Production of a Wood–Plastic Composite with Wastes from Disposable Masks and Corrugated Cardboard: A Sustainable Post-Pandemic Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Production Method
2.3. Characterization Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaza, S.; Yao, L.C.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; Urban Development; World Bank Publications: Washington, DC, USA, 2018; ISBN 978-1-4648-1329-0. [Google Scholar]
- Li, C.H.; Mak, S.L.; Tang, W.F.; Wu, M.Y.; Lam, S.K. Development of IoT-Based Smart Recycling Machine to Collect the Wasted Non-Woven Fabric Face Mask (NFM). In Proceedings of the 2020 IEEE International Symposium on Product Compliance Engineering-Asia (ISPCE-CN), Chongqing, China, 6–8 November 2020. [Google Scholar] [CrossRef]
- IndexBox. World-Nonwoven Fabric-Market Analysis, Forecast, Size, Trends and Insights. Available online: https://www.indexbox.io/blog/global-nonwoven-fabric-market-2021-key-insights/ (accessed on 5 June 2024).
- Ardusso, M.; Forero-López, A.D.; Buzzi, N.S.; Spetter, C.V.; Fernández-Severini, M.D. COVID-19 Pandemic Repercussions on Plastic and Antiviral Polymeric Textile Causing Pollution on Beaches and Coasts of South America. Sci. Total Environ. 2021, 763, 144365. [Google Scholar] [CrossRef] [PubMed]
- Market Research Future. Global Non Woven Fabric Market Overview. Available online: https://www.marketresearchfuture.com/reports/nonwoven-fabrics-market-7459 (accessed on 5 June 2024).
- D’Amato, G.; Cecchi, L.; D’Amato, M.; Annesi-Maesano, I. Climate Change and Respiratory Diseases. Eur. Respir. Rev. 2014, 23, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Garbowski, T.; Gajewski, T.; Mrówczyński, D.; Jędrzejczak, R. Crushing of Single-Walled Corrugated Board During Converting: Experimental and Numerical Study. Energies 2021, 14, 3203. [Google Scholar] [CrossRef]
- Statista. Corrugated Board Production Worldwide from 2015 to 2020, with a Forecast to 2022. Available online: https://www.statista.com/statistics/1295161/production-volume-of-corrugated-board-worldwide/ (accessed on 5 June 2024).
- Filho, W.L.; Voronova, V.; Kloga, M.; Paço, A.; Minhas, A.; Salvia, A.L.; Ferreira, C.D.; Sivapalan, S. COVID-19 and Waste Production in Households: A Trend Analysis. Sci. Total Environ. 2021, 777, 145997. [Google Scholar] [CrossRef]
- Filho, W.L.; Salvia, A.L.; Paço, A.; Dias-Ferreira, C.; Neiva, S.; Rampasso, I.S.; Anholon, R.; de Vasconcelos, C.R.P.; Eustachio, J.H.P.P.; Jabbour, C.J.C. Assessing the Connections between COVID-19 and Waste Management in Brazil. Sustainability 2022, 14, 8083. [Google Scholar] [CrossRef]
- Lai, N.Y.G.; Kuah, A.T.H.; Kim, C.H.; Wong, K.H. Toward Sustainable Express Deliveries for Online Shopping: Reusing Packaging Materials through Reverse Logistics. Thunderbird Int. Bus. Rev. 2022, 64, 351–362. [Google Scholar] [CrossRef]
- Cardarelli, F. Materials Handbook: A Concise Desktop Reference, 3rd ed.; Springer: Cham, Switzerland, 2018; ISBN 9783319389257. [Google Scholar]
- Chun, K.S.; Subramaniam, V.; Yeng, C.M.; Meng, P.M.; Ratnam, C.T.; Yeow, T.K.; How, C.K. Wood Plastic Composites Made from Post-Used Polystyrene Foam and Agricultural Waste. J. Thermoplast. Compos. Mater. 2019, 32, 1455–1466. [Google Scholar] [CrossRef]
- Yadav, S.M.; Lubis, M.A.R.; Sihag, K. A Comprehensive Review on Process and Technological Aspects of Wood-Plastic Composites. J. Sylva Lestari 2021, 9, 329. [Google Scholar] [CrossRef]
- Zulkifli, N.I.; Samat, N.; Anuar, H.; Zainuddin, N. Mechanical Properties and Failure Modes of Recycled Polypropylene/Microcrystalline Cellulose Composites. Mater. Des. 2015, 69, 114–123. [Google Scholar] [CrossRef]
- Eskander, S.B.; Tawfik, M.E.; Tawfic, M.L. Mechanical, Flammability and Thermal Degradation Characteristics of Rice Straw Fiber-Recycled Polystyrene Foam Hard Wood Composites Incorporating Fire Retardants. J. Therm. Anal. Calorim. 2018, 132, 1115–1124. [Google Scholar] [CrossRef]
- Bochkov, I.; Varkale, M.; Zicans, J.; Franciszczak, P.; Bledzki, A.K. Polypropylene Composites Wear Resistance Properties Due to Spelt and Oat Grain Husks Short Fiber Preparation Technology. In Proceedings of the International Scientific Conference “BALTTRIB 2019”, Kaunas, Lithuania, 14–16 November 2019; Volume 1, pp. 1–6. [Google Scholar] [CrossRef]
- Klyosov, A.A. Wood-Plastic Composites, 1st ed.; Wiley-Interscience: Hoboken, NJ, USA, 2007; ISBN 9780470165928. [Google Scholar]
- Zhang, H.; Cui, Y.; Zhang, Z. Chemical Treatment of Wood Fiber and Its Reinforced Unsaturated Polyester Composites. J. Vinyl Addit. Technol. 2013, 19, 18–24. [Google Scholar] [CrossRef]
- Dos Santos, F.; Canto, L.; Da Silva, A.; Visconte, L.; Vasques, E. Processing and properties of plastic lumber. Thermosoftening Plast. 2020, 1, 1–16. [Google Scholar] [CrossRef]
- Mitaľová, Z.; Mitaľ, D.; Berladir, K. A Concise Review of the Components and Properties of Wood–Plastic Composites. Polymers 2024, 16, 1556. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Luo, Z.; Chen, H.; Chen, C.; Cai, D.; Qin, P.; Cao, H.; Tan, T. Wood Plastic Composites from the Waste Lignocellulosic Biomass Fibers of Bio-Fuels Processes: A Comparative Study on Mechanical Properties and Weathering Effects. Waste Biomass Valorization 2020, 11, 1701–1710. [Google Scholar] [CrossRef]
- Huang, L.; An, S.; Li, C.; Huang, C.; Wang, S.; Zhang, X.; Xu, M.; Chen, J.; Zhou, L. Performance of Waste-Paper/PETG Wood–Plastic Composites. AIP Adv. 2018, 8, 055204/11. [Google Scholar] [CrossRef]
- Basalp, D.; Tihminlioglu, F.; Sofuoglu, S.C.; Inal, F.; Sofuoglu, A. Utilization of Municipal Plastic and Wood Waste in Industrial Manufacturing of Wood Plastic Composites. Waste Biomass Valorization 2020, 11, 5419–5430. [Google Scholar] [CrossRef]
- Braskem. Data Sheet-Polypropylene H 503. Available online: https://www.braskem.com.br/busca-de-produtos?p=314 (accessed on 5 June 2024).
- ASTM D638–14; Standard Test Method for Tensile Properties of Plastics. American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 2014.
- ASTM D790-07; Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 2007.
- ASTM D570; Standard Test Method for Water Absorption of Plastics. American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 1998.
- Sanvezzo, P.B.; Branciforti, M.C. Recycling of Industrial Waste Based on Jute Fiber-Polypropylene: Manufacture of Sustainable Fiber-Reinforced Polymer Composites and Their Characterization before and after Accelerated Aging. Ind. Crops Prod. 2021, 168, 113568. [Google Scholar] [CrossRef]
- Kaymakci, A.; Ayrilmis, N. Influence of Repeated Injection Molding Processing on Some Mechanical and Thermal Properties of Wood Plastic Composites. Bioresources 2016, 11, 10112–10121. [Google Scholar] [CrossRef]
- Viksne, A.; Rence, L. Effect of Re-Compounding on the Properties of Polypropylene/Wood Flour Composites. Prog. Rubber Plast. Recycl. Technol. 2008, 24, 153–169. [Google Scholar] [CrossRef]
- Cabral, S.C.; Silva, A.J.; Soares, É.B.; Araújo, R.F.; Miranda, Y.M.S. Comparative Characteristics of Plastic Wood With Conventional Wood. Voices Val. J. 2016, 10, 1–20. (In Portuguese) [Google Scholar]
- Blanco-Flórez, J.; da Silva, J.R.M.; Braga, P.P.d.C.; Lima, J.T.; Trugilho, P.F. Service Simulation of Young Tectona grandis Wood Flooring. Matéria J. 2015, 20, 1048–1060. (In Portuguese) [Google Scholar] [CrossRef]
- Mallet, J.; Kalyanasundaram, S.; Evans, P. Digital Image Correlation of Strains at Profiled Wood Surfaces Exposed to Wetting and Drying. J. Imaging 2018, 4, 38. [Google Scholar] [CrossRef]
- São Paulo State Institute of Technological Research IPT. Technical Information About Brazilian and Planted Timber. Available online: https://madeiras.ipt.br/ (accessed on 11 September 2024). (In Portuguese).
- Stark, N.M. Wood Fiber Derived from Scrap Pallets Used in Polypropylene Composites. For. Prod. J. 1999, 49, 39–46. [Google Scholar]
- Adhikary, K.B.; Pang, S.; Staiger, M.P. Dimensional Stability and Mechanical Behaviour of Wood–Plastic Composites Based on Recycled and Virgin High-Density Polyethylene (HDPE). Compos. B Eng. 2008, 39, 807–815. [Google Scholar] [CrossRef]
- Ou, R.; Zhao, H.; Sui, S.; Song, Y.; Wang, Q. Reinforcing Effects of Kevlar Fiber on the Mechanical Properties of Wood-Flour/High-Density-Polyethylene Composites. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1272–1278. [Google Scholar] [CrossRef]
- Brischke, C.; Alfredsen, G. Wood-Water Relationships and Their Role for Wood Susceptibility to Fungal Decay. Appl. Microbiol. Biotechnol. 2020, 104, 3781–3795. [Google Scholar] [CrossRef]
- Ogutuga, S.O.; Olaoye, K.O.; Areghan, S.E.; Okanlawon, F.B. Water Absorption Characteristics of Two Rattan Species (Laccosperma secundiflorum and Eremospatha macrocarpa) from Fresh Water Swamp, Lagos State and Rain Forest, Edo State, Nigeria. J. Appl. Sci. Environ. Manag. 2023, 27, 691–695. [Google Scholar] [CrossRef]
- Kozakiewicz, P.; Tymendorf, Ł.; Trzciński, G. Importance of the Moisture Content of Large-Sized Scots Pine (Pinus Sylvestris L.) roundwood in its road transport. Forests 2021, 12, 879. [Google Scholar] [CrossRef]
- Soury, E.; Behravesh, A.; Jam, N.J.; Haghtalab, A. An Experimental Investigation on Surface Quality and Water Absorption of Extruded Wood–Plastic Composite. J. Thermoplast. Compos. Mater. 2013, 26, 680–698. [Google Scholar] [CrossRef]
- Martinez Lopez, Y.; Paes, J.B.; Gustave, D.; Gonçalves, F.G.; Méndez, F.C.; Theodoro Nantet, A.C. Production of Wood-Plastic Composites Using Cedrela Odorata Sawdust Waste and Recycled Thermoplastics Mixture from Post-Consumer Products-A Sustainable Approach for Cleaner Production in Cuba. J. Clean. Prod. 2020, 244, 118723. [Google Scholar] [CrossRef]
- Ornaghi, H.L.; Ornaghi, F.G.; Neves, R.M.; Monticeli, F.; Bianchi, O. Mechanisms Involved in Thermal Degradation of Lignocellulosic Fibers: A Survey Based on Chemical Composition. Cellulose 2020, 27, 4949–4961. [Google Scholar] [CrossRef]
- Mourad, A.-H.I. Thermo-Mechanical Characteristics of Thermally Aged Polyethylene/Polypropylene Blends. Mater. Des. 2010, 31, 918–929. [Google Scholar] [CrossRef]
- Yang, W.; Xie, Y.; Wang, H.; Liu, B.; Wang, Q. Impacts of Freezing and Thermal Treatments on Dimensional and Mechanical Properties of Wood Flour-HDPE Composite. J. For. Res. 2013, 24, 143–147. [Google Scholar] [CrossRef]
- Huang, H.B.; Du, H.H.; Wang, W.H.; Wang, H.G. Effects of the Size of Wood Flour on Mechanical Properties of Wood-Plastic Composites. Adv. Mat. Res. 2011, 393, 76–79. [Google Scholar] [CrossRef]
- Zong, G.; Hao, X.; Hao, J.; Tang, W.; Fang, Y.; Ou, R.; Wang, Q. High-Strength, Lightweight, Co-Extruded Wood Flour-Polyvinyl Chloride/Lumber Composites: Effects of Wood Content in Shell Layer on Mechanical Properties, Creep Resistance, and Dimensional Stability. J. Clean. Prod. 2020, 244, 118860. [Google Scholar] [CrossRef]
- Spoerk, M.; Arbeiter, F.; Raguž, I.; Holzer, C.; Gonzalez-Gutierrez, J. Mechanical Recyclability of Polypropylene Composites Produced by Material Extrusion-Based Additive Manufacturing. Polymers 2019, 11, 1318. [Google Scholar] [CrossRef]
- Luna, C.B.B.; da Silva, W.A.; Araújo, E.M.; da Silva, L.J.M.D.; de Melo, J.B.d.C.A.; Wellen, R.M.R. From Waste to Potential Reuse: Mixtures of Polypropylene/Recycled Copolymer Polypropylene from Industrial Containers: Seeking Sustainable Materials. Sustainability 2022, 14, 6509. [Google Scholar] [CrossRef]
Composite | vPP 1 (wt %) | wNWF 1 (wt %) | wCC 1 (wt %) |
---|---|---|---|
eWPC 2 | 45 | 45 | 10 |
hWPC 2 | 45 | 45 | 10 |
vWPC 2 | 90 | 0 | 10 |
Composite | Water Absorption (%) | Swelling (%) |
---|---|---|
eWPC | 0.230 (0.110) * | 0.000 (0.000) * |
hWPC | 1.668 (0.285) * | 0.000 (0.000) * |
vWPC | 0.207 (0.095) * | 2.062 (2.406) * |
cWPC | 0.292 (0.135) * | 0.357 (0.714) * |
Sample | TStart (°C) | TEnd (°C) |
---|---|---|
vPP | 233 | 376 |
wCC | 217 | 334 |
wNWF | 224 | 392 |
eWPC | 227 | 365 |
hWPC | 220 | 371 |
vWPC | 232 | 366 |
cWPC | 203 | 442 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, A.R.d.; Silva, R.N.; Santos, N.M.d.; Vieira, M.F.C.; Patrício, P.S.d.O.; Fontes, W.C. Production of a Wood–Plastic Composite with Wastes from Disposable Masks and Corrugated Cardboard: A Sustainable Post-Pandemic Approach. Sustainability 2024, 16, 9726. https://doi.org/10.3390/su16229726
Santos ARd, Silva RN, Santos NMd, Vieira MFC, Patrício PSdO, Fontes WC. Production of a Wood–Plastic Composite with Wastes from Disposable Masks and Corrugated Cardboard: A Sustainable Post-Pandemic Approach. Sustainability. 2024; 16(22):9726. https://doi.org/10.3390/su16229726
Chicago/Turabian StyleSantos, Anderson Ravik dos, Rivelino Neri Silva, Nayara Mendes dos Santos, Mariana Fernandes Costa Vieira, Patrícia Santiago de Oliveira Patrício, and Wanna Carvalho Fontes. 2024. "Production of a Wood–Plastic Composite with Wastes from Disposable Masks and Corrugated Cardboard: A Sustainable Post-Pandemic Approach" Sustainability 16, no. 22: 9726. https://doi.org/10.3390/su16229726
APA StyleSantos, A. R. d., Silva, R. N., Santos, N. M. d., Vieira, M. F. C., Patrício, P. S. d. O., & Fontes, W. C. (2024). Production of a Wood–Plastic Composite with Wastes from Disposable Masks and Corrugated Cardboard: A Sustainable Post-Pandemic Approach. Sustainability, 16(22), 9726. https://doi.org/10.3390/su16229726