From Waste to Resource: Evaluation of the Technical and Environmental Performance of Concrete Blocks Made from Iron Ore Tailings
Abstract
:1. Introduction
2. Materials and Method
2.1. Materials, Dosages, and Methods for Characterizing the Concrete
2.2. Life Cycle Assessment Method Used for the Segmental Blocks
2.2.1. CO2 Emissions and Embodied Energy Assessment
2.2.2. Scope of the LCA
2.3. Eco-Efficiency Indicator for the Segmental Blocks
3. Technical Discussion
3.1. Concrete Mixture Design
3.2. Compressive Strength of the Concretes and Segmental Blocks
4. Results and Environmental Discussion
4.1. LCA of the Segmental Blocks
4.2. Eco-Efficiency Indicators for the Segmental Blocks
5. Conclusions
- Cement consumption significantly impacts CO2 emissions and embodied energy in cement-based composites, often overshadowing the importance of other inputs like recycled aggregates. Therefore, reducing cement consumption is crucial for environmental performance.
- The aim to increase residue consumption is hindered by impaired concrete performance, which may necessitate costly processes or limit the amount of residue used. In this sense, factors such as compaction energy and clay content in iron ore tailings influence concrete packing density and hydration, affecting strength and durability.
- Logistics affect residue use, and despite the observations, the approaches of integrated plant production must be considered. Other scenarios should be investigated.
- Challenges in using residues in the production of cement-based composites include substituting low-cost, high-quality materials with residues and gaining acceptance in a conservative construction market.
- Efforts to incorporate greater quantities of waste, such as in construction materials or geotechnical applications, while ensuring performance are essential for progress and industry engagement.
- However, it is essential for studies to thoroughly assess the potential adverse effects of utilizing waste materials on both human health and the environment before implementing this solution in practice.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNEP. Emissões do Setor de Construção Civil Atingiram Recordes em 2019–Relatório da ONU. 2020. Available online: https://www.unep.org/pt-br/noticias-e-reportagens/comunicado-de-imprensa/emissoes-do-setor-de-construcao-civil-atingiram#:~:text=Nairobi%2C%2016%20de%20dezembro%20de,um%20novo%20relat%C3%B3rio%20divulgado%20hoje (accessed on 2 October 2024).
- Andrew, R.M. Global CO2 emissions from cement production. Earth Syst. Sci. Data 2018, 10, 195–217. [Google Scholar] [CrossRef]
- Ellen MacArthur Foundation. Uma Economia Circular No Brasil: Uma Abordagem Exploratória Inicial. CE100 Brasil. 2017. Available online: https://www.ellenmacarthurfoundation.org (accessed on 2 October 2024).
- Röck, M.; Saade, M.R.M.; Balouktsi, M.; Rasmussen, F.N.; Birgisdottir, H.; Frischknecht, R.; Habert, G.; Lützkendorf, T.; Passer, A. Embodied GHG emissions of buildings—The hidden challenge for effective climate change mitigation. Appl. Energy 2020, 258, 114107. [Google Scholar] [CrossRef]
- Belizario-Silva, F.; Oliveira, L.S.; Reis, D.C.; Pato, G.T.G.; Arthur Coser Marinho, A.C.; Degani, C.M.; Caldas, L.R.; Punhagui, K.R.G.; Sérgio Almeida Pacca, S.A.; John, V.M. The Sidac system: Streamlining the assessment of the embodied energy and CO2 of Brazilian construction products. J. Clean. Prod. 2023, 421, 138461. [Google Scholar] [CrossRef]
- Thejas, H.K.; Hossiney, N. A short review on environmental impacts and application of iron ore tailings in development of sustainable eco-friendly bricks. Mater. Today Proc. 2022, 61, 327–331. [Google Scholar] [CrossRef]
- Grasse, B.P.; Soncim, S.P.; Almeida, M.O.; Oliveira, C.A.d.S.; Belotti, F.M.; Cavalcante, E.H.; Resende, L. Avaliação do comportamento geotécnico de um solo laterítico estabilizado com cal e rejeito de flotação de minério de ferro. In Proceedings of the 33° Congresso de Pesquisa e Ensino Em Transporte Da ANPET, Balneário Camboriú, Brazil, 10–14 November 2019; pp. 1902–1913. [Google Scholar]
- Peixoto, S.V.; Asmus, C.I.R.F. O desastre de Brumadinho e a atuação da Vigilância em Saúde. Cienc. Cult. 2020, 72, 43–46. [Google Scholar] [CrossRef]
- Resende, L.; Gama, E.M. The challenges of the reuse of tailings and overburden. In Proceedings of the Mine Waste and Tailings Conference, Brisbane, Queensland, Australia, 23–24 July 2018; pp. 117–125. [Google Scholar]
- Carvalho Eugênio, T.M.; Francisco Fagundes, J.; Santos Viana, Q.; Pereira Vilela, A.; Farinassi Mendes, R. Study on the feasibility of using iron ore tailing (IOT) on technological properties of concrete roof tiles. Constr. Build. Mater. 2021, 279, 122484. [Google Scholar] [CrossRef]
- George, G. Replacement of Fine Aggregate by Iron Ore Tailing (IOT) in Concrete for Sustainable Development. E3S Web Conf. 2023, 387, 04012. [Google Scholar] [CrossRef]
- Liu, K.; Wang, S.; Quan, X.; Jing, W.; Xu, J.; Zhao, N.; Liu, B. Effect of iron ore tailings industrial by-product as eco-friendly aggregate on mechanical properties, pore structure, and sulfate attack and dry-wet cycles resistance of concrete. Case Stud. Constr. Mater. 2022, 17, e01472. [Google Scholar] [CrossRef]
- Yang, G.; Liu, F.; Xie, Q.; Yang, M.; Li, Y.; Kumar, E.R.; Sun, J. Exploration of iron ore tailings with high volume in sustainable cement and ecofriendly cementitious material. Dev. Built Environ. 2024, 19, 100482. [Google Scholar] [CrossRef]
- Franco de Carvalho, J.M.; de Melo, T.V.; Fontes, W.C.; Batista, J.O.d.S.; Brigolini, G.J.; Peixoto, R.A.F. More eco-efficient concrete: An approach on optimization in the production and use of waste-based supplementary cementing materials. Constr. Build. Mater. 2019, 206, 397–409. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Gu, X.; Nehdi, M.L.; Marani, A.; Zhang, L. Utilization of iron ore tailings with high volume in green concrete. J. Build. Eng. 2023, 72, 106585. [Google Scholar] [CrossRef]
- Li, Y.; Wang, P.; Wang, F.; Zheng, X.; Gao, Y. Compressive strength and composite pore structure parameters of iron ore tailings ball concrete. Constr. Build. Mater. 2022, 347, 128611. [Google Scholar] [CrossRef]
- Fontes, W.C.; Fontes, G.G.; Costa, E.C.P.; Mendes, J.C.; Silva, G.J.B.; Peixoto, R.A.F. Iron ore tailings in the production of cement tiles: A value analysis on building sustainability. Ambient. Construído 2018, 18, 395–412. [Google Scholar] [CrossRef]
- Arbili, M.M.; Alqurashi, M.; Majdi, A.; Ahmad, J.; Deifalla, A.F. Concrete Made with Iron Ore Tailings as a Fine Aggregate: A Step towards Sustainable Concrete. Materials 2022, 15, 6236. [Google Scholar] [CrossRef] [PubMed]
- Vilaça, A.S.I.; Simão, L.; Montedo, O.R.K.; Novaes de Oliveira, A.P.; Raupp-Pereira, F. Waste valorization of iron ore tailings in Brazil: Assessment metrics from a circular economy perspective. Resour. Policy 2022, 75, 102477. [Google Scholar] [CrossRef]
- Salvador Filho, J.A.A. Blocos de Concreto Para Alvenaria Em Construções Industrializadas; Universidade de São Paulo: São Paulo-SP, Brazil, 2007. [Google Scholar]
- Macedo, E.S.; Sandre, L.H. Mortes por deslizamentos no Brasil: 1988 a 2022. Rev. Bras. Geol. Eng. E Ambient. 2022, 12, 110–117. [Google Scholar]
- IBGE (Brazilian Intitute of Geography and Statistics). Unprecedent IBGE Study Shows South and Southeast as the Most Likely Regions to Have Landslides [WWW Document]. 2019. Available online: https://agenciadenoticias.ibge.gov.br/en/agencia-press-room/2185-news-agency/releases-en/26135-estudo-inedito-do-ibge-mostra-sul-e-sudeste-como-regioes-que-concentram-as-maiores-areas-de-suscetibilidade-a-deslizamentos-2 (accessed on 2 October 2024).
- da Silva Ramos, L.T.; de Azevedo, R.C.; da Silva Bezerra, A.C.; Do Amaral, L.M.; Oliveira, R.D. Iron ore tailings as a new product: A review-based analysis of its potential incorporation capacity by the construction sector. Clean. Waste Syst. 2024, 7, 100137. [Google Scholar] [CrossRef]
- Bhuiyan, M.Z.I.; Ali, F.H.; Salman, F.A. Application of recycled concrete aggregates as alternative granular infills in hollow segmental block systems. Soils Found. 2015, 55, 296–303. [Google Scholar] [CrossRef]
- dos Santos Rocha, P.A.; de Carvalho Urashima, D.; Alves Guimarães, M.G. Desempenho de agregados reciclados de concreto no preenchimento de blocos segmentais em muros de solo reforçado com geogrelhas. Matéria 2023, 28, e20220251. [Google Scholar] [CrossRef]
- Funk, J.E.; Dinger, D.R. Particle size control for high-solids castable refractories. Am. Ceram. Soc. Bull. 1994, 73, 66–69. [Google Scholar]
- NBR 9778; Hardened Mortar and Concrete—Determination of Absorption. Voids and Specific Gravity, (Technical Standard, in Portuguese). Associação Brasileira de Normas Técnicas—ABNT: Rio de Janeiro, Brazil, 2005.
- NBR 5739; Concrete—Compression Test of Cylindrical Specimens. Brazilian Association of Technical Standards—ABNT: Rio de Janeiro, Brazil, 2018.
- ABNT NBR ISO 14040; Gestão Ambiental—Avaliação do Ciclo de Vida—Princípio E Estrutura. Brazilian Association of Technical Standards—ABNT: Rio de Janeiro, Brazil, 2009; pp. 1–21.
- Ramagiri, K.K.; Chintha, R.; Bandlamudi, R.K.; Kara De Maeijer, P.; Kar, A. Cradle-to-gate life cycle and economic assessment of sustainable concrete mixes—Alkali-activated concrete (Aac) and bacterial concrete (bc). Infrastructures 2021, 6, 104. [Google Scholar] [CrossRef]
- SIDAC. Conteúdo Técnico [WWW Document]. 2022. Available online: https://sidac.org.br/conteudo_tecnico (accessed on 16 October 2024).
- Alnahhal, M.F.; Alengaram, U.J.; Jumaat, M.Z.; Abutaha, F.; Alqedra, M.A.; Nayaka, R.R. Assessment on engineering properties and CO2 emissions of recycled aggregate concrete incorporating waste products as supplements to Portland cement. J. Clean. Prod. 2018, 203, 822–835. [Google Scholar] [CrossRef]
- Campos, É.F.; Punhagui, K.R.G.; John, V.M. Emissão de CO2 do transporte da madeira nativa da Amazônia. Ambiente Construído 2011, 11, 157–172. [Google Scholar] [CrossRef]
- Tavares, S.F. Metodologia de Análise do Ciclo de Vida Energético de Edificações Residenciais Brasileiras. Ph.D. Thesis, Universidade Federal de Santa Catarina, Florianópolis, Brazil, 2006. [Google Scholar]
- MCTI. Fator Médio—Inventários Corporzativos [WWW Document]. 2023. Available online: https://www.gov.br/mcti/pt-br/acompanhe-o-mcti/cgcl/paginas/fator-medio-inventarios-corporativos (accessed on 15 September 2024).
- Caldas, L.R.; Da Gloria, M.Y.R.; Pittau, F.; Andreola, V.M.; Habert, G.; Toledo Filho, R.D. Environmental impact assessment of wood bio-concretes: Evaluation of the influence of different supplementary cementitious materials. Constr. Build. Mater. 2021, 268, 121146. [Google Scholar] [CrossRef]
- Gomes, B.M.d.C.; Silva, N.A. da Bernstad Saraiva, A.; Caldas, L.R.; Toledo Filho, R.D. Environmental and mechanical performance assessment of bamboo culms and strips for structural use: Evaluation of Phyllostachys pubescens and Dendrocalamus giganteus species. Constr. Build. Mater. 2022, 353, 129078. [Google Scholar] [CrossRef]
- Huesker, Muros Terrae: Sistema de Contenção em blocos Segmentais e Geogrelhas Fortrac®. São José Dos Campos, Brazil: HUESKER Brasil. 2016. Available online: https://www.huesker.com.br (accessed on 29 July 2024).
- Antunes, L.G.; Santos, B.L.C.; Figueiredo, A.S.; Franco de Carvalho, J.M.; Peixoto, R.A.F.; Fontes, W.C. Rejeito de barragem de minério de ferro em concretos destinados à produção de blocos segmentais. In Proceedings of the 4° Congresso Luso-Brasileiro de Materiais de Construção Sustentáveis Associação Brasileira de Ciência dos Materiais e Tecnologias Não-convencionais—ABMTENC, Salvador, Brasil, 9–11 November 2022; pp. 895–908. [Google Scholar]
- Martins, A.C.P.; Franco de Carvalho, J.M.; Duarte, M.d.N.; Pedroti, L.G.; Ribeiro, J.C.L.; Peixoto, R.A.F. Use of steel slag and LAS-based modifying admixture in obtaining highly eco-efficient precast concrete products. J. Build. Eng. 2023, 66, 105884. [Google Scholar] [CrossRef]
- Nehdi, M.L. Clay in cement-based materials: Critical overview of state-of-the-art. Constr. Build. Mater. 2014, 51, 372–382. [Google Scholar] [CrossRef]
- Kajaste, R.; Hurme, M. Cement industry greenhouse gas emissions—Management options and abatement cost. J. Clean. Prod. 2016, 112, 4041–4052. [Google Scholar] [CrossRef]
- Franco de Carvalho, J.M.; Defáveri, K.; Mendes, J.C.; Schmidt, W.; Kühne, H.C.; Peixoto, R.A.F. Influence of particle size-designed recycled mineral admixtures on the properties of cement-based composites. Constr. Build. Mater. 2020, 272, 121640. [Google Scholar] [CrossRef]
- Franco de Carvalho, J.M.; Fontes, W.C.; Azevedo, C.F.; Brigolini, G.J.; Schmidt, W.; Peixoto, R.A.F. Enhancing the eco-efficiency of concrete using engineered recycled mineral admixtures and recycled aggregates. J. Clean. Prod. 2020, 257, 120530. [Google Scholar] [CrossRef]
- de Souza, A.M.; Franco de Carvalho, J.M.; Santos, C.F.R.; Ferreira, F.A.; Pedroti, L.G.; Peixoto, R.A.F. On the strategies to improve the eco-efficiency of self-compacting concrete using industrial waste: An analytical review. Constr. Build. Mater. 2022, 347, 128634. [Google Scholar] [CrossRef]
- Coelho, P.; Camacho, D. The Experimental Characterization of Iron Ore Tailings from a Geotechnical Perspective. Appl. Sci. 2024, 14, 5033. [Google Scholar] [CrossRef]
Parameters | IOT | AGS | NQS | CGA |
---|---|---|---|---|
Specific mass (g/cm3) | 3.99 | 2.86 | 2.63 | 2.66 |
D10 (mm) | 0.13 | 0.13 | 0.35 | 6.35 |
D50 (mm) | 0.75 | 0.68 | 0.97 | 8.70 |
D90 (mm) | 3.62 | 2.10 | 4.25 | 11.85 |
Concrete-Block | Cement | IOT | CGS | AGS | NQS | Water | Plasticizer |
---|---|---|---|---|---|---|---|
IOT25-A | 283.1 | 546.6 | 728.8 | 587.7 | 540.4 | 86.8 | 1.5 |
IOT50-A | 280.5 | 1085.7 | 722.2 | 388.2 | 357.0 | 95.0 | 1.5 |
IOT75-A | 271.9 | 1578.6 | 700.0 | 188.2 | 173.0 | 122.8 | 1.5 |
REF-A | 234.5 | 0.0 | 599.7 | 1934.4 | 0.0 | 22.5 | 0 |
IOT25-B | 283.1 | 547.8 | 728.8 | 587.7 | 540.4 | 86.8 | 1.5 |
IOT50-B | 280.5 | 1085.7 | 722.2 | 388.2 | 357.0 | 95.0 | 1.5 |
IOT75-B | 271.9 | 1578.6 | 700.0 | 188.2 | 173.0 | 122.8 | 1.5 |
REF-B | 427.0 | 0.0 | 546.0 | 1761.4 | 0.0 | 41.1 | 0 |
Material | Emission Factor (kg CO2/tonne) | Embedded Energy Index (MJ/tonne) |
---|---|---|
Cement | 885.35 | 4906.00 |
CGA | 4.67 | 49.00 |
AGS | 4.67 | 49.00 |
NQS | 12.51 | 193.40 |
Plasticizer | 940.0 | 13,000.00 |
Material | Transport Modality | Distance (km) | |
---|---|---|---|
Factory X | Factory Y | ||
Cement | Road | 97 | 61 |
IOT | 1 | 51 | |
CGA | 35 | 19 | |
NQS | 35 | 19 | |
AGS | 35 | 19 | |
Plasticizer | 670 | 625 |
Item | Power (W) | Operating Time (h) |
---|---|---|
Hopper | 7354.99 | 0.09 |
Scale and planetary mixer | 25,742.5 | 0.10 |
Vibro press | 17,468.1 | 0.26 |
Ascending conveyor | 960 | 0.10 |
Lamps | 1200 | 0.26 |
Descending conveyor | 960 | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weba, L.C.; Oliveira, J.M.M.R.; Souza, A.J.C.d.; Antunes, L.G.; Franco de Carvalho, J.M.; Fontes, W.C. From Waste to Resource: Evaluation of the Technical and Environmental Performance of Concrete Blocks Made from Iron Ore Tailings. Sustainability 2025, 17, 552. https://doi.org/10.3390/su17020552
Weba LC, Oliveira JMMR, Souza AJCd, Antunes LG, Franco de Carvalho JM, Fontes WC. From Waste to Resource: Evaluation of the Technical and Environmental Performance of Concrete Blocks Made from Iron Ore Tailings. Sustainability. 2025; 17(2):552. https://doi.org/10.3390/su17020552
Chicago/Turabian StyleWeba, Luciana Chaves, Júlia Maria Medalha Resende Oliveira, Alberto José Corrêa de Souza, Ludimila Gomes Antunes, José Maria Franco de Carvalho, and Wanna Carvalho Fontes. 2025. "From Waste to Resource: Evaluation of the Technical and Environmental Performance of Concrete Blocks Made from Iron Ore Tailings" Sustainability 17, no. 2: 552. https://doi.org/10.3390/su17020552
APA StyleWeba, L. C., Oliveira, J. M. M. R., Souza, A. J. C. d., Antunes, L. G., Franco de Carvalho, J. M., & Fontes, W. C. (2025). From Waste to Resource: Evaluation of the Technical and Environmental Performance of Concrete Blocks Made from Iron Ore Tailings. Sustainability, 17(2), 552. https://doi.org/10.3390/su17020552