Variation in Debris-Flow-Prone Areas with Ecosystem Stability: A Case Study of the Qipan Catchment in the Wenchuan Earthquake Region
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Data Collection and Preprocessing
3.2. Landslide Interpretation
3.3. Sediment Connectivity
3.4. Assessment of the Ecosystem Stability of Debris-Flow-Prone Areas
4. Results
4.1. Spatial–Temporal Variations in Land Use
4.2. Spatial–Temporal Variations in Vegetation Coverage
4.3. Catchment Connectivity
4.4. Relationship between Vegetation and Connectivity in the Landslide Area
4.5. Comprehensive Evaluation of Ecosystem Stability in the Qipan Catchment
5. Discussion
6. Conclusions
- The number of collapse and landslide events in the Qipan catchment in 2008, 2013, and 2019 was 142, 134, and 61, respectively, with a significant reduction in the landslide area. The significant reduction in this landslide event directly led to a decrease in the supply of debris flow sources, which effectively reduced the susceptibility to debris flows and enhanced the overall stability of the basin.
- From 2008 to 2019, the spatial pattern of the land use types in the Qipan catchment changed significantly: the vegetation coverage in the study area continued to increase, while the sediment connectivity showed a downward trend. In areas with low vegetation coverage, the IC value is relatively high, and there is a significant negative correlation between them. The restoration of vegetation effectively reduces the material source of debris flows through the interception of sediment, thus slowing the formation and development of debris flows.
- From 2008 to 2019, the ecosystem stability of the whole study area significantly improved, and its distribution was characterized by lower stability in the northern and southern regions and higher stability in the central region. The evaluation results of ecosystem stability are consistent with the surface evolution trend of debris-flow-prone areas, which confirms the applicability of this evaluation method in the evaluation of ecological stability in post-earthquake debris-flow-prone areas.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smith, P.; Ashmore, M.; Black, H.; Burgess, P.; Evans, C.; Quine, T.; Thomson, A.; Hicks, K.; Orr, H. The role of ecosystems and their management in regulating climate, and soil, water and air quality. J. Appl. Ecol. 2013, 50, 812–829. [Google Scholar] [CrossRef]
- Zhou, Y.; Yue, D.; Li, S.; Liang, G.; Chao, Z.; Zhao, Y.; Meng, X. Ecosystem health assessment in debris flow-prone areas: A case study of Bailong River Basin in China. J. Clean. Prod. 2022, 357, 131887. [Google Scholar] [CrossRef]
- Yin, J.; Gentine, P.; Zhou, S.; Sullivan, S.C.; Wang, R.; Zhang, Y.; Guo, S. Large increase in global storm runoff extremes driven by climate and anthropogenic changes. Nat. Commun. 2018, 9, 4389. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Yan, M.; Wang, Q.; Zhang, G.; Feng, H.; Lang, X. Influencing Factors and Evaluation of Groundwater Ecological Function in Arid/Semiarid Regions of China: A Review. Sustainability 2024, 16, 1631. [Google Scholar] [CrossRef]
- Zhang, J.; Luo, D.; Li, H.; Pei, L.; Yao, Q. Experimental Study on Gully Erosion Characteristics of Mountain Torrent Debris Flow in a Strong Earthquake Area. Water 2023, 15, 283. [Google Scholar] [CrossRef]
- Kang, C.; Chan, D. Investigation of erosion characteristics of debris flow based on historical cases. Eng. Geol. 2022, 306, 106767. [Google Scholar] [CrossRef]
- Boucot, A.J. The complexity and stability of ecosystems. Nature 1985, 315, 635–636. [Google Scholar] [CrossRef]
- Grimm, V.; Schmidt, E.; Wissel, C. On the application of stability concepts in ecology. Ecol. Model. 1992, 63, 143–161. [Google Scholar] [CrossRef]
- Kéfi, S.; Domínguez-García, V.; Donohue, I.; Fontaine, C.; Thébault, E.; Dakos, V. Advancing our understanding of ecological stability. Ecol. Lett. 2019, 22, 1349–1356. [Google Scholar] [CrossRef]
- Donohue, I.; Petchey, O.L.; Montoya, J.M.; Jackson, A.L.; McNally, L.; Viana, M.; Healy, K.; Lurgi, M.; O’Connor, N.E.; Emmerson, M.C. On the dimensionality of ecological stability. Ecol. Lett. 2013, 16, 421–429. [Google Scholar] [CrossRef]
- Donohue, I.; Hillebrand, H.; Montoya, J.M.; Petchey, O.L.; Pimm, S.L.; Fowler, M.S.; Healy, K.; Jackson, A.L.; Lurgi, M.; McClean, D.; et al. Navigating the complexity of ecological stability. Ecol. Lett. 2016, 19, 1172–1185. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chi, Y.; Zhou, W.; Wang, Y.; Zhuang, J.; Zhao, N.; Ding, J.; Song, J.; Zhou, L. Quantifying the dimensionalities and drivers of ecosystem stability at global scale. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG006041. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, X.; Yang, Q.; Meng, Y.; Zhu, L.; Zou, X. Quantifying the spatiotemporal characteristics of multi-dimensional karst ecosystem stability with Landsat time series in southwest China. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102575. [Google Scholar] [CrossRef]
- Kim, D.; Ko, J.; Jo, J.; Ryu, J.; Choi, K. Decoupling natural and man-made impacts on the morphologic and sedimentologic changes in the tidal flats, Saemangeum area, west coast of Korea: Implications for benthic ecosystem stability. Sci. Total Environ. 2022, 807, 151779. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Di, B.; Ustin, S.; Xu, C.; Xie, Q.; Wu, S.; Li, J.; Zhang, R. Changes in ecosystem services in a montane landscape impacted by major earthquakes: A case study in Wenchuan earthquake-affected area, China. Ecol. Indic. 2021, 126, 107683. [Google Scholar] [CrossRef]
- Geertsema, M.; Pojar, J. Influence of landslides on biophysical diversity-a perspective from British Columbia. Geomorphology 2007, 89, 55–69. [Google Scholar] [CrossRef]
- Restrepo, C.; Walker, L.; Shiels, A.; Bussmann, R.; Claessens, L.; Fisch, S.; Lozano, P.; Negi, G.; Paolini, L.; Poveda, G.; et al. Landsliding and its multiscale influence on mountainscapes. BioScience 2009, 59, 685–698. [Google Scholar] [CrossRef]
- Zou, Q.; Cui, P.; Jiang, H.; Wang, J.; Li, C.; Zhou, B. Analysis of regional river blocking by debris flows in response to climate change. Sci. Total Environ. 2020, 741, 140262. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, M.; Chen, F.; Coulthard, T.; Wang, L. Integrating the SLIDE model within CAESAR-Lisflood: Modeling the ‘rainfall-landslide-flash flood’ disaster chain mechanism under landscape evolution in a mountainous area. Catena 2023, 227, 107124. [Google Scholar] [CrossRef]
- Lin, C.; Liu, S.; Lee, S.; Liu, C. Impacts of the Chi-Chi earthquake on subsequent rainfall- induced landslides in central Taiwan. Eng. Geol. 2006, 86, 87–101. [Google Scholar] [CrossRef]
- Cui, P.; Chen, X.; Zhu, Y.; Su, F.; Wei, F.; Han, Y.; Liu, H.; Zhuang, J. The Wenchuan earthquake (May 12, 2008), Sichuan province, China, and resulting geohazards. Nat. Hazards 2011, 56, 19–36. [Google Scholar] [CrossRef]
- Fan, X.; Scaringi, G.; Xu, Q.; Zhan, W.; Dai, L.; Li, Y.; Pei, X.; Yang, Q.; Huang, R. Coseismic landslides triggered by the 8th August 2017 Ms 7.0 Jiuzhaigou earthquake (Sichuan, China): Factors controlling their spatial distribution and implications for the seismogenic blind fault identification. Landslides 2018, 15, 967–983. [Google Scholar] [CrossRef]
- Tang, C.; Zhu, J.; Li, W.; Liang, J. Rainfall-triggered debris flows following the Wenchuan earthquake. Bull. Eng. Geol. Environ. 2009, 68, 187–194. [Google Scholar] [CrossRef]
- Hovius, N.; Meunier, P.; Lin, C.; Chen, H.; Chen, Y.; Dadson, S.; Horng, M.; Lines, M. Prolonged seismically induced erosion and the mass balance of a large earthquake. Earth Planet. Sci. Lett. 2011, 304, 347–355. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, X.; Yang, J.; Yuan, H. Wetland ecosystem stability evaluation by using Analytical Hierarchy Process (AHP) approach in Yinchuan Plain, China. Math. Comput. Model. 2013, 57, 366–374. [Google Scholar] [CrossRef]
- Arnoldi, J.F.; Loreau, M.; Haegeman, B. Resilience, reactivity and variability: A mathematical comparison of ecological stability measures. J. Theor. Biol. 2016, 389, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, M.; Liu, K.; Xie, J.; Xu, H. Using NDVI time series to diagnose vegetation recovery after major earthquake based on dynamic time warping and lower bound distance. Ecol. Indic. 2018, 94, 52–61. [Google Scholar] [CrossRef]
- Liu, W.; Yang, Z.; He, S. Modeling the landslide-generated debris flow from formation to propagation and run-out by considering the effect of vegetation. Landslides 2021, 18, 43–58. [Google Scholar] [CrossRef]
- Yunus, A.; Fan, X.; Tang, X.; Jie, D.; Xu, Q.; Huang, R. Decadal vegetation succession from MODIS reveals the spatio-temporal evolution of post-seismic landsliding after the 2008 Wenchuan earthquake. Remote Sens. Environ. 2020, 236, 111476. [Google Scholar] [CrossRef]
- Chen, M.; Tang, C.; Li, M.; Xiong, J.; Luo, Y.; Shi, Q.; Zhang, X.; Tie, Y.; Feng, Q. Changes of surface recovery at coseismic landslides and their driving factors in the Wenchuan earthquake-affected area. Catena 2022, 210, 105871. [Google Scholar] [CrossRef]
- Estrany, J.; Ruiz, M.; Calsamiglia, A.; Carriquí, M.; García-Comendadoret, J.; Nadal, M.; Fortesa, J.; López-Tarazón, J.; Medrano, H.; Gago, J. Sediment connectivity linked to vegetation using UAVs: High-resolution imagery for ecosystem management. Sci. Total Environ. 2019, 671, 1192–1205. [Google Scholar] [CrossRef]
- Liu, W.; Shi, C.; Ma, Y.; Li, H.; Ma, X. Land use and land cover change-induced changes of sediment connectivity and their effects on sediment yield in a catchment on the Loess Plateau in China. Catena 2021, 207, 105688. [Google Scholar] [CrossRef]
- Hu, X.; Yang, F.; Hu, K.; Ding, M.; Liu, S.; Wei, L. Estimating the debris-flow magnitude using landslide sediment connectivity, Qipan catchment, Wenchuan County, China. Catena 2023, 220, 106689. [Google Scholar] [CrossRef]
- Ding, M.T.; Huang, T. Vulnerability assessment of population in mountain settlements exposed to debris flow: A case study on Qipan gully, Wenchuan County, China. Nat. Hazards 2019, 99, 553–569. [Google Scholar] [CrossRef]
- Shi, Q.; Tang, C.; Gong, L.; Chen, M.; Li, N.; Zhou, W.; Xiong, J.; Tang, H.; Wang, X.; Li, M. Activity evolution of landslides and debris flows after the Wenchuan earthquake in the Qipan catchment, Southwest China. J. Mt. Sci. 2021, 18, 932–951. [Google Scholar] [CrossRef]
- Holben, B. Characteristics of maximum-value composite images from temporal AVHRR data. Int J Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Jin, W.; Cui, P.; Zhang, G.; Wang, J.; Zhang, Y.; Zhang, P. Evaluating the post-earthquake landslides sediment supply capacity for debris flows. Catena 2023, 220, 106649. [Google Scholar] [CrossRef]
- Guo, J.; Wang, J.; Li, Y.; Yi, S. Discussions on the transformation conditions of Wangcang landslide-induced debris flow. Landslides 2021, 18, 1833–1843. [Google Scholar] [CrossRef]
- Guo, J.; Cui, Y.; Xu, W.; Yin, Y.; Li, Y.; Jin, W. Numerical investigation of the landslide-debris flow transformation process considering topographic and entrainment effects: A case study. Landslides 2022, 19, 773–788. [Google Scholar] [CrossRef]
- Ferrara, C.; Barone, P.; Salvati, L. Unravelling landslide risk: Soil susceptibility, agro-forest systems and the socio-economic profile of rural communities in Italy. Soil Use Manag. 2015, 31, 290–298. [Google Scholar] [CrossRef]
- Chen, M.; Tang, C.; Xiong, J.; Shi, Q.; Li, N.; Gong, L.; Wang, X.; Tie, Y. The long-term evolution of landslide activity near the epicentral area of the 2008 Wenchuan earthquake in China. Geomorphology 2020, 367, 107317. [Google Scholar] [CrossRef]
- Fan, X.; Scaringi, G.; Domènech, G.; Yang, F.; Guo, X.; Dai, L.; He, C.; Xu, Q.; Huang, R. Two multi-temporal datasets that track the enhanced landsliding after the 2008 Wenchuan earthquake. Earth Syst. Sci. Data 2019, 11, 35–55. [Google Scholar] [CrossRef]
- Borselli, L.; Cassi, P.; Torri, D. Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment. Catena 2008, 75, 268–277. [Google Scholar] [CrossRef]
- Najafi, S.; Dragovich, D.; Heckmann, T.; Sadeghi, S.H. Sediment connectivity concepts and approaches. Catena 2021, 196, 104880. [Google Scholar] [CrossRef]
- Cavalli, M.; Trevisani, S.; Comiti, F.; Marchi, L. Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 2013, 188, 31–41. [Google Scholar] [CrossRef]
- Bracken, L.J.; Turnbull, L.; Wainwright, J.; Bogaart, P. Sediment connectivity: A framework for understanding sediment transfer at multiple scales. Earth Surf. Proc. Land. 2015, 40, 177–188. [Google Scholar] [CrossRef]
- Heckmann, T.; Cavalli, M.; Cerdan, O.; Foerster, S.; Javaux, M.; Lode, E.; Smetanová, A.; Vericat, D.; Brardinoni, F. Indices of sediment connectivity: Opportunities, challenges and limitations. Earth-Sci. Rev. 2018, 187, 77–108. [Google Scholar] [CrossRef]
- Aneseyee, A.; Elias, E.; Soromessa, T.; Feyisa, G. Land use/land cover change effect on soil erosion and sediment delivery in the Winike watershed, Omo Gibe Basin, Ethiopia. Sci. Total Environ. 2020, 728, 138776. [Google Scholar] [CrossRef]
- Zhang, Q.; Qin, W.; Ding, L.; Cao, W.; Xu, H.; Liu, Q.; Shi, C. Impact of land use/cover change (LUCC) on sediment connectivity in small watersheds based on a revised index algorithm. Geoderma 2023, 438, 116622. [Google Scholar] [CrossRef]
- Mueller, E.N.; Francke, T.; Batalla, R.J.; Bronstert, A. Modelling the effects of land-use change on runoff and sediment yield for a meso-scale catchment in the Southern Pyrenees. Catena 2009, 79, 288–296. [Google Scholar] [CrossRef]
- Yan, X.; Jiao, J.; Tang, B.; Liang, Y.; Wang, Z. Assessing sediment connectivity and its spatial response on land use using two flow direction algorithms in the catchment on the Chinese Loess Plateau. J. Mt. Sci. 2022, 19, 1119–1138. [Google Scholar] [CrossRef]
- Yang, Z.; Duan, X.; Huang, J.; Dong, Y.; Zhang, X.; Liu, J.; Yang, C. Tracking long-term cascade check dam siltation: Implications for debris flow control and landslide stability. Landslides 2021, 18, 3923–3935. [Google Scholar] [CrossRef]
- Hu, X.; Hu, K.; Tang, J.; You, Y.; Wu, C. Assessment of debris-flow potential dangers in the Jiuzhaigou Valley following the August 8, 2017, Jiuzhaigou earthquake, western China. Eng. Geol. 2019, 256, 57–66. [Google Scholar] [CrossRef]
- Li, P.; Wang, B.; Chen, P.; Zhang, Y.; Zhao, S. Vulnerability assessment of the eco-geo-environment of mining cities in arid and semi-arid areas: A case study from Zhungeer, China. Ecol. Indic. 2023, 152, 110364. [Google Scholar] [CrossRef]
- Schopper, N.; Mergili, M.; Frigerio, S.; Cavalli, M.; Poeppl, R. Analysis of lateral sediment connectivity and its connection to debris flow intensity patterns at different return periods in the Fella River system in northeastern Italy. Sci. Total Environ. 2019, 658, 1586–1600. [Google Scholar] [CrossRef]
- Germain, D.; Gavrilă, I.G.; Elizbarashvili, M.; Pop, O.T. Multidisciplinary approach to sediment connectivity between debris-flow channel network and the Dolra River, Mazeri Valley, Southern Caucasus, Georgia. Geomorphology 2020, 371, 107455. [Google Scholar] [CrossRef]
- Schuerch, P.; Densmore, A.; McArdell, B.; Molnar, P. The influence of landsliding on sediment supply and channel change in a steep mountain catchment. Geomorphology 2006, 78, 222–235. [Google Scholar] [CrossRef]
- Geng, S.; Shi, P.; Song, M.; Zong, N.; Zu, J.; Zhu, W. Diversity of vegetation composition enhances ecosystem stability along elevational gradients in the Taihang Mountains, China. Ecol. Ind. 2019, 104, 594–603. [Google Scholar] [CrossRef]
- McGuire, L.; Rengers, F.; Kean, J.; Coe, J.; Mirus, B.; Baum, R.; Godt, J. Elucidating the role of vegetation in the initiation of rainfall-induced shallow landslides: Insights from an extreme rainfall event in the Colorado Front Range. Geophys. Res. Lett. 2016, 43, 9084–9092. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, G.; Zhu, P.; Wang, Z.; Xing, S. Sediment connectivity of small watershed affected by gully development and vegetation restoration on the loess plateau. Geoderma 2022, 410, 115663. [Google Scholar] [CrossRef]
- Wu, S.; Di, B.; Ustin, S.; Wong, M.; Adhikari, B.; Zhang, R.; Luo, M. Dynamic Characteristics of Vegetation Change Based on Reconstructed Heterogenous NDVI in Seismic Regions. Remote Sens. 2023, 15, 299. [Google Scholar] [CrossRef]
- Wan, C.; Zhou, H.; Wang, Q.; Hua, C. Effects of vegetation coverage and rainfall erosivity on sediment connectivity in small watersheds. Trans. Chin. Soc. Agric. Eng. 2022, 38, 127–134. (In Chinese) [Google Scholar]
- Zhang, H.; Wang, X.; Fan, J.; Chi, T.; Yang, S.; Peng, L. Monitoring earthquake-damaged vegetation after the 2008 Wenchuan earthquake in the mountainous river basins, Dujiangyan County. Remote Sens. 2015, 7, 6808–6827. [Google Scholar] [CrossRef]
- Shen, P.; Zhang, L.; Fan, R.; Zhu, H.; Zhang, S. Declining geohazard activity with vegetation recovery during first ten years after the 2008 Wenchuan earthquake. Geomorphology 2020, 352, 106989. [Google Scholar] [CrossRef]
- Shen, P.; Zhang, L.; Chen, H.; Gao, L. Role of vegetation restoration in mitigating hillslope erosion and debris flows. Eng. Geol. 2017, 216, 122–133. [Google Scholar] [CrossRef]
- Yang, W.; Qi, W.; Zhou, J. Decreased post-seismic landslides linked to vegetation recovery after the 2008 Wenchuan earthquake. Ecol. Indic. 2018, 89, 438–444. [Google Scholar] [CrossRef]
Data | Rainfall Intensity(mm) | Debris Flow Type | Peak Discharge (m3/s) | Duration (min) | Debris Flow Volume (104m3) | |||
---|---|---|---|---|---|---|---|---|
3 Days | Daily | Hourly | 10 min | |||||
1933 | – | – | – | – | Viscous | 150 | – | – |
6 July 1961 | 99.5 | 79.9 | – | – | 75 | 60 | 13.5 | |
23 July 1964 | 48.3 | 41.7 | – | 1.2 | Diluted | 65 | 50 | 9.1 |
16 July 1965 | 69.5 | 41.2 | – | – | 65 | 50 | 9.9 | |
28 July 1970 | 56.5 | 33.0 | – | – | 60 | 60 | 5.8 | |
24 July 1971 | 79.4 | 53.4 | – | – | 62 | 45 | 8.4 | |
29 July 1975 | – | 32.5 | 9.6 | 3.8 | 81 | 40 | 9.8 | |
7 July 1977 | – | 39.4 | 7.6 | 1.6 | 65 | 30 | 5.8 | |
15 July 1978 | 79.5 | 66.7 | 36.4 | 17.0 | Viscous | 90 | 50 | 13.5 |
15 August 1979 | 48.0 | 30.8 | – | 6.1 | Diluted | 42 | 30 | 3.8 |
26 July 1980 | – | – | – | 4.4 | 65 | 20 | 5.4 | |
12 August 1981 | – | 53.8 | 9.5 | 2.1 | 90 | 25 | 6.7 | |
19 July 1983 | – | 31.3 | 8.1 | 1.7 | 50 | 15 | 2.3 | |
11 July 2013 | 109.6 | 54.3 | 6.4 | – | Viscous | 1745 | 30 | 78.2 |
5 July 2017 | – | 18.6 | – | – | – | – | 18.5 | |
22 August 2018 | – | 33.4 | – | – | – | – | 11.5 | |
20 August 2019 | – | 28.1 | – | – | – | – | 15 |
Data Source, Accuracy | Type | Time | Acquisition Data |
---|---|---|---|
ALOS PALSAR, 12.5 m | DEM | 2011 | https://search.asf.alaska.edu/ accessed on July 2022. |
Landsat 4, 30 m | 2008/5–7 | https://earthexplorer.nasa.gov/ https://earthexplorer.usgs.gov/ http://www.gscloud.cn/ accessed on June 2023. | |
Spot-5, 2.5–3.2 m | 2008/6 | ||
Landsat 4, 30 m | 2010/8 | ||
Rapideye-3A, 5 m | 2012/7 | ||
Spot-5, 2.5–3.2 m | Remote sensing image | 2012/7 | |
Sentinel-2A, 10 m | 2015/7 | ||
Sentinel-2A, 10 m | 2018/8 | ||
Sentinel-2A, 10 m | 2019/9 | ||
Gaofen-1, 1 m | 2019/8 | Beijing Digital Space Co., Ltd. (Beijing, China) accessed on June 2023. | |
LAADS DAAC, 250 m | MODIS Data | 2007–2020 | https://ladsweb.modaps.eosdis.nasa.gov/search/ accessed on September 2023. |
Land Use Type | C Value |
---|---|
Grassland | 0.150 |
Alluvial fan | 0.651 |
Farmland | 0.250 |
Channel | 0.001 |
Landslide | 0.690 |
Built-up land | 0.020 |
Forest | 0.060 |
Barren land | 0.651 |
Level | Eco-Stability Index | Degree of Eco-Stability | Description |
---|---|---|---|
Ⅰ | 0–0.2 | Extremely unstable | Vegetation is sparse and sediment connectivity is high in the evaluation unit, NDVI: 0–0.2, and IC: 0.8–1. |
Ⅱ | 0.2–0.4 | Unstable | NDVI: 0.2–0.4, and IC: 0.6–0.8. |
Ⅲ | 0.4–0.6 | Substable | NDVI: 0.4–0.6, and IC: 0.4–0.6. |
Ⅳ | 0.6–0.8 | Stable | NDVI: 0.6–0.8, and IC: 0.2–0.4. |
Ⅴ | 0.8–1 | Extremely stable | NDVI: 0.8–1, and IC: 0–0.2. |
Year | Type | 2013 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Grassland | Alluvial Fan | Farmland | Channel | Landslide | Built-Up Land | Forest | Barren Land | Total | ||
2008 | Grassland | 1.82 | 1.04 | 0.28 | 0.12 | 0.20 | 0.00 | 2.07 | 0.08 | 5.61 |
Alluvial fan | 1.45 | 5.15 | 0.00 | 0.01 | 0.05 | 0.00 | 0.06 | 0.18 | 6.90 | |
Farmland | 0.28 | 0.00 | 0.61 | 0.07 | 0.01 | 0.08 | 0.22 | 0.05 | 1.31 | |
Channel | 0.00 | 0.00 | 0.00 | 0.25 | 0.04 | 0.01 | 0.18 | 0.00 | 0.48 | |
Landslide | 0.20 | 0.00 | 0.00 | 0.40 | 1.30 | 0.01 | 3.24 | 0.10 | 5.24 | |
Built-up land | 0.00 | 0.00 | 0.01 | 0.20 | 0.00 | 0.09 | 0.00 | 0.00 | 0.31 | |
Forest | 1.12 | 0.07 | 0.04 | 0.99 | 2.07 | 0.00 | 23.18 | 0.16 | 27.63 | |
Barren land | 1.18 | 0.29 | 0.02 | 0.25 | 0.54 | 0.01 | 2.45 | 0.13 | 4.87 | |
Total | 6.05 | 6.57 | 0.96 | 2.29 | 4.21 | 0.20 | 31.40 | 0.70 | 52.36 |
Year | Type | 2019 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Grassland | Alluvial Fan | Farmland | Channel | Landslide | Built-Up Land | Forest | Barren Land | Total | ||
2013 | Grassland | 2.03 | 1.31 | 0.17 | 0.04 | 0.03 | 0.01 | 1.93 | 0.53 | 6.05 |
Alluvial fan | 0.36 | 5.51 | 0.00 | 0.00 | 0.04 | 0.00 | 0.20 | 0.44 | 6.57 | |
Farmland | 0.02 | 0.00 | 0.68 | 0.01 | 0.00 | 0.01 | 0.24 | 0.00 | 0.96 | |
Channel | 0.42 | 0.01 | 0.01 | 0.58 | 0.08 | 0.08 | 1.03 | 0.09 | 2.29 | |
Landslide | 0.63 | 0.06 | 0.00 | 0.02 | 0.89 | 0.00 | 1.98 | 0.62 | 4.21 | |
Built-up land | 0.02 | 0.00 | 0.00 | 0.02 | 0.00 | 0.13 | 0.02 | 0.01 | 0.20 | |
Forest | 3.34 | 0.10 | 0.04 | 0.13 | 0.23 | 0.01 | 27.04 | 0.53 | 31.40 | |
Barren land | 0.14 | 0.18 | 0.02 | 0.00 | 0.01 | 0.01 | 0.23 | 0.11 | 0.70 | |
Total | 6.97 | 7.17 | 0.92 | 0.80 | 1.28 | 0.25 | 32.66 | 2.33 | 52.36 |
Year | Type | 2019 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Grassland | Alluvial Fan | Farmland | Channel | Landslide | Built-Up Land | Forest | Barren Land | Total | ||
2008 | Grassland | 1.96 | 0.77 | 0.24 | 0.03 | 0.07 | 0.00 | 2.16 | 0.38 | 5.62 |
Alluvial fan | 0.41 | 6.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.37 | 6.90 | |
Farmland | 0.20 | 0.00 | 0.60 | 0.02 | 0.00 | 0.08 | 0.38 | 0.04 | 1.31 | |
Channel | 0.04 | 0.00 | 0.00 | 0.21 | 0.02 | 0.01 | 0.20 | 0.00 | 0.48 | |
Landslide | 0.73 | 0.04 | 0.00 | 0.20 | 0.43 | 0.01 | 3.52 | 0.31 | 5.24 | |
Built-up land | 0.05 | 0.00 | 0.00 | 0.12 | 0.00 | 0.13 | 0.01 | 0.00 | 0.31 | |
Forest | 2.44 | 0.01 | 0.05 | 0.17 | 0.56 | 0.00 | 23.62 | 0.78 | 27.63 | |
Barren land | 1.14 | 0.25 | 0.03 | 0.05 | 0.20 | 0.01 | 2.75 | 0.44 | 4.87 | |
Total | 6.97 | 7.17 | 0.92 | 0.80 | 1.28 | 0.25 | 32.66 | 2.33 | 52.36 |
Region | IC Values | ||||||||
---|---|---|---|---|---|---|---|---|---|
2008 | 2013 | 2019 | |||||||
Max | Min | Mean | Max | Min | Mean | Max | Min | Mean | |
Total region | −0.106 | −7.345 | −4.75 | −2.492 | −8.283 | −5.748 | −2.492 | −9.612 | −7.024 |
Tributary #1 | −0.106 | −5.849 | −4.21 | −2.492 | −6.935 | −5.280 | −2.492 | −8.145 | −6.449 |
Tributary #2 | −2.052 | −6.011 | −4.48 | −3.215 | −7.180 | −5.652 | −4.418 | −8.363 | −6.840 |
Tributary #3 | −2.298 | −6.721 | −4.70 | −3.358 | −7.812 | −5.791 | −4.647 | −9.048 | −7.011 |
Tributary #4 | −2.513 | −6.334 | −4.83 | −3.552 | −7.382 | −5.871 | −4.861 | −8.595 | −7.083 |
Tributary #5 | −2.493 | −6.366 | −4.79 | −3.480 | −7.346 | −5.756 | −4.802 | −8.654 | −7.065 |
Tributary #6 | −2.600 | −5.941 | −4.82 | −3.548 | −6.912 | −5.761 | −4.876 | −8.246 | −7.083 |
Tributary #7 | −2.980 | −6.115 | −4.81 | −3.922 | −7.117 | −5.758 | −5.267 | −8.411 | −7.096 |
Tributary #8 | −3.091 | −7.229 | −4.86 | −4.024 | −8.174 | −5.797 | −5.358 | −9.508 | −7.129 |
Tributary #9 | −3.020 | −7.345 | −4.89 | −3.948 | −8.283 | −5.814 | −5.281 | −9.612 | −7.142 |
Tributary #10 | −3.075 | −6.751 | −4.74 | −4.013 | −7.695 | −5.674 | −5.352 | −9.030 | −7.009 |
Tributary #11 | −2.683 | −6.011 | −4.82 | −3.621 | −6.926 | −5.758 | −4.958 | −8.259 | −7.094 |
Tributary #12 | −3.012 | −6.181 | −4.84 | −3.950 | −7.119 | −5.768 | −5.287 | −8.450 | −7.097 |
Tributary #13 | −2.740 | −6.218 | −4.74 | −3.783 | −7.270 | −5.793 | −5.084 | −8.504 | −7.032 |
Tributary #14 | −3.117 | −5.858 | −4.57 | −4.198 | −6.935 | −5.645 | −5.465 | −8.187 | −6.904 |
Tributary #15 | −2.888 | −5.512 | −4.58 | −3.995 | −6.614 | −5.684 | −5.242 | −7.855 | −6.925 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, X.; Hu, X.; Jing, Z.; Xu, W.; Xia, D.; Ding, G. Variation in Debris-Flow-Prone Areas with Ecosystem Stability: A Case Study of the Qipan Catchment in the Wenchuan Earthquake Region. Sustainability 2024, 16, 3855. https://doi.org/10.3390/su16093855
Zhan X, Hu X, Jing Z, Xu W, Xia D, Ding G. Variation in Debris-Flow-Prone Areas with Ecosystem Stability: A Case Study of the Qipan Catchment in the Wenchuan Earthquake Region. Sustainability. 2024; 16(9):3855. https://doi.org/10.3390/su16093855
Chicago/Turabian StyleZhan, Xiaoyu, Xudong Hu, Zexin Jing, Wennian Xu, Dong Xia, and Gujie Ding. 2024. "Variation in Debris-Flow-Prone Areas with Ecosystem Stability: A Case Study of the Qipan Catchment in the Wenchuan Earthquake Region" Sustainability 16, no. 9: 3855. https://doi.org/10.3390/su16093855