The Governance Process and the Influence on Heat Islands in the City of Quevedo, Coastal Ecuador
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of the Study Area
2.2. Geometric and Atmospheric Correction and Digital Image Processing
2.3. Obtaining Environmental Indicators
2.4. Pearson Correlation Analysis and Principal Component Analysis
- (a)
- Standardization
- (b)
- Calculation of the covariance matrix
- (c)
- Calculation of the eigenvalues and eigenvectors of the correlation matrix to identify the principal components.
3. Results
3.1. Thematic Environmental Indicators for the Construction of the Urban Environmental Index
3.2. Urban Environmental Index
3.3. Principal Component Analysis and Pearson Correlation for the Validation of Relationships Between Urban Heat Islands, Governance Factors and Environmental Indicators
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Degirmenci, K.; Desouza, K.C.; Fieuw, W.; Watson, R.T.; Yigitcanlar, T. Understanding Policy and Technology Responses in Mitigating Urban Heat Islands: A Literature Review and Directions for Future Research. Sustain. Cities Soc. 2021, 70, 102873. [Google Scholar] [CrossRef]
- Wei, C.; Chen, W.; Lu, Y.; Blaschke, T.; Peng, J.; Xue, D. Synergies between Urban Heat Island and Urban Heat Wave Effects in 9 Global Mega-Regions from 2003 to 2020. Remote Sens. 2021, 14, 70. [Google Scholar] [CrossRef]
- Wong, K.V.; Paddon, A.; Jimenez, A. Review of World Urban Heat Islands: Many Linked to Increased Mortality. J. Energy Resour. Technol. 2013, 135, 22101. [Google Scholar] [CrossRef]
- Hibbard, K.; Hoffman, F.; Huntzinger, D.N.; West, T. Changes in Land Cover and Terrestrial Biogeochemistry. In Climate Science Special Report: Fourth National Climate Assessment; Wuebbles, D.J., Fahey, D.W., Hibbard, K.A., Dokken, D.J., Stewart, B.C., Maycock, T.K., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2017; pp. 405–442. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Q.; Yang, L.; Mu, K.; Zhang, M.; Liu, J. Urban Heat Island Effects of Various Urban Morphologies under Regional Climate Conditions. Sci. Total Environ. 2020, 743, 140589. [Google Scholar] [CrossRef]
- Nichol, J. Remote Sensing of Urban Heat Islands by Day and Night. Photogramm. Eng. Remote Sens. 2005, 71, 613–621. [Google Scholar] [CrossRef]
- He, B.-J.; Zhu, J.; Zhao, D.-X.; Gou, Z.-H.; Qi, J.-D.; Wang, J. Co-Benefits Approach: Opportunities for Implementing Sponge City and Urban Heat Island Mitigation. Land Use Policy 2019, 86, 147–157. [Google Scholar] [CrossRef]
- Naikoo, M.W.; Islam, A.R.M.T.; Mallick, J.; Rahman, A. Land Use/Land Cover Change and Its Impact on Surface Urban Heat Island and Urban Thermal Comfort in a Metropolitan City. Urban Clim. 2022, 41, 101052. [Google Scholar] [CrossRef]
- Gui, X.; Wang, L.; Yao, R.; Yu, D.; Li, C. Investigating the Urbanization Process and Its Impact on Vegetation Change and Urban Heat Island in Wuhan, China. Environ. Sci. Pollut. Res. 2019, 26, 30808–30825. [Google Scholar] [CrossRef] [PubMed]
- Arshad, S.; Ahmad, S.R.; Abbas, S.; Asharf, A.; Siddiqui, N.A.; ul Islam, Z. Quantifying the Contribution of Diminishing Green Spaces and Urban Sprawl to Urban Heat Island Effect in a Rapidly Urbanizing Metropolitan City of Pakistan. Land Use Policy 2022, 113, 105874. [Google Scholar] [CrossRef]
- Meerow, S.; Keith, L. Cities at the Forefront of Emerging US Heat Governance. One Earth 2024, 7, 1330–1334. [Google Scholar] [CrossRef]
- Moussavi A., S.M.R.; Lak, A.; Tabrizi, N. A Conceptual Framework to Mitigate the Adverse Effects of Surface Urban Heat Islands through Urban Acupuncture: A Two-Phase Scenario of Diagnosis and Prescription at the Neighborhood Scale. Front. Environ. Sci. 2024, 12, 1324326. [Google Scholar] [CrossRef]
- Huang, H.; Zhao, Y.; Deng, X.; Yang, H.; Ren, L. Health Risk Appraisal of Urban Thermal Environment and Characteristic Analysis on Vulnerable Populations. J. Environ. Eng. Landsc. Manag. 2023, 31, 34–43. [Google Scholar] [CrossRef]
- Lo, C.P.; Quattrochi, D.A. Land-Use and Land-Cover Change, Urban Heat Island Phenomenon, and Health Implications. Photogramm. Eng. Remote Sens. 2003, 69, 1053–1063. [Google Scholar] [CrossRef]
- Heaviside, C.; Macintyre, H.; Vardoulakis, S. The Urban Heat Island: Implications for Health in a Changing Environment. Curr. Environ. Health Rep. 2017, 4, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Wong, L.P.; Alias, H.; Aghamohammadi, N.; Aghazadeh, S.; Sulaiman, N.M.N. Physical, Psychological, and Social Health Impact of Temperature Rise Due to Urban Heat Island Phenomenon and Its Associated Factors. Biomed. Environ. Sci. 2018, 31, 545–550. [Google Scholar] [CrossRef]
- Stangel, M. Urban Environmental Acupuncture for Improving the Sustainability of Dense City Areas–Polish Experiences from the SALUTE4CE Project. Archit. Civ. Eng. Environ. 2023, 16, 15–27. [Google Scholar] [CrossRef]
- Murata, T.; Kawai, N. Degradation of the Urban Ecosystem Function Due to Soil Sealing: Involvement in the Heat Island Phenomenon and Hydrologic Cycle in the Tokyo Metropolitan Area. Soil Sci. Plant Nutr. 2018, 64, 145–155. [Google Scholar] [CrossRef]
- Mohajerani, A.; Bakaric, J.; Jeffrey-Bailey, T. The Urban Heat Island Effect, Its Causes, and Mitigation, with Reference to the Thermal Properties of Asphalt Concrete. J. Environ. Manag. 2017, 197, 522–538. [Google Scholar] [CrossRef]
- Aboulnaga, M.; Trombadore, A.; Mostafa, M.; Abouaiana, A. Livable Cities: Urban Heat Islands Mitigation for Climate Change Adaptation Through Urban Greening; Springer Nature: Cham, Switzerland, 2024; Available online: https://link.springer.com/book/10.1007/978-3-031-51220-9 (accessed on 29 August 2024).
- Elgendawy, A.; Davies, P.; Chang, H.-C. Planning for Cooler Cities: A Plan Quality Evaluation for Urban Heat Island Consideration. J. Environ. Policy Plan. 2020, 22, 531–553. [Google Scholar] [CrossRef]
- Leal Filho, W.; Icaza, L.E.; Neht, A.; Klavins, M.; Morgan, E.A. Coping with the Impacts of Urban Heat Islands. A Literature Based Study on Understanding Urban Heat Vulnerability and the Need for Resilience in Cities in a Global Climate Change Context. J. Clean. Prod. 2018, 171, 1140–1149. [Google Scholar] [CrossRef]
- Keith, L.; Gabbe, C.J.; Schmidt, E. Urban Heat Governance: Examining the Role of Urban Planning. J. Environ. Policy Plan. 2023, 25, 642–662. [Google Scholar] [CrossRef]
- Stone, B., Jr.; Lanza, K.; Mallen, E.; Vargo, J.; Russell, A. Urban Heat Management in Louisville, Kentucky: A Framework for Climate Adaptation Planning. J. Plan. Educ. Res. 2023, 43, 346–358. [Google Scholar] [CrossRef]
- Keith, L.; Meerow, S.; Hondula, D.M.; Turner, V.K.; Arnott, J.C. Deploy Heat Officers, Policies and Metrics. Nature 2021, 598, 29–31. [Google Scholar] [CrossRef]
- Parsaee, M.; Joybari, M.M.; Mirzaei, P.A.; Haghighat, F. Urban Heat Island, Urban Climate Maps and Urban Development Policies and Action Plans. Environ. Technol. Innov. 2019, 14, 100341. [Google Scholar] [CrossRef]
- Reinwald, F.; Thiel, S.; Kainz, A.; Hahn, C. Components of Urban Climate Analyses for the Development of Planning Recommendation Maps. Urban Clim. 2024, 57, 102090. [Google Scholar] [CrossRef]
- Coloma Zurita, T.S.; Muñoz Marcillo, J.L.; Vivas Moreira, L.R.; Gonzales Osorio, B.B. Problemas de Gobernanza En Torno Al Uso Agrícola Del Suelo y La Demanda de Agua Para Riego En La Cuenca Del Río Vinces (Ecuador). Rev. Interam. Ambiente Tur. 2022, 18, 137–145. [Google Scholar] [CrossRef]
- Muñoz Marcillo, J.L. Gobernanza de Los Recursos Hídricos En La Cuenca Del Río Vinces (Ecuador). Roca Rev. Cient.-Educ. Prov. Granma 2022, 18, 319. [Google Scholar]
- Gabbe, C.J.; Mallen, E.; Varni, A. Housing and Urban Heat: Assessing Risk Disparities. Hous. Policy Debate 2023, 33, 1078–1099. [Google Scholar] [CrossRef]
- Gabbe, C.J.; Pierce, G.; Petermann, E.; Marecek, A. Why and How Do Cities Plan for Extreme Heat? J. Plan. Educ. Res. 2021, 44, 1316–1330. [Google Scholar] [CrossRef]
- Keith, L.; Meerow, S.; Wagner, T. Planning for Extreme Heat: A Review. J. Extrem. Events 2019, 6, 2050003. [Google Scholar] [CrossRef]
- Stevens, H.R.; Beggs, P.J.; Graham, P.L.; Chang, H.-C. Hot and Bothered? Associations between Temperature and Crime in Australia. Int. J. Biometeorol. 2019, 63, 747–762. [Google Scholar] [CrossRef]
- Kotharkar, R.; Ghosh, A. Progress in Extreme Heat Management and Warning Systems: A Systematic Review of Heat-Health Action Plans (1995–2020). Sustain. Cities Soc. 2022, 76, 103487. [Google Scholar] [CrossRef]
- Talamo, C.; Paganin, G.; Atta, N.; Bernardini, C. Design of Urban Services as a Soft Adaptation Strategy to Cope with Climate Change. TECHNE J. Technol. Archit. Environ. Spec. Ser. 2021, 2, 87–92. [Google Scholar] [CrossRef]
- Dorahaki, S.; Rashidinejad, M.; Fatemi Ardestani, S.F.; Abdollahi, A.; Salehizadeh, M.R. A Home Energy Management Model Considering Energy Storage and Smart Flexible Appliances: A Modified Time-Driven Prospect Theory Approach. J. Energy Storage 2022, 48, 104049. [Google Scholar] [CrossRef]
- Dorahaki, S.; MollahassaniPour, M.; Rashidinejad, M. Optimizing Energy Payment, User Satisfaction, and Self-Sufficiency in Flexibility-Constrained Smart Home Energy Management: A Multi-Objective Optimization Approach. e-Prime-Adv. Electr. Eng. Electron. Energy 2023, 6, 100385. [Google Scholar] [CrossRef]
- Dorahaki, S.; Rashidinejad, M.; Fatemi Ardestani, S.F.; Abdollahi, A.; Salehizadeh, M.R. A Peer-to-Peer Energy Trading Market Model Based on Time-Driven Prospect Theory in a Smart and Sustainable Energy Community. Sustain. Energy Grids Netw. 2021, 28, 100542. [Google Scholar] [CrossRef]
- Dorahaki, S.; Rashidinejad, M.; Fatemi Ardestani, S.F.; Abdollahi, A.; Salehizadeh, M.R. An Integrated Model for Citizen Energy Communities and Renewable Energy Communities Based on Clean Energy Package: A Two-Stage Risk-Based Approach. Energy 2023, 277, 127727. [Google Scholar] [CrossRef]
- Ghasemnejad, H.; Rashidinejad, M.; Abdollahi, A.; Dorahaki, S. Energy Management in Citizen Energy Communities: A Flexibility-Constrained Robust Optimization Approach Considering Prosumers Comfort. Appl. Energy 2024, 356, 122456. [Google Scholar] [CrossRef]
- Dorahaki, S.; Rashidinejad, M.; MollahassaniPour, M.; Pourakbari Kasmaei, M.; Afzali, P. A Sharing Economy Model for a Sustainable Community Energy Storage Considering End-User Comfort. Sustain. Cities Soc. 2023, 97, 104786. [Google Scholar] [CrossRef]
- Dorahaki, S.; Sarkhosh, A.; Rashidinejad, M.; Salehizadeh, M.R.; MollahassaniPour, M. Fairness in Optimal Operation of Transactive Smart Networked Modern Multi-Carrier Energy Systems: A Two-Stage Optimization Approach. Sustain. Energy Technol. Assess. 2023, 56, 103035. [Google Scholar] [CrossRef]
- Lechón, L.W. ¿ Gobernanza Climática En Ecuador? Los Gobiernos Subnacionales Frente Al Reto de Implementar Las Contribuciones Nacionales Determinadas (NDC), Establecidas En El Acuerdo de París: El Caso de Los Gobiernos Autónomos Descentralizados Provinciales Del Ecuado. Master’s Thesis, Universidad Andina Simón Bolívar, Quito, Ecuador, 2020. [Google Scholar]
- González, J.D.; La Agenda Climática Global En Las Ciudades Latinoamericanas. Actores No Estatales y Gobiernos Subnacionales En Acción. Anál. Carol. 2020, 28, 1. Available online: https://www.fundacioncarolina.es/catalogo/la-agenda-climatica-global-en-las-ciudades-latinoamericanas-actores-no-estatales-y-gobiernos-subnacionales-en-accion/ (accessed on 28 August 2024).
- Guzmán, J.A. Liderazgo y Rezago Subnacional En La Política Climática de México: Análisis Cualitativo Comparado de Sus Instrumentos. Estado Comunes Rev. Políticas Probl. Públicos 2023, 1, 19–37. [Google Scholar] [CrossRef]
- Aguilar, E.A. Análisis de La Distribución e Intensidad de Las Islas de Calor Urbanas Superficiales Diurnas (ICUs) En El Cantón Manta, Manabí y Su Relación Con La Vegetación Local y Otras Variables Geográficas. 2021. Available online: https://diposit.ub.edu/dspace/handle/2445/180526 (accessed on 29 August 2024).
- Campoverde, A.S.B. Análisis de La Isla de Calor Urbana En El Entorno Andino de Cuenca-Ecuador. Investig. Geogr. 2018, 70, 167–179. Available online: https://www.investigacionesgeograficas.com/article/view/2018-n70-analisis-de-la-isla-de-calor-urbana-en-el-entorno-andin (accessed on 28 August 2024).
- Pérez, K.A.; Lascano, P.P.; Sánchez, I.M.; Padilla-Almeida, O.; Toulkeridis, T. Evaluation of the Surface Temperature Applied in Aquaculture Based on Satellite Images in Coastal Ecuador. In Information and Communication Technologies of Ecuador; Springer: Cham, Switzerland, 2020; pp. 572–586. [Google Scholar]
- Toulkeridis, T.; Tamayo, E.; Simón-Baile, D.; Merizalde-Mora, M.J.; Reyes–Yunga, D.F.; Viera-Torres, M.; Heredia, M. Climate Change According to Ecuadorian Academics–Perceptions versus Facts. LA GRANJA Rev. Cienc. Vida 2020, 31, 21–46. [Google Scholar] [CrossRef]
- Vásquez, P.E.; Flores, C.; Cobos, J.-C.; Cobos, S.L. Urban Heat Island Mitigation through Planned Simulation. Sustainability 2022, 14, 8612. [Google Scholar] [CrossRef]
- Palme, M.; Carrasco, C. Urban Heat Island in Latin American Cities: A Review of Trends, Impacts, and Mitigation Strategies. Glob. Urban Heat Isl. Mitig. 2022, 251–267. [Google Scholar] [CrossRef]
- Lawrence, R.J. Co-Benefits of Transdisciplinary Planning for Healthy Cities. Urban Plan. 2022, 7, 61–74. [Google Scholar] [CrossRef]
- De Ruschi, B.; Ma, W.; Li, Y. Bridging the Implementation Gap: A Holistic Approach to Urban Climate Governance. Curr. Urban Stud. 2024, 12, 65–87. [Google Scholar] [CrossRef]
- MacLachlan, A.; Biggs, E.; Roberts, G.; Boruff, B. Sustainable City Planning: A Data-Driven Approach for Mitigating Urban Heat. Front. Built Environ. 2021, 6, 519599. [Google Scholar] [CrossRef]
- Abuwaer, N.; Ullah, S.; Al-Ghamdi, S.G. Building Climate Resilience Through Urban Planning: Strategies, Challenges, and Opportunities; Wiley Online Library: Hoboken, NJ, USA, 2023. [Google Scholar] [CrossRef]
- Jasim, B.S.; Yosief, F.J.; Mohammed, Z.T. Implementing Geomatics Techniques for the Increase of Resolution of Satellite Images. Ecol. Eng. Environ. Technol. 2024, 10, 158–166. [Google Scholar] [CrossRef]
- Sutradhar, P.; Bhavana, P.S. LANDSAT 7 ETM—Enhancing Earth Observation and Environmental Monitoring. Santiniketan 2023; p. 17. Available online: https://www.researchgate.net/profile/Pathik-Sutradhar/publication/375592356_LANDSAT_7_ETM_ENHANCING_EARTH_OBSERVATION_AND_ENVIRONMENTAL_MONITORING_’/links/6550c752b86a1d521bd7aec3/LANDSAT-7-ETM-ENHANCING-EARTH-OBSERVATION-AND-ENVIRONMENTAL-MONITORING.pdf?__cf_chl_tk=WnfAtlAGPv3upUFaSfMnwPO4v.zpmhM339uQU5sge00-1735227944-1.0.1.1-Zm_GuQIWhvU4B4gjLBFXhZXJ2yaiL4dfiREcggb6eU4 (accessed on 28 August 2024).
- Xie, S.; Liu, L.; Zhang, X.; Yang, J.; Chen, X.; Gao, Y. Automatic Land-Cover Mapping Using Landsat Time-Series Data Based on Google Earth Engine. Remote Sens. 2019, 11, 3023. [Google Scholar] [CrossRef]
- Pernía, E.; López, J. Una Metodología Práctica de Generación de Información de Imágenes de Percepción Remota Para Los SIG. Rev. Teledetec. 1997, 8, 1–7. [Google Scholar]
- Escobar, J.P.; Flórez, L.D.; Fernandez, D.S. Estimación de Irregularidades En Pavimentos Mediante Técnicas de Procesamiento Digital de Imágenes. Rev. Politéc. 2023, 19, 20–28. [Google Scholar] [CrossRef]
- Naik, G.R.; Kumar, D.K. An Overview of Independent Component Analysis and Its Applications. Informatica 2011, 35, 63–81. [Google Scholar]
- Tharwat, A. Independent Component Analysis: An Introduction. Appl. Comput. Inform. 2021, 17, 222–249. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Helder, D.; Morfitt, R.; Choate, M.J.; Merchant, J.W.; Bulley, H. Effects of Landsat 5 Thematic Mapper and Landsat 7 Enhanced Thematic Mapper Plus Radiometric and Geometric Calibrations and Corrections on Landscape Characterization. Remote Sens. Environ. 2001, 78, 55–70. [Google Scholar] [CrossRef]
- Rosencwaig, A.; Opsal, J.; Smith, W.L.; Willenborg, D.L. Detection of Thermal Waves through Optical Reflectance. Appl. Phys. Lett. 1985, 46, 1013–1015. [Google Scholar] [CrossRef]
- Frouin, R.J.; Franz, B.A.; Ibrahim, A.; Knobelspiesse, K.; Ahmad, Z.; Cairns, B.; Chowdhary, J.; Dierssen, H.M.; Tan, J.; Dubovik, O. Atmospheric Correction of Satellite Ocean-Color Imagery during the PACE Era. Front. Earth Sci. 2019, 7, 145. [Google Scholar] [CrossRef]
- Bilal, M.; Mhawish, A.; Ali, M.A.; Qiu, Z.; de Leeuw, G.; Kumar, M. Chapter 2—Retrieval of Aerosol Optical Depth from Satellite Observations: Accuracy Assessment, Limitations, and Usage Recommendations over South Asia. In Earth Observation; Kumar Singh, A., Tiwari, S.B.T.-A.R.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 19–38. [Google Scholar] [CrossRef]
- Chapter 4—Atmospheric Correction of Optical Imagery. In Advanced Remote Sensing; Liang, S., Wang, J.B.T.-A.R.S., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 131–156. [Google Scholar] [CrossRef]
- Ilori, C.O.; Pahlevan, N.; Knudby, A. Analyzing Performances of Different Atmospheric Correction Techniques for Landsat 8: Application for Coastal Remote Sensing. Remote Sens. 2019, 11, 469. [Google Scholar] [CrossRef]
- Wang, D.; Ma, R.; Xue, K.; Loiselle, S.A. The Assessment of Landsat-8 OLI Atmospheric Correction Algorithms for Inland Waters. Remote Sens. 2019, 11, 169. [Google Scholar] [CrossRef]
- Mieza, M.S.; Kovac, F.D.; Cravero, W.R. Estimación de Área Foliar Utilizando Técnicas de Procesamiento de Imágenes: Una Metodología Simple, Fiable y de Bajo Costo. In Proceedings of the XII Congreso de AgroInformática (CAI 2020)-JAIIO 49, Modalidad Virtual, 19–23, 26–30 October 2020; Available online: https://sedici.unlp.edu.ar/handle/10915/115528 (accessed on 28 August 2024).
- Chander, S.; Gujrati, A.; Krishna, A.V.; Sahay, A.; Singh, R.P. 11—Remote Sensing of Inland Water Quality: A Hyperspectral Perspective. In Earth Observation; Pandey, P.C., Srivastava, P.K., Balzter, H., Bhattacharya, B., Petropoulos, G.P.B.T.-H.R.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 197–219. [Google Scholar] [CrossRef]
- Rengarajan, R.; Choate, M.; Storey, J.; Franks, S.; Micijevic, E. Landsat Collection-2 Geometric Calibration Updates. In Earth Observing Systems XXV; SPIE: Bellingham, WA, USA, 2020; Volume 11501, pp. 85–95. [Google Scholar] [CrossRef]
- Dibs, H.; Mansor, S.; Ahmad, N.; Al-Ansari, N. Geometric Correction Analysis of Highly Distortion of near Equatorial Satellite Images Using Remote Sensing and Digital Image Processing Techniques. Engineering 2022, 14, 1–8. [Google Scholar] [CrossRef]
- Choate, M.J.; Rengarajan, R.; Storey, J.C.; Lubke, M. Geometric Calibration Updates to Landsat 7 ETM+ Instrument for Landsat Collection 2 Products. Remote Sens. 2021, 13, 1638. [Google Scholar] [CrossRef]
- Tawfik, M.; Elhifnawy, H.; Ragab, A.; Hamza, E. The Effect of Image Resolution on the Geometric Correction of Remote Sensing Satellite Images. Int. J. Eng. Appl. Sci. 2017, 4, 257454. [Google Scholar]
- Loveland, T.R.; Dwyer, J.L. Landsat: Building a Strong Future. Remote Sens. Environ. 2012, 122, 22–29. [Google Scholar] [CrossRef]
- Otuoze, S.H.; Hunt, D.V.L.; Jefferson, I. Monitoring Spatial-Temporal Transition Dynamics of Transport Infrastructure Space in Urban Growth Phenomena: A Case Study of Lagos—Nigeria. Front. Future Transp. 2021, 2, 673110. [Google Scholar] [CrossRef]
- Javaid, K.; Ghafoor, G.Z.; Sharif, F.; Shahid, M.G.; Shahzad, L.; Ghafoor, N.; Hayyat, M.U.; Farhan, M. Spatio-Temporal Analysis of Land Use Land Cover Change and Its Impact on Land Surface Temperature of Sialkot City, Pakistan. Sci. Rep. 2023, 13, 22166. [Google Scholar] [CrossRef]
- Lee, K.-H.; Yum, J.-M. A Review on Atmospheric Correction Technique Using Satellite Remote Sensing. Korean J. Remote Sens. 2019, 35, 1011–1030. [Google Scholar] [CrossRef]
- Zhong, B.; Wu, S.; Yang, A.; Ao, K.; Wu, J.; Wu, J.; Gong, X.; Wang, H.; Liu, Q. An Atmospheric Correction Method over Bright and Stable Surfaces for Moderate to High Spatial-Resolution Optical Remotely Sensed Imagery. Remote Sens. 2020, 12, 733. [Google Scholar] [CrossRef]
- López, M.; Prieto, D.; Asensio, M.I.; Pagnini, G. A High-Resolution Fuel Type Mapping Procedure Based on Satellite Imagery and Neural Networks: Updating Fuel Maps for Wildfire Simulators. Remote Sens. Appl. Soc. Environ. 2022, 27, 100810. [Google Scholar] [CrossRef]
- Stefanidou, A.; Gitas, I.Z.; Katagis, T. A National Fuel Type Mapping Method Improvement Using Sentinel-2 Satellite Data. Geocarto Int. 2022, 37, 1022–1042. [Google Scholar] [CrossRef]
- Vidal, A. Atmospheric and Emissivity Correction of Land Surface Temperature Measured from Satellite Using Ground Measurements or Satellite Data. TitleREMOTE Sens. 1991, 12, 2449–2460. [Google Scholar] [CrossRef]
- Duan, S.-B.; Li, Z.-L.; Wu, H.; Leng, P.; Gao, M.; Wang, C. Radiance-Based Validation of Land Surface Temperature Products Derived from Collection 6 MODIS Thermal Infrared Data. Int. J. Appl. Earth Obs. Geoinf. 2018, 70, 84–92. [Google Scholar] [CrossRef]
- Barducci, A.; Pippi, I. Temperature and Emissivity Retrieval from Remotely Sensed Images Using the” Grey Body Emissivity” Method. IEEE Trans. Geosci. Remote Sens. 1996, 34, 681–695. [Google Scholar] [CrossRef]
- Pitre, L.; Plimmer, M.D.; Sparasci, F.; Himbert, M.E. Determinations of the Boltzmann Constant. Comptes Rendus Phys. 2019, 20, 129–139. [Google Scholar] [CrossRef]
- Zhang, R.-H.; Li, Z.-L.; Tang, X.-Z.; Sun, X.-M.; Su, H.-B.; Zhu, C.; Zhu, Z.-L. Study of Emissivity Scaling and Relativity of Homogeneity of Surface Temperature. Int. J. Remote Sens. 2004, 25, 245–259. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Chen, J.; Chen, Y.; Li, J.; Yan, G.; Zhang, X. Analysis of NDVI and Scaled Difference Vegetation Index Retrievals of Vegetation Fraction. Remote Sens. Environ. 2006, 101, 366–378. [Google Scholar] [CrossRef]
- Cevallos, L.N.M.; García, J.L.R.; Suárez, B.I.A.; González, C.A.L.; González, I.S.; Campoverde, J.A.Y.; Guzmán, J.A.M.; Toulkeridis, T. A NDVI Analysis Contrasting Different Spectrum Data Methodologies Applied in Pasture Crops Previous Grazing—A Case Study from Ecuador. In Proceedings of the 2018 International Conference on eDemocracy & eGovernment (ICEDEG), Ambato, Ecuador, 4–6 April 2018; pp. 126–135. [Google Scholar]
- Viera-Torres, M.; Sinde-González, I.; Gil-Docampo, M.; Bravo-Yandún, V.; Toulkeridis, T. Generating the Baseline in the Early Detection of Bud Rot and Red Ring Disease in Oil Palms by Geospatial Technologies. Remote Sens. 2020, 12, 3229. [Google Scholar] [CrossRef]
- Gao, L.; Wang, X.; Johnson, B.A.; Tian, Q.; Wang, Y.; Verrelst, J.; Mu, X.; Gu, X. Remote Sensing Algorithms for Estimation of Fractional Vegetation Cover Using Pure Vegetation Index Values: A Review. ISPRS J. Photogramm. Remote Sens. 2020, 159, 364–377. [Google Scholar] [CrossRef] [PubMed]
- Chuvieco, E. Teledetección Ambiental: La Observación de La Tierra Desde El Espacio; Barcelona Ariel: Zaragoza, Spain, 2008. [Google Scholar]
- Rogers, A.S.; Kearney, M.S. Reducing Signature Variability in Unmixing Coastal Marsh Thematic Mapper Scenes Using Spectral Indices. Int. J. Remote Sens. 2004, 25, 2317–2335. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Isinkaralar, O. A Methodological Benchmark in Determining the Urban Growth: Spatiotemporal Projections for Eskişehir, Türkiye. Appl. Spat. Anal. Policy 2024, 17, 1485–1495. [Google Scholar] [CrossRef]
- Profillidis, V.A.; Botzoris, G.N. Chapter 5—Statistical Methods for Transport Demand Modeling. In Modeling of Transport Demand; Elsevier: Amsterdam, The Netherlands, 2019; pp. 163–224. [Google Scholar] [CrossRef]
- Šverko, Z.; Vrankić, M.; Vlahinić, S.; Rogelj, P. Complex Pearson Correlation Coefficient for EEG Connectivity Analysis. Sensors 2022, 22, 1477. [Google Scholar] [CrossRef] [PubMed]
- Kurita, T. Principal Component Analysis (PCA). In Computer Vision: A Reference Guide; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1013–1016. Available online: https://www.academia.edu/98967369/Principal_Component_Analysis_PCA_?uc-sb-sw=31302085 (accessed on 28 August 2024).
- Salem, B. Principal Component Analysis (PCA). Tunis. Medicale 2021, 99, 383–389. Available online: https://pubmed.ncbi.nlm.nih.gov/35244921/ (accessed on 28 August 2024).
- Greenacre, M.; Groenen, P.J.F.; Hastie, T.; D’Enza, A.I.; Markos, A.; Tuzhilina, E. Principal Component Analysis. Nat. Rev. Methods Prim. 2022, 2, 100. [Google Scholar] [CrossRef]
- Serrano, S.M.V.; Prats, J.M.C.; Sánchez, M.Á.S. Los Efectos de La Urbanización En El Clima de Zaragoza (España): La Isla de Calor y Sus Factores Condicionantes. Boletín Asoc. Geógrafos Españoles 2005, 311–328. Available online: https://www.researchgate.net/publication/28097059_Los_efectos_de_la_urbanizacion_en_el_clima_de_Zaragoza_Espana_la_isla_de_calor_y_sus_factores_condicionantes (accessed on 28 August 2024).
- Lee, G.; Hwang, J.; Cho, S. A Novel Index to Detect Vegetation in Urban Areas Using UAV-Based Multispectral Images. Appl. Sci. 2021, 11, 3472. [Google Scholar] [CrossRef]
- Yang, X.; Zuo, X.; Xie, W.; Li, Y.; Guo, S.; Zhang, H. A Correction Method of NDVI Topographic Shadow Effect for Rugged Terrain. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 8456–8472. [Google Scholar] [CrossRef]
UHI | NDVI | NSDI | SAVI | GOV | |
---|---|---|---|---|---|
UHI | - | 0.3065 | 0.0103 | 0.0189 | 0.1682 |
NDVI | 0.3065 | - | 0.1354 | 0.0014 | 0.2629 |
NSDI | 0.0103 | 0.1354 | - | 0.0466 | 0.0111 |
SAVI | 0.0189 | 0.0014 | 0.0466 | - | 0.1865 |
GOV | 0.1682 | 0.2629 | 0.0111 | 0.1865 | - |
Component Number | Eigenvalue | Percent of Variance | Cumulative Percentage |
---|---|---|---|
1 | 3.28488 | 65.698 | 65.698 |
2 | 0.881067 | 17.621 | 83.319 |
3 | 0.591002 | 11.820 | 95.139 |
4 | 0.187954 | 3.759 | 98.898 |
5 | 0.0550931 | 1.102 | 100.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz Marcillo, J.L.; Toulkeridis, T.; Miguel Veas, L. The Governance Process and the Influence on Heat Islands in the City of Quevedo, Coastal Ecuador. Sustainability 2025, 17, 235. https://doi.org/10.3390/su17010235
Muñoz Marcillo JL, Toulkeridis T, Miguel Veas L. The Governance Process and the Influence on Heat Islands in the City of Quevedo, Coastal Ecuador. Sustainability. 2025; 17(1):235. https://doi.org/10.3390/su17010235
Chicago/Turabian StyleMuñoz Marcillo, José Luis, Theofilos Toulkeridis, and Luis Miguel Veas. 2025. "The Governance Process and the Influence on Heat Islands in the City of Quevedo, Coastal Ecuador" Sustainability 17, no. 1: 235. https://doi.org/10.3390/su17010235
APA StyleMuñoz Marcillo, J. L., Toulkeridis, T., & Miguel Veas, L. (2025). The Governance Process and the Influence on Heat Islands in the City of Quevedo, Coastal Ecuador. Sustainability, 17(1), 235. https://doi.org/10.3390/su17010235