
nated waters, notably high efficiency, and rapid removal [202]. The technology requires
readily available electrical equipment and minimal chemical additives [202]. It is capable
of treating a wide variety of water types and pollutants [202], thereby making it suitable
for diverse industrial wastewaters such as RSIP effluents. However, electrocoagulation
requires disproportionately high energy inputs when contrasted with other engineered
treatment technologies, can be less efficient in highly saline or acidic waters, produces a
waste sludge that necessitates dewatering and potentially hazardous disposal, and elec-
trodes rapidly corrode, with a need for frequent replacement [203]. Hence, despite the
promise of nearly complete removal in relatively short periods of time, electrocoagulation
is expensive compared to other approaches due to infrastructure, energy, and other opera-
tional costs [204]. Therefore, analysis to evaluate the economic feasibility of this technique
for pilot and large-scale treatment of tannery wastewater in Arequipa may best be used as
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a benchmark when exploring potentially more sustainable treatment technologies such as
those outlined prior to this section.

3.2.5. Other Cr Removal Techniques

The high solar radiation present in Arequipa lends promise toward solar distillation,
which uses solar energy to evaporate water from a polluted source to be later condensed
into a clean container. However, much like membrane-based exclusion, evaporative appli-
cations result in a concentrated waste stream that necessitates further treatment or disposal
and could present a barrier to sustainable implementation [205]. In addition to extensive
removal as documented by Herrera-Yari et al. [43] (Table 6), Anahua and Pacheco [99]
were able to eliminate CrT to BD using solar distillation. However, those implementations
took days to weeks, which provides a temporal constraint for adoption. While treatment
time is a potential barrier to implementation, novel strategies such as the utilization of
materials with high thermal absorption capacity (e.g., black copper, carbon-based nanoma-
terials, specialized coatings) can accelerate the evaporation process. Further gains can be
achieved by optimizing the evaporation surface area, incorporating simple and portable
photothermal evaporation structures [206], or possible integration with other technologies
explored herein.

Promising Arequipa results were also obtained using infiltration-type strategies in
geomedia such as biosand filters (99% of CrT in 46 min), sodium bentonite filters (94%
Cr(VI) in 30 min), and zeolite with perlite (CrT to BD in eight hours), as listed in Table 6.
This is consistent with the findings of others; for example, Kocaman et al. [207] used biosand
filters (among other treatments) to eliminate 0.19 ppm of Cr from industrial wastewaters in
Turkey, and Ruiz [100] eliminated CrT to BD using magnetite nanoparticles.

The application of constructed wetlands (as also documented by Arizábal [106] in
Arequipa) can bring a series of environmental and social benefits to this arid region while
also helping to address the alarming reduction in and need for protection of wetland
ecosystems in Peru, as recently reported by Romero-Mariscal et al. [208]. In our synthesis,
Lima [101] removed 99% of Cr using constructed wetlands in Arequipa; this is analogous
but superior to the 85% removal obtained by Kong et al. [209] in constructed wetlands in
China. Similarly, Rojas [107] used diatoms in wetlands to obtain an impressive 125 mg/g
Cr removal in Arequipa. Wetlands also provide a synergy in promising phytoremediation
technologies, as highlighted earlier, along with additional biogeochemical processes that
could reduce and bind soluble Cr in sediments. However, while wetlands show promise
to remove Cr, further studies are needed to understand the fate and bioavailability of
Cr complexes and species once sequestered in wetland systems and how to best manage
sequestration to limit long-term environmental liabilities.

4. Conclusions and Recommendations
As Cr pollution from tannery wastewater is a problem in the Arequipa Region of

southern Peru, this place-based synthesis represents an important contribution to the
state of the art on how to remove this dangerous metal from contaminated waters, with
the purpose of having a cleaner environment and a more sustainable leather production.
In this literature review, a total of 75 (70 theses and five peer-reviewed, most of them
in Spanish) studies evaluating different techniques to remove Cr species from polluted
tannery wastewaters were found for the Arequipa Region. The main technical approaches
evaluated were adsorption (twenty-three studies), phytoremediation (eighteen studies),
microbial bioremediation (thirteen studies), electrocoagulation (five studies), and a broader
catch-all category, often combining multiple attenuation mechanisms, which did not cleanly
fall into those other categories (fifteen studies).
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Numerous studies identified in this synthesis were able to remove the majority of
detectable Cr from polluted tannery wastewater. Moreover, efficient techniques explored
in the region were identified and were consistent with findings elsewhere using similar
materials. Promising place-based solutions included adsorption materials originated from
local food waste, such as native achiote peels (B. orellana) and avocado seeds (P. americana).
The use of agricultural waste, such as unprocessed adsorbents or via conversion to biochar,
emerged more broadly as a promising approach for large-scale applications in the region
due to local availability and rapid treatment times. However, with only 23 studies, and
considering the long list of widely available local organic waste materials found by Garcia-
Chevesich et al. [123], further exploration into this category toward its applicability in
removing Cr from tannery wastewaters could yield further insights. Importantly, these
subsequent studies should incorporate the variables needed to understand the adsorption
isotherms to enable system predictions and optimization, as well as explore the costs and
carbon footprints associated with their adoption.

Other locally promising technologies included phytoremediation using certain mi-
croalgae and vascular plants, and bioremediation using bacteria and fungi. At scale,
bioremediation applications could be implemented using more holistic strategies that
capitalize on both biotic and abiotic mechanisms such as constructed wetlands and sulfate-
reducing bioreactors. Additionally, a variety of infiltration strategies employing applicable
geomedia and solar distillation in this arid and sunlight-intense region could offer favorable
benefits for local applications. These could be enhanced with focused investigations and
benchmarks against proven technologies to help develop sustainable and locally tailored
technologies to more effectively treat this point source of pollution in Arequipa. In explor-
ing these potential technologies, additional analyses should quantify overall sustainability
metrics such as cost, availability, transportation, social benefits, carbon footprint, and
feasibility at larger scales.

Future investigations should also focus on collaborative efforts between research
institutions and the private sector to achieve common treatment goals while also combining
treatment approaches (e.g., using I. cernua in constructed wetlands or hybrid approaches
that integrate engineered and nature-based solutions). Equally important is to highlight
the need to explore the application of proven and emerging treatment technologies not
tested in the region, such as chemical precipitation, ion exchange, membrane filtration,
trickling filters, and nanocomposite spheres. Moreover, investigations need to better discern
attenuation mechanisms, develop process-specific understanding (e.g., sorption isotherms),
provide critical comparisons of effectiveness against proven technology benchmarks, and
provide cost-benefit and lifecycle analyses to help prioritize feasible solutions.

Despite an abundance of societal interest and documented efforts from local scientists
to remove Cr from tannery wastewaters at RSIP, it is evident that those or other initiatives
have not been adopted to address ongoing, industry-sourced Cr pollution in Arequipa. This
synthesis could provide inspiration for the further exploration and adoption of sustainable
approaches that could be used by local authorities, policy makers, and the private sector
as they develop mitigation strategies for tannery wastewater treatment that better protect
human and environmental health.
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207. Kocaman, A.; Savaş, B.F.; İşler Ceyhan, D. Removal efficacy of toxic metals in leachate through micro-organisms isolated from the
natural environment. BioResources 2023, 18, 5476–5493. [CrossRef]

208. Romero-Mariscal, G.; Garcia-Chevesich, P.A.; Morales-Paredes, L.; Arenazas-Rodriguez, A.; Ticona-Quea, J.; Vanzin, G.; Sharp,
J.O. Peruvian wetlands: National survey, diagnosis, and further steps toward their protection. Sustainability 2023, 15, 8255.
[CrossRef]

209. Kong, F.; Zhang, Y.; Wang, H.; Tang, J.; Li, Y.; Wang, S. Removal of Cr(VI) from wastewater by artificial zeolite spheres loaded
with nano Fe–Al bimetallic oxide in constructed wetland. Chemosphere 2020, 257, 127224. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.37761/rsqp.v83i3.117
https://doi.org/10.12911/22998993/113191
https://doi.org/10.1016/j.seppur.2004.10.008
https://doi.org/10.1016/j.cej.2014.12.081
https://doi.org/10.1016/j.cep.2020.107918
https://doi.org/10.1016/j.envc.2023.100691
https://doi.org/10.1039/D0EW00725K
https://doi.org/10.15376/biores.18.3.5476-5493
https://doi.org/10.3390/su15108255
https://doi.org/10.1016/j.chemosphere.2020.127224

	Introduction 
	Cr Removal Techniques Evaluated in the Arequipa Region 
	Adsorption 
	Phytoremediation 
	Bioremediation 
	Electrocoagulation 
	Other Cr Removal Techniques 

	Discussion 
	General Analysis 
	Promising Strategies for Cr Attenuation in Arequipa 
	Adsorption 
	Phytoremediation 
	Bioremediation 
	Electrocoagulation 
	Other Cr Removal Techniques 


	Conclusions and Recommendations 
	References

