Manure Management as a Potential Mitigation Tool to Eliminate Greenhouse Gas Emissions in Livestock Systems
Abstract
:1. Introduction
2. Impact of Manure Management on Climate Change
3. Sustainable Manure Management Strategies
3.1. Anaerobic Digestion
3.2. Optimizing Nutrient Management for Sustainable Livestock Systems
3.3. Composting
3.3.1. Principles of Composting
3.3.2. Methane Reduction and Soil Enrichment
3.4. Manure Separation and Treatment
3.4.1. Process, Principles, and Efficiency
3.4.2. Advantages of Manure Separation
3.4.3. GHG Emissions and Solid Manure Separation
3.5. Improved Storage and Handling
3.5.1. Manure Coverage and GHG Emissions
3.5.2. Manure Incorporation into Soils and Mitigation Potential
3.6. Black Soldier Fly Larvae: A Sustainable Approach to Manure Management
4. Methods Comparison
5. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Yuan, X.; Li, S.; Chen, J.; Yu, H.; Yang, T.; Wang, C.; Huang, S.; Chen, H.; Ao, X. Impacts of Global Climate Change on Agricultural Production: A Comprehensive Review. Agronomy 2024, 14, 1360. [Google Scholar] [CrossRef]
- Greenhouse Gas (GHG) Emissions|Climate Watch. Available online: https://www.climatewatchdata.org/ghg-emissions (accessed on 22 February 2024).
- Oenema, O.; Oudendag, D.; Velthof, G.L. Nutrient Losses from Manure Management in the European Union. Livest. Sci. 2007, 112, 261–272. [Google Scholar] [CrossRef]
- Habib-ur-Rahman, M.; Ahmad, A.; Raza, A.; Hasnain, M.U.; Alharby, H.F.; Alzahrani, Y.M.; Bamagoos, A.A.; Hakeem, K.R.; Ahmad, S.; Nasim, W.; et al. Impact of climate change on agricultural production; Issues, challenges, and opportunities in Asia. Front. Plant Sci. 2022, 13, 925548. [Google Scholar] [CrossRef] [PubMed]
- Chávez-Fuentes, J.J.; Capobianco, A.; Barbušová, J.; Hutňan, M. Manure from Our Agricultural Animals: A Quantitative and Qualitative Analysis Focused on Biogas Production. Waste Biomass Valorization 2017, 8, 1749–1757. [Google Scholar] [CrossRef]
- Irshad, M.; Eneji, A.E.; Hussain, Z.; Ashraf, M. Chemical Characterization of Fresh and Composted Livestock Manures. J. Soil Sci. Plant Nutr. 2013, 13, 115–121. [Google Scholar] [CrossRef]
- Chadwick, D.; Sommer, S.; Thorman, R.; Fangueiro, D.; Cardenas, L.; Amon, B.; Misselbrook, T. Manure Management: Implications for Greenhouse Gas Emissions. Anim. Feed. Sci. Technol. 2011, 166–167, 514–531. [Google Scholar] [CrossRef]
- Sommer, S.G.; Petersen, S.O.; Sørensen, P.; Poulsen, H.D.; Møller, H.B. Methane and Carbon Dioxide Emissions and Nitrogen Turnover during Liquid Manure Storage. Nutr. Cycl. Agroecosystems 2007, 78, 27–36. [Google Scholar] [CrossRef]
- Ni, J.-Q.; Heber, A.J.; Lim, T.T.; Tao, P.C.; Schmidt, A.M. Methane and Carbon Dioxide Emission from Two Pig Finishing Barns. J. Environ. Qual. 2008, 37, 2001–2011. [Google Scholar] [CrossRef] [PubMed]
- Petersen, S.O.; Blanchard, M.; Chadwick, D.; Del Prado, A.; Edouard, N.; Mosquera, J.; Sommer, S.G. Manure Management for Greenhouse Gas Mitigation. Animal 2013, 7, 266–282. [Google Scholar] [CrossRef] [PubMed]
- FAO. Livestock and Environment Statistics: Manure and Greenhouse Gas Emissions: Global, Regional and Country Trends, 1990–2018; FAOSTAT Analytical Briefs; FAO: Rome, Italy, 2020. [Google Scholar]
- Grossi, G.; Goglio, P.; Vitali, A.; Williams, A.G. Livestock and Climate Change: Impact of Livestock on Climate and Mitigation Strategies. Anim. Front. 2019, 9, 69–76. [Google Scholar] [CrossRef]
- Olarinmoye, D.A.O.; Tayo, O.G.; Akinsoyinu, A. An Overview of Poultry and Livestock Waste Management Practices in Ogun State, Nigeria. J. Food Agric. Environ. 2011, 9, 643–645. [Google Scholar]
- Ndambi, O.A.; Pelster, D.E.; Owino, J.O.; de Buisonjé, F.; Vellinga, T. Manure Management Practices and Policies in Sub-Saharan Africa: Implications on Manure Quality as a Fertilizer. Front. Sustain. Food Syst. 2019, 3, 29. [Google Scholar] [CrossRef]
- Lekasi, J.K.; Tanner, J.C.; Kimani, S.K.; Harris, P.J.C. Cattle Manure Quality in Maragua District, Central Kenya: Effect of Management Practices and Development of Simple Methods of Assessment. Agric. Ecosyst. Environ. 2003, 94, 289–298. [Google Scholar] [CrossRef]
- Ström, G.; Albihn, A.; Jinnerot, T.; Boqvist, S.; Andersson-Djurfeldt, A.; Sokerya, S.; Osbjer, K.; San, S.; Davun, H.; Magnusson, U. Manure Management and Public Health: Sanitary and Socio-Economic Aspects among Urban Livestock-Keepers in Cambodia. Sci. Total Environ. 2018, 621, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Burton, C.; Martinez, J. Contrasting the Management of Livestock Manures in Europe with the Practice in Asia: What Lessons Can Be Learnt? Outlook Agric. 2008, 37, 195–201. [Google Scholar] [CrossRef]
- Christophe, S.; Pentieva, K.; Botsaris, G. Knowledge and Practices of Cypriot Bovine Farmers towards Effective and Safe Manure Management. Vet. Sci. 2023, 10, 293. [Google Scholar] [CrossRef]
- Lindgren, J. Challenges and Incentives for Sustainable Manure Management in Russia. Available online: https://stud.epsilon.slu.se/5219/ (accessed on 21 February 2024).
- Malomo, G.A.; Madugu, A.S.; Bolu, S.A.; Malomo, G.A.; Madugu, A.S.; Bolu, S.A. Sustainable Animal Manure Management Strategies and Practices. In Agricultural Waste and Residues; IntechOpen: London, UK, 2018; ISBN 978-1-78923-573-9. [Google Scholar]
- Liu, J.; Kleinman, P.J.A.; Aronsson, H.; Flaten, D.; McDowell, R.W.; Bechmann, M.; Beegle, D.B.; Robinson, T.P.; Bryant, R.B.; Liu, H.; et al. A Review of Regulations and Guidelines Related to Winter Manure Application. Ambio 2018, 47, 657–670. [Google Scholar] [CrossRef] [PubMed]
- Ashwood, L.; Diamond, D.; Walker, F. Property Rights and Rural Justice: A Study of U.S. Right-to-Farm Laws. J. Rural. Stud. 2019, 67, 120–129. [Google Scholar] [CrossRef]
- Wilkie, A. Anaerobic Digestion of Dairy Manure: Design and Process Considerations. Dairy Manure Manag. Treat. Handl. Community Relat. 2005, 301, 301–312. [Google Scholar]
- Uddin, M.M.; Wright, M.M. Anaerobic Digestion Fundamentals, Challenges, and Technological Advances. Phys. Sci. Rev. 2023, 8, 2819–2837. [Google Scholar] [CrossRef]
- Lallement, A.; Peyrelasse, C.; Lagnet, C.; Barakat, A.; Schraauwers, B.; Maunas, S.; Monlau, F. A Detailed Database of the Chemical Properties and Methane Potential of Biomasses Covering a Large Range of Common Agricultural Biogas Plant Feedstocks. Waste 2023, 1, 195–227. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, R.; Liu, G.; Chen, C.; He, Y.; Liu, X. Comparison of Methane Production Potential, Biodegradability, and Kinetics of Different Organic Substrates. Bioresour. Technol. 2013, 149, 565–569. [Google Scholar] [CrossRef]
- Kafle, G.K.; Chen, L. Comparison on Batch Anaerobic Digestion of Five Different Livestock Manures and Prediction of Biochemical Methane Potential (BMP) Using Different Statistical Models. Waste Manag. 2016, 48, 492–502. [Google Scholar] [CrossRef] [PubMed]
- Cu, T.T.T.; Nguyen, T.X.; Triolo, J.M.; Pedersen, L.; Le, V.D.; Le, P.D.; Sommer, S.G. Biogas Production from Vietnamese Animal Manure, Plant Residues and Organic Waste: Influence of Biomass Composition on Methane Yield. Asian-Australas. J. Anim. Sci. 2015, 28, 280–289. [Google Scholar] [CrossRef]
- Garcia, N.H.; Mattioli, A.; Gil, A.; Frison, N.; Battista, F.; Bolzonella, D. Evaluation of the Methane Potential of Different Agricultural and Food Processing Substrates for Improved Biogas Production in Rural Areas. Renew. Sustain. Energy Rev. 2019, 112, 1–10. [Google Scholar] [CrossRef]
- Yang, G.; Li, Y.; Zhen, F.; Xu, Y.; Liu, J.; Li, N.; Sun, Y.; Luo, L.; Wang, M.; Zhang, L. Biochemical Methane Potential Prediction for Mixed Feedstocks of Straw and Manure in Anaerobic Co-Digestion. Bioresour. Technol. 2021, 326, 124745. [Google Scholar] [CrossRef]
- Carabeo-Pérez, A.; Odales-Bernal, L.; López-Dávila, E.; Jiménez, J. Biomethane Potential from Herbivorous Animal’s Manures: Cuban Case Study. J. Mater. Cycles Waste Manag. 2021, 23, 1404–1411. [Google Scholar] [CrossRef]
- Labatut, R.A.; Angenent, L.T.; Scott, N.R. Biochemical Methane Potential and Biodegradability of Complex Organic Substrates. Bioresour. Technol. 2011, 102, 2255–2264. [Google Scholar] [CrossRef]
- Allen, M.R.; Fuglestvedt, J.S.; Shine, K.P.; Reisinger, A.; Pierrehumbert, R.T.; Forster, P.M. New Use of Global Warming Potentials to Compare Cumulative and Short-Lived Climate Pollutants. Nat. Clim. Chang. 2016, 6, 773–776. [Google Scholar] [CrossRef]
- Marañón, E.; Salter, A.M.; Castrillón, L.; Heaven, S.; Fernández-Nava, Y. Reducing the Environmental Impact of Methane Emissions from Dairy Farms by Anaerobic Digestion of Cattle Waste. Waste Manag. 2011, 31, 1745–1751. [Google Scholar] [CrossRef] [PubMed]
- Costa Junior, C.; Cerri, C.E.P.; Pires, A.V.; Cerri, C.C. Net Greenhouse Gas Emissions from Manure Management Using Anaerobic Digestion Technology in a Beef Cattle Feedlot in Brazil. Sci. Total Environ. 2015, 505, 1018–1025. [Google Scholar] [CrossRef] [PubMed]
- Styles, D.; Gibbons, J.; Williams, A.P.; Stichnothe, H.; Chadwick, D.R.; Healey, J.R. Cattle Feed or Bioenergy? Consequential Life Cycle Assessment of Biogas Feedstock Options on Dairy Farms. GCB Bioenergy 2015, 7, 1034–1049. [Google Scholar] [CrossRef]
- Scott, A.; Blanchard, R. The Role of Anaerobic Digestion in Reducing Dairy Farm Greenhouse Gas Emissions. Sustainability 2021, 13, 2612. [Google Scholar] [CrossRef]
- Philippe, F.-X.; Nicks, B. Review on Greenhouse Gas Emissions from Pig Houses: Production of Carbon Dioxide, Methane and Nitrous Oxide by Animals and Manure. Agric. Ecosyst. Environ. 2015, 199, 10–25. [Google Scholar] [CrossRef]
- Andreadakis, A.D. Anaerobic Digestion of Piggery Wastes. Water Sci. Technol. 1992, 25, 9–16. [Google Scholar] [CrossRef]
- Rodríguez, D.C.; Belmonte, M.; Peñuela, G.; Campos, J.L.; Vidal, G. Behaviour of Molecular Weight Distribution for the Liquid Fraction of Pig Slurry Treated by Anaerobic Digestion. Environ. Technol. 2011, 32, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Kaparaju, P.; Rintala, J. Mitigation of Greenhouse Gas Emissions by Adopting Anaerobic Digestion Technology on Dairy, Sow and Pig Farms in Finland. Renew. Energy 2011, 36, 31–41. [Google Scholar] [CrossRef]
- Pucker, J.; Jungmeier, G.; Siegl, S.; Pötsch, E.M. Anaerobic Digestion of Agricultural and Other Substrates—Implications for Greenhouse Gas Emissions. Animal 2013, 7, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Islas, M.E.; Güereca, L.P.; Sosa-Rodriguez, F.S.; Cobos-Peralta, M.A. Environmental Assessment of Energy Production from Anaerobic Digestion of Pig Manure at Medium-Scale Using Life Cycle Assessment. Waste Manag. 2020, 102, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Qiao, W.; Yan, X.; Ye, J.; Sun, Y.; Wang, W.; Zhang, Z. Evaluation of Biogas Production from Different Biomass Wastes with/without Hydrothermal Pretreatment. Renew. Energy 2011, 36, 3313–3318. [Google Scholar] [CrossRef]
- Jurgutis, L.; Slepetiene, A.; Volungevicius, J.; Amaleviciute-Volunge, K. Biogas Production from Chicken Manure at Different Organic Loading Rates in a Mesophilic Full Scale Anaerobic Digestion Plant. Biomass Bioenergy 2020, 141, 105693. [Google Scholar] [CrossRef]
- Bayrakdar, A.; Molaey, R.; Sürmeli, R.Ö.; Sahinkaya, E.; Çalli, B. Biogas Production from Chicken Manure: Co-Digestion with Spent Poppy Straw. Int. Biodeterior. Biodegrad. 2017, 119, 205–210. [Google Scholar] [CrossRef]
- Molaey, R.; Bayrakdar, A.; Sürmeli, R.Ö.; Çalli, B. Anaerobic Digestion of Chicken Manure: Mitigating Process Inhibition at High Ammonia Concentrations by Selenium Supplementation. Biomass Bioenergy 2018, 108, 439–446. [Google Scholar] [CrossRef]
- Rodriguez-Verde, I.; Regueiro, L.; Lema, J.M.; Carballa, M. Blending based optimisation and pretreatment strategies to enhance anaerobic digestion of poultry manure. Waste Manag. 2018, 71, 521–531. [Google Scholar] [CrossRef] [PubMed]
- Babaee, A.; Shayegan, J.; Roshani, A. Anaerobic Slurry Co-Digestion of Poultry Manure and Straw: Effect of Organic Loading and Temperature. J. Environ. Health Sci. Eng. 2013, 11, 15. [Google Scholar] [CrossRef]
- Nevzorova, T.; Kutcherov, V. Barriers to the Wider Implementation of Biogas as a Source of Energy: A State-of-the-Art Review. Energy Strategy Rev. 2019, 26, 100414. [Google Scholar] [CrossRef]
- Vyas, S.; Prajapati, P.; Shah, A.V.; Kumar Srivastava, V.; Varjani, S. Opportunities and Knowledge Gaps in Biochemical Interventions for Mining of Resources from Solid Waste: A Special Focus on Anaerobic Digestion. Fuel 2022, 311, 122625. [Google Scholar] [CrossRef]
- Álvarez-Fraga, L.; Capson-Tojo, G.; Sanglier, M.; Hamelin, J.; Escudié, R.; Wéry, N.; García-Bernet, D.; Battimelli, A.; Guilayn, F. A meta-analysis of pathogen reduction data in anaerobic digestion. Renew. Sustain. Energy Rev. 2024, 207, 114982. [Google Scholar] [CrossRef]
- Chojnacka, K.; Mikula, K.; Izydorczyk, G.; Skrzypczak, D.; Witek-Krowiak, A.; Gersz, A.; Moustakas, K.; Iwaniuk, J.; Grzędzicki, M.; Korczyński, M. Innovative High Digestibility Protein Feed Materials Reducing Environmental Impact through Improved Nitrogen-Use Efficiency in Sustainable Agriculture. J. Environ. Manag. 2021, 291, 112693. [Google Scholar] [CrossRef]
- Chen, Y.; Shen, D.; Zhang, L.; Zhong, R.; Liu, Z.; Liu, L.; Chen, L.; Zhang, H. Supplementation of Non-Starch Polysaccharide Enzymes Cocktail in a Corn-Miscellaneous Meal Diet Improves Nutrient Digestibility and Reduces Carbon Dioxide Emissions in Finishing Pigs. Animals 2020, 10, 232. [Google Scholar] [CrossRef]
- Ali, A.I.M.; Wassie, S.E.; Korir, D.; Merbold, L.; Goopy, J.P.; Butterbach-Bahl, K.; Dickhoefer, U.; Schlecht, E. Supplementing Tropical Cattle for Improved Nutrient Utilization and Reduced Enteric Methane Emissions. Animals 2019, 9, 210. [Google Scholar] [CrossRef] [PubMed]
- Groenestein, C.M.; Hutchings, N.J.; Haenel, H.D.; Amon, B.; Menzi, H.; Mikkelsen, M.H.; Misselbrook, T.H.; van Bruggen, C.; Kupper, T.; Webb, J. Comparison of Ammonia Emissions Related to Nitrogen Use Efficiency of Livestock Production in Europe. J. Clean. Prod. 2019, 211, 1162–1170. [Google Scholar] [CrossRef] [PubMed]
- Nahm, K.H. Efficient Feed Nutrient Utilization to Reduce Pollutants in Poultry and Swine Manure. Crit. Rev. Environ. Sci. Technol. 2002, 32, 1–16. [Google Scholar] [CrossRef]
- Hobbs, P.J.; Pain, B.F.; Kay, R.M.; Lee, P.A. Reduction of Odorous Compounds in Fresh Pig Slurry by Dietary Control of Crude Protein. J. Sci. Food Agric. 1996, 71, 508–514. [Google Scholar] [CrossRef]
- Blair, R.; Jacob, J.P.; Ibrahim, S.; Wang, P. A Quantitative Assessment of Reduced Protein Diets and Supplements to Improve Nitrogen Utilization. J. Appl. Poult. Res. 1999, 8, 25–47. [Google Scholar] [CrossRef]
- Rotz, C.A. Management to Reduce Nitrogen Losses in Animal Production. J. Anim. Sci. 2004, 82, E119–E137. [Google Scholar] [PubMed]
- Selle, P.H.; Ravindran, V. Phytate-Degrading Enzymes in Pig Nutrition. Livest. Sci. 2008, 113, 99–122. [Google Scholar] [CrossRef]
- Woyengo, T.A.; Nyachoti, C.M. Review: Supplementation of Phytase and Carbohydrases to Diets for Poultry. Can. J. Anim. Sci. 2011, 91, 177–192. [Google Scholar] [CrossRef]
- Carter, S.D.; Kim, H. Technologies to Reduce Environmental Impact of Animal Wastes Associated with Feeding for Maximum Productivity. Anim. Front. 2013, 3, 42–47. [Google Scholar] [CrossRef]
- Agle, M.; Hristov, A.N.; Zaman, S.; Schneider, C.; Ndegwa, P.; Vaddella, V.K. The Effects of Ruminally Degraded Protein on Rumen Fermentation and Ammonia Losses from Manure in Dairy Cows. J. Dairy Sci. 2010, 93, 1625–1637. [Google Scholar] [CrossRef]
- Hyde, B.P.; Hawkins, M.J.; Fanning, A.F.; Noonan, D.; Ryan, M.; O’ Toole, P.; Carton, O.T. Nitrous Oxide Emissions from a Fertilized and Grazed Grassland in the South East of Ireland. Nutr. Cycl. Agroecosystems 2006, 75, 187–200. [Google Scholar] [CrossRef]
- Luo, J.; Ledgard, S.F.; de Klein, C.A.M.; Lindsey, S.B.; Kear, M. Effects of Dairy Farming Intensification on Nitrous Oxide Emissions. Plant Soil 2008, 309, 227–237. [Google Scholar] [CrossRef]
- Watson, C.J. Urease Activity and Inhibition: Principles and Practice; The International Fertiliser Society: London, UK, 2000; ISBN 978-0-85310-090-4. [Google Scholar]
- Hristov, A.N. Mitigation of Greenhouse Gas Emissions in Livestock Production—A Review of Technical Options for Non-CO2 Emissions; Estudio FAO: Producción y Sanidad Animal (FAO); FAO: Rome, Italy, 2013; ISBN 978-92-5-107658-3. [Google Scholar]
- Montes, F.; Meinen, R.; Dell, C.; Rotz, A.; Hristov, A.N.; Oh, J.; Waghorn, G.; Gerber, P.J.; Henderson, B.; Makkar, H.P.S.; et al. Special Topics—Mitigation of Methane and Nitrous Oxide Emissions from Animal Operations: II. A Review of Manure Management Mitigation Options. J. Anim. Sci. 2013, 91, 5070–5094. [Google Scholar] [CrossRef] [PubMed]
- Oenema, O.; Wrage, N.; Velthof, G.L.; van Groenigen, J.W.; Dolfing, J.; Kuikman, P.J. Trends in Global Nitrous Oxide Emissions from Animal Production Systems. Nutr. Cycl. Agroecosyst. 2005, 72, 51–65. [Google Scholar] [CrossRef]
- Jongbloed, A.W.; Lenis, N.P.; Mroz, Z. Impact of Nutrition on Reduction of Environmental Pollution by Pigs: An Overview of Recent Research. Vet. Q. 1997, 19, 130–134. [Google Scholar] [CrossRef]
- Sutton, A.L.; Kephart, K.B.; Verstegen, M.W.; Canh, T.T.; Hobbs, P.J. Potential for Reduction of Odorous Compounds in Swine Manure through Diet Modification. J. Anim. Sci. 1999, 77, 430–439. [Google Scholar] [CrossRef]
- Hartung, J.; Phillips, V.R. Control of Gaseous Emissions from Livestock Buildings and Manure Stores. J. Agric. Eng. Res. 1994, 57, 173–189. [Google Scholar] [CrossRef]
- Lenis, N.P. Lower Nitrogen Excretion in Pig Husbandry by Feeding: Current and Future Possibilities. Neth. J. Agric. Sci. 1989, 37, 61–70. [Google Scholar] [CrossRef]
- Han, I.K.; Lee, J.H.; Piao, X.S.; Li, D. Feeding and Management System to Reduce Environmental Pollution in Swine Production—Review. Asian-Australas. J. Anim. Sci. 2001, 14, 432–444. [Google Scholar] [CrossRef]
- Sifri, M. Precision Nutrition for Poultry. J. Appl. Poult. Res. 1997, 6, 461. [Google Scholar] [CrossRef]
- Moss, A.F.; Chrystal, P.V.; Cadogan, D.J.; Wilkinson, S.J.; Crowley, T.M.; Choct, M. Precision Feeding and Precision Nutrition: A Paradigm Shift in Broiler Feed Formulation? Anim. Biosci. 2021, 34, 354–362. [Google Scholar] [CrossRef]
- Halas, V.; Dukhta, G. Growth Models and Their Application in Precision Feeding of Monogastric Farm Animals. Acta Fytotech. Zootech. 2020, 23, 258–264. [Google Scholar] [CrossRef]
- Ferguson, N.S.; Gates, R.S.; Taraba, J.L.; Cantor, A.H.; Pescatore, A.J.; Straw, M.L.; Ford, M.J.; Burnham, D.J. The Effect of Dietary Protein and Phosphorus on Ammonia Concentration and Litter Composition in Broilers. Poult. Sci. 1998, 77, 1085–1093. [Google Scholar] [CrossRef] [PubMed]
- Ferket, P.R.; van Heugten, E.; van Kempen, T.A.T.G.; Angel, R. Nutritional Strategies to Reduce Environmental Emissions from Nonruminants. J. Anim. Sci. 2002, 80, E168–E182. [Google Scholar] [CrossRef]
- Burkholder, K.M.; Guyton, A.D.; McKinney, J.M.; Knowlton, K.F. The Effect of Steam Flaked or Dry Ground Corn and Supplemental Phytic Acid on Nitrogen Partitioning in Lactating Cows and Ammonia Emission from Manure. J. Dairy Sci. 2004, 87, 2546–2553. [Google Scholar] [CrossRef]
- Ba, S.; Qu, Q.; Zhang, K.; Groot, J.C.J. Meta-Analysis of Greenhouse Gas and Ammonia Emissions from Dairy Manure Composting. Biosyst. Eng. 2020, 193, 126–137. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, X.; Bai, Z.; Chadwick, D.; Misselbrook, T.; G. Sommer, S.; Qin, W.; Ma, L. Mitigation of Ammonia, Nitrous Oxide and Methane Emissions during Solid Waste Composting with Different Additives: A Meta-Analysis. J. Clean. Prod. 2019, 235, 626–635. [Google Scholar] [CrossRef]
- Li, S.; Wu, J.; Ma, L. Economic, Energy and Environmental Consequences of Shifting from Maize-Wheat to Forage Rotation in the North China Plain. J. Clean. Prod. 2021, 328, 129670. [Google Scholar] [CrossRef]
- Husfeldt, A.W.; Endres, M.; Salfer, J.; Janni, K.A. Management and Characteristics of Recycled Manure Solids Used for Bedding in Midwest Freestall Dairy Herds. J. Dairy Sci. 2012, 95, 2195–2203. [Google Scholar] [CrossRef] [PubMed]
- Fukumoto, Y.; Osada, T.; Hanajima, D.; Haga, K. Patterns and Quantities of NH3, N2O and CH4 Emissions during Swine Manure Composting without Forced Aeration––Effect of Compost Pile Scale. Bioresour. Technol. 2003, 89, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Zeman, C.; Depken, D.; Rich, M. Research on How the Composting Process Impacts Greenhouse Gas Emissions and Global Warming. Compost Sci. Util. 2002, 10, 72–86. [Google Scholar] [CrossRef]
- Hao, X.; Chang, C.; Larney, F.J. Carbon, Nitrogen Balances and Greenhouse Gas Emission during Cattle Feedlot Manure Composting. J. Environ. Qual. 2004, 33, 37–44. [Google Scholar] [CrossRef]
- Peigné, J.; Girardin, P. Environmental Impacts of Farm-Scale Composting Practices. Water Air Soil Pollut. 2004, 153, 45–68. [Google Scholar] [CrossRef]
- Thompson, A.G.; Wagner-Riddle, C.; Fleming, R. Emissions of N2O and CH4 during the Composting of Liquid Swine Manure. Environ. Monit. Assess. 2004, 91, 87–104. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Schuchardt, F.; Li, G.; Guo, R.; Zhao, Y. Effect of C/N Ratio, Aeration Rate and Moisture Content on Ammonia and Greenhouse Gas Emission during the Composting. J. Environ. Sci. 2011, 23, 1754–1760. [Google Scholar] [CrossRef]
- Park, J.W.; Jeong, J.S.; Lee, S.I.; Kim, I.H. Effect of Dietary Supplementation with a Probiotic (Enterococcus Faecium) on Production Performance, Excreta Microflora, Ammonia Emission, and Nutrient Utilization in ISA Brown Laying Hens. Poult. Sci. 2016, 95, 2829–2835. [Google Scholar] [CrossRef]
- Brown, S.; Kruger, C.; Subler, S. Greenhouse Gas Balance for Composting Operations. J. Environ. Qual. 2008, 37, 1396–1410. [Google Scholar] [CrossRef]
- Clemens, J.; Trimborn, M.; Weiland, P.; Amon, B. Mitigation of Greenhouse Gas Emissions by Anaerobic Digestion of Cattle Slurry. Agric. Ecosyst. Environ. 2006, 112, 171–177. [Google Scholar] [CrossRef]
- Lopez-Real, J.; Baptista, M. A Preliminary Comparative Study of Three Manure Composting Systems and Their Influence on Process Parameters and Methane Emissions. Compost Sci. Util. 1996, 4, 71–82. [Google Scholar] [CrossRef]
- Maeda, K.; Hanajima, D.; Morioka, R.; Toyoda, S.; Yoshida, N.; Osada, T. Mitigation of Greenhouse Gas Emission from the Cattle Manure Composting Process by Use of a Bulking Agent. Soil Sci. Plant Nutr. 2013, 59, 96–106. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, R.; Li, L.; Zheng, G.; Wang, J.; Wang, G.; Bao, Z.; Yin, Z.; Li, G.; Yuan, J. A Global Meta-Analysis of Greenhouse Gas Emissions and Carbon and Nitrogen Losses during Livestock Manure Composting: Influencing Factors and Mitigation Strategies. Sci. Total Environ. 2023, 885, 163900. [Google Scholar] [CrossRef]
- Martins, O.; Dewes, T. Loss of Nitrogenous Compounds during Composting of Animal Wastes. Bioresour. Technol. 1992, 42, 103–111. [Google Scholar] [CrossRef]
- Mullins, G.L.; Martens, D.C.; Miller, W.P.; Kornegay, E.T.; Hallock, D.L. Copper Availability, Form, and Mobility in Soils from Three Annual Copper-Enriched Hog Manure Applications. J. Environ. Qual. 1982, 11, 316–320. [Google Scholar] [CrossRef]
- L’Herroux, L.; Roux, S.L.; Appriou, P.; Martinez, J. Behaviour of Metals Following Intensive Pig Slurry Applications to a Natural Field Treatment Process in Brittany (France). Environ. Pollut. 1997, 97, 119–130. [Google Scholar] [CrossRef]
- Hsu, J.-H.; Lo, S.-L. Effect of Composting on Characterization and Leaching of Copper, Manganese, and Zinc from Swine Manure. Environ. Pollut. 2001, 114, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Murto, M.; Björnsson, L.; Mattiasson, B. Impact of Food Industrial Waste on Anaerobic Co-Digestion of Sewage Sludge and Pig Manure. J. Environ. Manag. 2004, 70, 101–107. [Google Scholar] [CrossRef]
- Petric, I.; Šestan, A.; Šestan, I. Influence of Wheat Straw Addition on Composting of Poultry Manure. Process Saf. Environ. Prot. 2009, 87, 206–212. [Google Scholar] [CrossRef]
- Barrington, S.; Choinière, D.; Trigui, M.; Knight, W. Effect of Carbon Source on Compost Nitrogen and Carbon Losses. Bioresour. Technol. 2002, 83, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, P.F.; Torre, V.D.; Riera, N.I.; Crespo, D.; Barrena, R.; Sánchez, A. Co-Composting of Poultry Manure with Other Agricultural Wastes: Process Performance and Compost Horticultural Use. J. Mater. Cycles Waste Manag. 2015, 17, 42–50. [Google Scholar] [CrossRef]
- Dias, B.O.; Silva, C.A.; Higashikawa, F.S.; Roig, A.; Sánchez-Monedero, M.A. Use of Biochar as Bulking Agent for the Composting of Poultry Manure: Effect on Organic Matter Degradation and Humification. Bioresour. Technol. 2010, 101, 1239–1246. [Google Scholar] [CrossRef] [PubMed]
- Hjorth, M.; Christensen, K.V.; Christensen, M.L.; Sommer, S.G. Solid—Liquid Separation of Animal Slurry in Theory and Practice. A Review. Agron. Sustain. Dev. 2010, 30, 153–180. [Google Scholar] [CrossRef]
- Aguirre-Villegas, H. Solid-Liquid Separation of Manure and Effects on Greenhouse Gas and Ammonia Emissions. 2017. Available online: http://www.sustainabledairy.org/publications/Documents/Solid-Liquid%20Separation%20of%20Manure%20and%20Effects%20on%20Greenhouse%20Gas%20and%20Ammonia%20Emissions%20A4131-04.pdf (accessed on 15 November 2024).
- Gooch, C.; Inglis, S.; Czymmek, K. Mechanical Solid-Liquid Manure Separation: Performance Evaluation on Four New York State Dairy Farms—A Preliminary Report; ASABE: St. Joseph, MI, USA, 2005. [Google Scholar]
- Chastain, J.P.; Vanotti, M.B.; Wingfield, M.M. Effectiveness Of Liquidsolid Separation For Treatment of Flushed Dairy Manure: A Case Study. Appl. Eng. Agric. 2001, 17, 343. [Google Scholar] [CrossRef]
- Zhang, Y.; Bo, Q.; Ma, X.; Du, Y.; Du, X.; Xu, L.; Yang, Y. Solid–Liquid Separation and Its Environmental Impact on Manure Treatment in Scaled Pig Farms—Evidence Based on Life Cycle Assessment. Agriculture 2023, 13, 2284. [Google Scholar] [CrossRef]
- Integrated Farm System Model: USDA ARS. Available online: https://www.ars.usda.gov/northeast-area/up-pa/pswmru/docs/integrated-farm-system-model/ (accessed on 4 March 2024).
- Fangueiro, D.; Coutinho, J.; Chadwick, D.; Moreira, N.; Trindade, H. Effect of Cattle Slurry Separation on Greenhouse Gas and Ammonia Emissions during Storage. J. Environ. Qual. 2008, 37, 2322–2331. [Google Scholar] [CrossRef]
- Petersen, S.O.; Andersen, A.J.; Eriksen, J. Effects of Cattle Slurry Acidification on Ammonia and Methane Evolution during Storage. J. Environ. Qual. 2012, 41, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Aguirre-Villegas, H.A.; Larson, R.A.; Sharara, M.A. Anaerobic Digestion, Solid-Liquid Separation, and Drying of Dairy Manure: Measuring Constituents and Modeling Emission. Sci. Total Environ. 2019, 696, 134059. [Google Scholar] [CrossRef]
- Perazzolo, F.; Mattachini, G.; Tambone, F.; Misselbrook, T.; Provolo, G. Effect of Mechanical Separation on Emissions during Storage of Two Anaerobically Codigested Animal Slurries. Agric. Ecosyst. Environ. 2015, 207, 1–9. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, H.; Zhu, Z.; Gerber, P.J.; Xin, H.; Smith, P.; Opio, C.; Steinfeld, H.; Chadwick, D. Mitigating Greenhouse Gas and Ammonia Emissions from Swine Manure Management: A System Analysis. Environ. Sci. Technol. 2017, 51, 4503–4511. [Google Scholar] [CrossRef]
- De Vries, J.W.; Aarnink, A.J.A.; Groot Koerkamp, P.W.G.; De Boer, I.J.M. Life Cycle Assessment of Segregating Fattening Pig Urine and Feces Compared to Conventional Liquid Manure Management. Environ. Sci. Technol. 2013, 47, 1589–1597. [Google Scholar] [CrossRef]
- Manure Coverage|Climate Technology Centre & Network|Tue, 11/08/2016. Available online: https://www.ctc-n.org/technologies/manure-coverage (accessed on 4 March 2024).
- Sommer, S.G.; Christensen, B.T.; Nielsen, N.E.; Schjφrring, J.K. Ammonia Volatilization during Storage of Cattle and Pig Slurry: Effect of Surface Cover. J. Agric. Sci. 1993, 121, 63–71. [Google Scholar] [CrossRef]
- Vanderzaag, A.; Gordon, R.; Glass, V.; Jamieson, R. Floating Covers to Reduce Gas Emissions from Liquid Manure Storages: A Review. Appl. Eng. Agric. 2008, 24, 657–671. [Google Scholar] [CrossRef]
- Berg, W.; Brunsch, R.; Pazsiczki, I. Greenhouse Gas Emissions from Covered Slurry Compared with Uncovered during Storage. Agric. Ecosyst. Environ. 2006, 112, 129–134. [Google Scholar] [CrossRef]
- Samer, M. GHG Emission from Livestock Manure and Its Mitigation Strategies. In Climate Change Impact on Livestock: Adaptation and Mitigation; Springer: New Delhi, India, 2015; pp. 321–346. ISBN 978-81-322-2264-4. [Google Scholar]
- Guarino, M.; Claudio, F.; Brambilla, M.; Valli, L.; Navarotto, P. Evaluation of Simplified Covering Systems To Reduce Gaseous Emissions From Livestock Manure Storage. Trans. ASABE 2006, 49, 737–747. [Google Scholar] [CrossRef]
- Chianese, D.; Rotz, C.A.; Richard, T. Whole-Farm Greenhouse Gas Emissions: A Review with Application to a Pennsylvania Dairy Farm. Appl. Eng. Agric. 2010, 25, 431–442. [Google Scholar] [CrossRef]
- Laguë, C.; Gaudet; Agnew, J.; Fonstad, T.A. Greenhouse Gas Emissions from Liquid Swine Manure Storage Facilities in Saskatchewan. Trans. ASAE 2005, 48, 2289–2296. [Google Scholar] [CrossRef]
- Schmidt, C.E.; Card, T.R.; Kiehl, B. Composting Trials Evaluate Voc Emissions Control. BioCycle 2009, 50, 33–36. [Google Scholar]
- Ma, S.; Sun, X.; Fang, C.; He, X.; Han, L.; Huang, G. Exploring the Mechanisms of Decreased Methane during Pig Manure and Wheat Straw Aerobic Composting Covered with a Semi-Permeable Membrane. Waste Manag. 2018, 78, 393–400. [Google Scholar] [CrossRef]
- Bicudo, J.; Clanton, C.; Schmidt, D.; Powers, W.; Jacobson, L.; Tengman, C. Geotextile Covers to Reduce Odor and Gas Emissions from Swine Manure Storage Ponds. Appl. Eng. Agric. 2004, 20, 65–75. [Google Scholar] [CrossRef]
- Nicolai, R.; Pohl, S.; Schmidt, D. Covers for Manure Storage Units. SDSU Ext. Fact Sheets. 2004. Available online: https://openprairie.sdstate.edu/cgi/viewcontent.cgi?article=1106&context=extension_fact (accessed on 2 November 2024).
- Shakoor, A.; Shakoor, S.; Rehman, A.; Ashraf, F.; Abdullah, M.; Shahzad, S.M.; Farooq, T.H.; Ashraf, M.; Manzoor, M.A.; Altaf, M.M.; et al. Effect of Animal Manure, Crop Type, Climate Zone, and Soil Attributes on Greenhouse Gas Emissions from Agricultural Soils—A Global Meta-Analysis. J. Clean. Prod. 2021, 278, 124019. [Google Scholar] [CrossRef]
- Hyde, B.P.; Carton, O.T.; O’Toole, P.; Misselbrook, T.H. A New Inventory of Ammonia Emissions from Irish Agriculture. Atmos. Environ. 2003, 37, 55–62. [Google Scholar] [CrossRef]
- VanderZaag, A.C.; Jayasundara, S.; Wagner-Riddle, C. Strategies to Mitigate Nitrous Oxide Emissions from Land Applied Manure. Anim. Feed. Sci. Technol. 2011, 166–167, 464–479. [Google Scholar] [CrossRef]
- Carew, R. Ammonia Emissions from Livestock Industries in Canada: Feasibility of Abatement Strategies. Environ. Pollut. 2010, 158, 2618–2626. [Google Scholar] [CrossRef]
- Amon, B.; Kryvoruchko, V.; Amon, T.; Zechmeister-Boltenstern, S. Methane, Nitrous Oxide and Ammonia Emissions during Storage and after Application of Dairy Cattle Slurry and Influence of Slurry Treatment. Agric. Ecosyst. Environ. 2006, 112, 153–162. [Google Scholar] [CrossRef]
- Rodhe, L.; Pell, M.; Yamulki, S. Nitrous Oxide, Methane and Ammonia Emissions Following Slurry Spreading on Grassland. Soil Use Manag. 2006, 22, 229–237. [Google Scholar] [CrossRef]
- Mkhabela, M.S.; Gordon, R.; Burton, D.; Madani, A.; Hart, W.; Elmi, A. Ammonia and Nitrous Oxide Emissions from Two Acidic Soils of Nova Scotia Fertilised with Liquid Hog Manure Mixed with or without Dicyandiamide. Chemosphere 2006, 65, 1381–1387. [Google Scholar] [CrossRef]
- Boakye-Yiadom, K.A.; Ilari, A.; Duca, D. Greenhouse gas emissions and life cycle assessment on the black soldier fly (Hermetia illucens L.). Sustainability 2022, 14, 10456. [Google Scholar] [CrossRef]
- Myers, H.M.; Tomberlin, J.K.; Lambert, B.D.; Kattes, D. Development of black soldier fly (Diptera: Stratiomyidae) larvae fed dairy manure. Environ. Entomol. 2008, 37, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Diener, S.; Zurbrugg, C.; Gutierrez, F.R.; Nguyen, D.H.; Morel, A.; Koottatep, T.; Tockner, K. Black soldier fly larvae for organic waste treatment—Prospects and constraints. In Proceedings of the WaterSafe 2011 2nd WasteSafe 2011, 2nd International Conference on Solid Waste Management in Developing Countries, Khulna, Bangladesh, 13–15 February 2011; pp. 978–984. [Google Scholar]
- Franco, A.; Scieuzo, C.; Salvia, R.; Petrone, A.M.; Tafi, E.; Moretta, A.; Schmitt, E.; Falabella, P. Lipids from Hermetia illucens, an innovative and sustainable source. Sustainability 2021, 13, 10198. [Google Scholar] [CrossRef]
- Xiang, F.; Han, L.; Jiang, S.; Xu, X.; Zhang, Z. Black soldier fly larvae mitigate greenhouse gas emissions from domestic biodegradable waste by recycling carbon and nitrogen and reconstructing microbial communities. Environ. Sci. Pollut. Res. 2024, 31, 33347–33359. [Google Scholar] [CrossRef] [PubMed]
- Grassauer, F.; Ferdous, J.; Pelletier, N. Manure Valorization Using Black Soldier Fly Larvae: A Review of Current Systems, Production Characteristics, Utilized Feed Substrates, and Bioconversion and Nitrogen Conversion Efficiencies. Sustainability 2023, 15, 12177. [Google Scholar] [CrossRef]
- Altmann, B.A.; Neumann, C.; Rothstein, S.; Liebert, F.; Mörlein, D. Do dietary soy alternatives lead to pork quality improvements or drawbacks? A look into micro-alga and insect protein in swine diets. Meat Sci. 2019, 153, 26–34. [Google Scholar] [CrossRef]
- Kawasaki, K.; Hashimoto, Y.; Hori, A.; Kawasaki, T.; Hirayasu, H.; Iwase, S.I.; Hashizume, A.; Ido, A.; Miura, C.; Miura, T.; et al. Evaluation of black soldier fly (Hermetia illucens) larvae and pre-pupae raised on household organic waste, as potential ingredients for poultry feed. Animals 2019, 9, 98. [Google Scholar] [CrossRef]
- Teenstra, E.; Vellinga, T.; Aektasaeng, N.; Amatayakul, W.; Ndambi, A.; Pelster, D.; Germer, L.; Jenet, A.; Opio, C.; Andeweg, K. Global Assessment of Manure Management Policies and Practices. Wageningen, Wageningen UR (University & Research centre) Livestock Research, Livestock Research Report 844. 2014. Available online: https://www.wur.nl/upload_mm/a/2/f/8a7d1a1e-2535-432b-bab5-fd10ff49a2b1_Global-Assessment-Manure-Management.pdf (accessed on 20 June 2024).
- Climate and Clean Air Coalition. Global Agenda for Sustainable Livestock. Manure Policies. Available online: http://www.livestockdialogue.org/action-areas/waste-to-worth/manure-knowledge-kiosk/manure-policies/en/ (accessed on 20 June 2024).
- Jasińska, A.; Grosser, A.; Meers, E. Possibilities and Limitations of Anaerobic Co-Digestion of Animal Manure—A Critical Review. Energies 2023, 16, 3885. [Google Scholar] [CrossRef]
- Giwa, H.O.; Giwa, H.N.; Alepu, S.O.; Zelong, W.; Giwa, A.S. Anaerobic Digestion for Pathogen Reduction in Waste Treatment and Safe Agricultural Use of Digestates. Int. J. Agric. Sci. Food Technol. 2024, 10, 124–130. [Google Scholar] [CrossRef]
- FAO. Global Livestock Environmental Assessment Model, Version 3.0. Model Description; Food and Agriculture Organization of the United Nations: Rome, Italy, 2022; Available online: https://www.fao.org/fileadmin/user_upload/gleam/docs/GLEAM_3.0_Model_description.pdf (accessed on 20 June 2024).
- Catarino, Ρ.; Therond, O.; Berthomier, J.; Miara, M.; Mérot, E.; Misslin, R.; Vanhove, P.; Villerd, J.; Angevin, F. Fostering local crop-livestock integration via legume exchanges using an innovative integrated assessment and modelling approach based on the MAELIA platform. Agric. Syst. 2021, 189, 103066. [Google Scholar] [CrossRef]
Step | Description |
---|---|
Feedstock Collection | Organic materials, such as agricultural residues, food waste, sewage sludge, and organic industrial waste, are collected. |
Pre-Processing | Large-sized feedstocks are usually shredded or ground to increase the surface area and enhance microbial digestion. |
Loading into Digester | Prepared feedstock is loaded into a sealed anaerobic digester, a bioreactor, where the anaerobic digestion process takes place. |
Anaerobic Digestion | Microorganisms, mainly bacteria, break down organic matter in the absence of oxygen. The digestion process involves a series of microbial activities, including hydrolysis, acidogenesis, acetogenesis, and methanogenesis.
|
Biogas Production | Methane (CH4) and carbon dioxide (CO2) are the primary components of the biogas produced during anaerobic digestion. Biogas can be captured and used as a renewable energy source. |
Digestate Production | The remaining material after digestion, called digestate, is a nutrient-rich slurry that can be used as a fertilizer. |
Biogas Utilization | The produced biogas can be used for various purposes, such as generating electricity, heat, or as a vehicle fuel. |
Cattle | Sheep | Goats | Pigs | Poultry | Horse | Units | Reference |
---|---|---|---|---|---|---|---|
Manure | |||||||
51 | - | - | 321 | 295 | - | Nm3 CH4/t VS | [26] |
204 | - | 159 | 323 | 259 | 155 | Nm3 CH4/t VS | [27] |
222 | 150.5 | - | 443.6 (piglets) | 173 | - | Nm3 CH4/t VS | [28] |
97 | - | - | 128 | 208 | - | Nm3 CH4/t VS | [29] |
160 | - | 200 | 325 | - | - | Nm3 CH4/t VS | [30] |
- | - | 112 | - | - | 245 | Nm3 CH4/t VS | [31] |
Liquid slurries | |||||||
261 | - | - | - | - | - | Nm3 CH4/t VS | [32] |
311 | - | - | 99 | - | - | Nm3 CH4/t VS | [33] |
Step | Description |
---|---|
Source Separation | Keep manure from different animal species separated, as their manure may contain pathogens that are not easily destroyed during composting. |
Carbon-to-Nitrogen (C:N) Ratio | A balanced C:N ratio, by combining the nitrogen-rich manure with carbon-rich materials (browns), such as straw or bedding, should be achieved (25–30 parts carbon to 1 part nitrogen). |
Aeration | Aerobic conditions, by turning the compost regularly, should be achieved. This helps introduce oxygen into the pile, fostering the growth of beneficial aerobic microorganisms and preventing anaerobic conditions. An aeration rate of 0.22 L Kg/min should be considered. |
Moisture Management | Proper moisture levels in the compost pile should be maintained (~60%). The pile should be moist but not waterlogged. Adequate moisture supports microbial activity and decomposition. |
Temperature Control | Composting generates heat, which is beneficial for destroying pathogens and weed seeds. The internal temperature of the compost pile should vary between 54 and 71 degrees Celsius. Regular turning helps distribute the heat evenly. |
Avoiding Contaminants | Materials that may introduce contaminants or pose risks, such as treated wood, plastics, non-organic materials, or manure from diseased animals, should be avoided. |
Biosecurity Measures | Biosecurity measures should be implemented to prevent the spread of diseases. This may include maintaining a buffer zone between composting sites and livestock areas, as well as proper sanitation practices. |
Composting Time | Sufficient time for the composting process to complete should be allowed. The duration can vary depending on factors like pile size, aeration, and material composition. |
Monitoring and Testing | The compost pile should be regularly monitored for temperature, moisture, and overall progress. Periodic testing for pathogens and the nutrient content can help ensure the safety and quality of the finished compost. |
Final Product Handling | The finished compost should properly be stored to maintain its quality. |
Parameter | Type of Cover | |
---|---|---|
Permeable | Impermeable | |
Purpose | Odor and gas reductions | Odor and gas reduction. Capture and use methane |
Effectiveness | Up to 60–90% reductions in ammonia and hydrogen sulfide | Up to 95% reductions in ammonia and hydrogen sulfide |
Lifespan | 2 months to 10 years (depending on weather and material) | 5–15 years |
Manure Accumulation | Cover material needs to be removed or kept separated during agitation and pumping Breaking up natural crusts | Cover material needs to be removed or kept separate during agitation and pumping |
Precipitation | Allow water in and reduce evaporation. An increase in storage capacity is required | Snow, rain, debris, and silt may accumulate on top of impermeable covers. Pumps are commonly used to remove liquid from the surface |
Type | Material | Odor Decrease | H2S Decrease | NH3 Decrease | Lifespan |
---|---|---|---|---|---|
Permeable | Natural Crust | 56–78% | 81% | 11–37% | 3 months |
Permeable | Straw | 45–83% | 86–100% | 79–86% | 2–6 months |
Permeable | Geotexile (2.4 mm) | 51–63% | 59–71% | 15–37% | 3–5 years |
Permeable | Straw + Geotexile | 50–80% | 60–98 | 8–85 | N/A |
Impermeable | Concrete | 95–100% | N/A | N/A | 20 years |
Impermeable | Woodlid | 75–95% | N/A | 98% | N/A |
Impermeable | Floating | 95–99% | 95% | 95% | 10 years |
Impermeable | Air pressure | 95% | 95–99% | 95% | 10 years |
Method | Description |
---|---|
Ploughing | Use moldboard ploughs to bury manure deep into the soil, effectively mixing it with the soil profile. |
Disc Harrowing | Disc harrows can break up clumps of manure and mix it with the soil surface, promoting faster decomposition and nutrient release. |
Cultivation | Cultivators or tillage equipment can incorporate manure into the soil while minimizing soil disturbance. |
Injection | Injection equipment can place manure directly into the soil at controlled depths, reducing surface runoff and odor emissions. |
Method | Infrastructure | Workload | Cost | Product Value | Mitigation Potential |
---|---|---|---|---|---|
Anaerobic digestion | +++ | + | +++ | +++ | +++ |
Nutrient management | + | + | + | − | ++ |
Composting | + | ++ | + | ++ | ++ |
Separation and treatment | ++ | ++ | ++ | ++ | ++ |
Storage and handling | + | + | + | + | + |
Fly larvae | + | ++ | ++ | +++ | +++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Symeon, G.K.; Akamati, K.; Dotas, V.; Karatosidi, D.; Bizelis, I.; Laliotis, G.P. Manure Management as a Potential Mitigation Tool to Eliminate Greenhouse Gas Emissions in Livestock Systems. Sustainability 2025, 17, 586. https://doi.org/10.3390/su17020586
Symeon GK, Akamati K, Dotas V, Karatosidi D, Bizelis I, Laliotis GP. Manure Management as a Potential Mitigation Tool to Eliminate Greenhouse Gas Emissions in Livestock Systems. Sustainability. 2025; 17(2):586. https://doi.org/10.3390/su17020586
Chicago/Turabian StyleSymeon, George K., Konstantina Akamati, Vassilios Dotas, Despoina Karatosidi, Iosif Bizelis, and George P. Laliotis. 2025. "Manure Management as a Potential Mitigation Tool to Eliminate Greenhouse Gas Emissions in Livestock Systems" Sustainability 17, no. 2: 586. https://doi.org/10.3390/su17020586
APA StyleSymeon, G. K., Akamati, K., Dotas, V., Karatosidi, D., Bizelis, I., & Laliotis, G. P. (2025). Manure Management as a Potential Mitigation Tool to Eliminate Greenhouse Gas Emissions in Livestock Systems. Sustainability, 17(2), 586. https://doi.org/10.3390/su17020586