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Abstract: The Huaihe River Basin is an important ecological function conservation area in China,
and it is also an important production area for national food, energy, minerals, and manufacturing.
The groundwater storage and groundwater drought in this region are of great significance for
ecological maintenance and water resources management. In this study, based on GRACE data and
GLDAS data, a dynamic calculation method for groundwater storage in the Huaihe River Basin was
developed, and a groundwater drought index (GRACE-GDI) was derived. By coupling GRACE-GDI
with run theory, the quantitative identification of groundwater drought events, as well as their
duration, intensity, and other characteristics within the basin, was achieved. The spatiotemporal
changes in groundwater storage and groundwater drought in the Huaihe River Basin were analyzed
using the developed method. The results showed that GRACE data are highly applicable in the
Huaihe River Basin and is capable of capturing the spatiotemporal variations in groundwater storage
in this region. Over the study period, mainly affected by rainfall, the terrestrial water storage and
surface water storage in the Huaihe River Basin showed a decreasing trend, while groundwater
storage showed a slight increasing trend. The duration of groundwater drought events in the basin
ranged from 78 to 152 months, with an intensity of 82.77 to 104.4. The duration of drought gradually
increased from north to south, while the intensity increased from south to north.

Keywords: GRACE data; drought index; trend analysis; water storage anomalies; groundwater
drought

1. Introduction

Drought is a natural environmental disaster that intersects with various fields, in-
cluding meteorology, environmental science, ecology, hydrology, agriculture, and geology,
thereby attracting the attention of numerous scholars. Due to its extensive impact range,
prolonged duration, and significant economic losses, drought adversely affects both eco-
nomic growth and social stability [1]. Groundwater, a crucial component of the water cycle,
plays a vital role in global and regional hydrology, climate change, and biogeochemical
cycles. With its good water quality and stable supply conditions, groundwater serves as an
essential source of freshwater for irrigated agriculture, industrial production, and urban
life in many parts of the world [2].

Groundwater drought, a subset of hydrological drought, is primarily characterized
by the sustained impact of reduced groundwater recharge or increased extraction, leading
to a continuous decline in groundwater levels and a reduction in subsurface runoff [3].
This phenomenon can adversely affect residential water use, agricultural irrigation, and
industrial production, as well as surface water bodies and ecosystems that depend on
groundwater recharge. Unlike other forms of hydrological drought, groundwater drought
is particularly susceptible to prolonged durations due to the extended time required for
groundwater recharge and restoration [4]. Early stages of groundwater drought are often
difficult to detect, thereby only garnering widespread attention when significant impacts
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on human life are exhibited [5]. Persistent groundwater drought can deplete surface and
groundwater resources, resulting in secondary disasters such as ground subsidence, soil
salinization, and seawater intrusion [6].

The Gravity Recovery and Climate Experiment (GRACE) gravity satellite, developed in
recent years, infers groundwater changes by observing variations in the Earth’s gravity field,
offering a new method for effectively monitoring global groundwater drought. This technol-
ogy is particularly useful in regions with limited data and sparsely distributed monitoring
stations, as it compensates for errors associated with interpolation using ground-based
stations. Consequently, GRACE has been widely employed in groundwater storage and
drought monitoring. Moghim et al. [7] used the GRACE satellite data to estimate water stor-
age changes in Iran, finding that water storage in the northern regions exhibited significant
fluctuations and a notable decreasing trend. Sediqi et al. [8] utilized the GRACE data to ana-
lyze changes in terrestrial water storage in Afghanistan and assessed the spatial distribution
of water resource sustainability. Their study revealed that water resource sustainability was
higher in the northeast and southwest regions, while it was lower in the south and central
regions. Several scholars have leveraged the GRACE data to explore groundwater drought.
For instance, Thomas et al. [9] assessed groundwater drought in California’s Central Valley
using the GRACE satellite data. They constructed a framework reflecting local groundwater
drought conditions, considering both complex human activities and natural factors. Ad-
ditionally, they proposed an improved total water storage anomaly index (MTSDI) based
on GRACE observations, discovering that the drought events identified by MTSDI closely
matched actual drought conditions. Hosseini-Moghari et al. [10] used the MTSDI to analyze
drought conditions in the Markazi Basin of Iran from 2002 to 2016. The results showed that
the MTSDI index demonstrated higher accuracy in detecting drought events compared to
the commonly used drought monitoring indices, the standardized precipitation index (SPI)
and the standardized precipitation evapotranspiration index (SPEI). The MTSDI records
were highly consistent with other indices and exhibited a strong correlation, suggesting the
significant potential of the GRACE data for developing drought monitoring capabilities.
Kumar et al. [11] calculated the groundwater drought index (GGDI) for four basins in India
from 2003 to 2016 and analyzed the characteristics of groundwater drought. The results
indicated that the Cauvery River Basin experienced a severe drought from 2012 to 2015,
with a duration of 42 months and a severity of −27. The Godavari River Basin showed a
positive trend at both monthly and seasonal scales, while the other three basins exhibited
an opposite trend. Many studies in China have also demonstrated GRACE’s capability
in drought monitoring, such as applications to the Yangtze River Basin [12], the North
China Plain [13–15] and Southwest China [16,17]. However, research specifically focusing
on groundwater drought remains relatively scarce.

However, there are still some problems to be solved in the application of GRACE data.
The lack of some GRACE data and the low spatial resolution are the main problems faced by
scholars in their research. The applicability of these data in small and medium-scale areas
still needs further research. Therefore, it is necessary to adopt practical methods to improve
the spatiotemporal resolution of GRACE data. The changes in groundwater reserves based
on the water balance equation may have certain errors in humid and semi-humid areas and
high mountainous plateau areas. In areas with severe water reserve losses, the drought
index based on GRACE data can be more severe in the middle and late stages of the study
period than at the beginning, but this is not caused by meteorological drought, but mostly
due to human activities, such as excessive groundwater extraction and afforestation.

To address the general research gap on quantifying spatiotemporal variations in
groundwater drought in the Huaihe River Basin, the first objective of this study was to
couple GRACE data and the Global Land Data Assimilation System (GLDAS) to describe
spatiotemporal variabilities in the groundwater storage of the Huaihe River Basin. The
second objective was to explore the dynamics of groundwater drought in the Huaihe
River Basin and their associated controls in relation to hydrometeorological conditions and
basin characteristics.
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2. Materials and Methods
2.1. Study Area

As shown in Figure 1, the Huaihe River Basin is located in eastern China, spanning
from 111◦55′ E to 121◦20′ E and from 30◦55′ N to 36◦20′ N. The Huaihe River flows through
the provinces of Henan, Anhui, and Jiangsu. Additionally, the basin includes parts of
southern Shandong and northeastern Hubei provinces, covering a total area of 270,000 km².
The basin is divided into two main river systems by the former course of the Yellow River:
The Huaihe River system, covering 190,000 km², and the Yi-Shu-Si River system, covering
80,000 km². The Huaihe River Basin is situated in the transitional zone between northern
and southern climates in China. The region north of the Huaihe River falls within the
warm temperate zone, while the region south of the Huaihe River belongs to the northern
subtropical zone. The climate is generally mild, with an annual average temperature
ranging from 11 ◦C to 16 ◦C, increasing from north to south and from the coast to the
inland areas. The long-term average annual precipitation in the Huaihe River Basin is
approximately 920 mm, with rainfall decreasing from south to north. Precipitation is higher
in mountainous areas than in plains, and greater along the coast than inland. The climate
characteristics of the basin include dry and less rainy winters and springs, hot and rainy
summers and autumns, and rapid transitions between cold and warm periods as well as
between drought and flooding [18,19]

 
Figure 1. Location map of the study area (Huaihe River Basin).

2.2. Materials
2.2.1. GRACE and GRACE FO RL06 Mascon Gravity Satellite Data

In this study, GRACE and GRACE-FO RL06 Mascon data products were utilized. The
GRACE data are the Mascons provided by the Center for Space Research (CSR) at the Uni-
versity of Texas at Austin (http://www2.csr.utexas.edu/grace/, accessed on 1 April 2023).
The GRACE Mascon product incorporates satellite laser ranging instead of C20 coefficients,
first-order coefficient corrections, glacier equalization adjustments, and a specific correction
factor for each grid. Compared to traditional spherical harmonic coefficients, the Mascon
product, as a lattice data product, enhances signal resolution and reduces signal leakage er-
ror. Consequently, this study assessed water storage anomalies using GRACE and GRACE-
FO RL06 Mascon data products to analyze drought change characteristics in the Huaihe

http://www2.csr.utexas.edu/grace/
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River Basin. The GRACE RL06 Mascon data covers the period from April 2002 to June 2017,
while the GRACE-FO RL06 Mascon data spans from June 2018 to December 2020. Some of
the missing time series were interpolated using cubic spline interpolation. Additionally, the
data gap between July 2017 and May 2018, resulting from the transition between GRACE
and GRACE-FO satellites, was addressed using a terrestrial water storage change dataset
based on Chinese Regional Precipitation Reconstruction. This dataset, published by the
National Tibetan Plateau Data Center, was reconstructed by establishing a precipitation
reconstruction model that incorporates seasonal and trend terms of the Mascon data. This
approach significantly improved data quality [20,21].

2.2.2. GLDAS-Noah Data

The Global Land Data Assimilation System (GLDAS) data (https://ldas.gsfc.nasa.
gov/gldas/, accessed on 1 May 2023) are collaboratively developed by the Goddard Space
Flight Center (GSFC) and the National Centers for Environmental Prediction (NCEP) using
data assimilation techniques. This system integrates ground observations and satellite
remote sensing data to drive land surface models. The data used in this study origi-
nates from GLDAS with a spatial resolution of 0.25◦ × 0.25◦, specifically utilizing the
output from the Noah model at a temporal resolution of one month. Data spanning from
April 2002 to December 2022 were selected for analysis. Soil water content includes four
layers extending to a depth of 2 m below the surface. Given that the Mascon data represent
changes relative to the average value from January 2004 to December 2009, the GLDAS data
were processed similarly. This involved subtracting the month-by-month surface water
storage from the average surface water storage between January 2004 and December 2009
to calculate monthly changes in surface water storage.

2.3. Methods
2.3.1. Groundwater Storage Anomalies

Terrestrial water storage encompasses various components, including surface water,
groundwater, soil water, snow and ice, biological water, and canopy water. However, some
of these components are challenging to measure [22] and thus are not considered in the
calculation [1,22]. Consequently, the groundwater storage anomalies can be determined
using the following equation:

GWSA = TWSA − SMSA − SWESA − CWSA (1)

where GWSA is the groundwater storage anomalies; TWSA is the terrestrial water storage
anomalies, obtained by inversion of GRACE satellite data, the mascon solutions with all the
appropriate corrections applied (GAD, GIA, C20, C30, degree1, etc.) in equi-angular grid,
the product requires no prior data preprocessing; SMSA is the soil water storage anomalies;
SWESA is the snow water equivalent anomalies; CWSA is the plant canopy water storage
anomalies. The units of all variables in Equation (1) are centimeters. SMSA, SWESA, and
CWSA were obtained from the GLDAS Noah model.

2.3.2. Calculation of Groundwater Drought Index Based on GRACE Data

Zhao et al. [23] proposed a drought index called the GRACE drought severity index
(GRACE-DSI), which is based on the inversion of terrestrial water storage anomalies
derived from the GRACE data. This index provides a novel approach for evaluating
regional hydrological drought in areas with limited measured data. Additionally, Chu [1]
applied this method in Northwest China to calculate the groundwater drought index
(GRACE-GDI) and conducted drought studies. This study used the method of Chu [1] to
compute the drought index:

GRACE − GDIi,j =
(
GWSAi,j − GWSAj

)
/σj (2)

where i and j are the year and month, respectively; GWSAi,j is the groundwater storage
anomalies in month j of year i; GWSAj and σj are the mean and standard deviation of the
groundwater storage anomalies in month j, respectively.

https://ldas.gsfc.nasa.gov/gldas/
https://ldas.gsfc.nasa.gov/gldas/
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When GRACE-GDI ≤ −2.0, it indicates that extreme groundwater drought occur in
that month. When −2.0 < GRACE-GDI ≤ −1.5, it is classified as severe groundwater
drought. When −1.5 < GRACE-GDI ≤ −1.0, it indicates moderate groundwater drought.
When −1.0 < GRACE-GDI ≤ −0.5, it is considered mild groundwater drought. If GRACE-
GDI > −0.5, it indicates that no drought event occurs during that month.

2.3.3. Theil-Sen Slope Estimation

The Theil-Sen slope method, a nonparametric test introduced and developed by
Sen [24], is widely used to estimate trend changes in time series. Nan et al. [25] utilized this
method to analyze the spatiotemporal distribution characteristics of precipitation in the
Chongqing area from 1965 to 2014. Yuan et al. [26] analyzed the spatiotemporal variations
in vegetation cover in the Yellow River Basin from 2000 to 2010. The slope was calculated
using the following formula:

Qi =
(
xj − xk

)
/(j − k) i = 1, 2, · · · , N (3)

where xj, xk are the time series values of the jth and kth samples, respectively, with j > k and
N = n(n − 1)/2.

Arranging the Qi values from smallest to largest, the median Theil-Sen slope is:

Qmed =

{
Q(N+1)/2 N is an odd number(

Q(N+2)/2 + QN/2

)
/2 N is an even number

(4)

N represents the total number of data points for each grid cell. The metric Qmed reflects
the degree of skewness in the time series trend. A value greater than 0 indicates an upward
trend in the sample, while a value less than 0 signifies a downward trend.

2.3.4. Mann-Kendall Trend Test

The Mann-Kendall trend test [27] was employed to assess the significance of the
temporal trend in groundwater storage in the Huaihe River Basin. Pathak et al. [28]
analyzed groundwater levels in the Ghataprabha Basin of India and assessed regional
groundwater drought. Thomas et al. [29] used GRACE data and applied the Mann-Kendall
(M-K) trend analysis to examine groundwater depletion caused by climate factors.

The test results were categorized into four grades based on significance: (1) extremely
significant change with |Z| > 2.58; (2) significant change with 1.96 < |Z| ≤ 2.58; (3) weakly
significant change with 1.65 < |Z| ≤ 1.96; (4) no significant change with 0 < |Z| ≤ 1.65.

2.3.5. Drought Identification

The run theory is a method for analyzing time series. It has been applied to which
can be applied to drought event recognition, such as applications in Loess Plateau [30] and
China [31]. In this study, multi-threshold run analysis was conducted to identify drought.
The core of the multi-threshold method is to use multiple different thresholds to segment
and intercept the time series, and then extract and analyze the drought characteristic
variables. In practice, there are many ways to select the number of thresholds and different
thresholds. In this study, the three-threshold drought identification method [32] was used.
As shown in Figure 2, X represents the corresponding drought index. The first step requires
setting three different drought indices in advance: X1, X0, and X2, with X1 > X0 > X2. In
the second step, drought identification is carried out for the time series X using X0, and
four initial droughts (a, b, c, and d) can be identified. In the third step, if the drought events
b and c are adjacent to each other with a one-month interval, they should be merged into
one drought event. If the value of X between the two drought events is less than X1, b and
c are merged into one drought event. Otherwise, they remain separate. In the fourth step,
drought events with a duration of only one month are analyzed. If X is smaller than X2, it
is considered a drought event with a one-month duration. Otherwise, it is not considered
a drought event. Consequently, a is retained, and d is deleted. Through these steps, two
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drought events, a and b + c, are identified from the time series X, and their corresponding
drought durations and intensities can be calculated and extracted. The three-thresholds
selected in this study are: X1 = 0.5, X0 = 0, and X2 = −0.5.
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3. Results and Analysis
3.1. Trend Analysis of Terrestrial and Surface Water Storage Anomalies
3.1.1. Trend of Terrestrial Water Storage Anomalies

Figure 3 illustrates the trend of terrestrial water storage in the Huaihe River Basin
based on the M-K trend test. The results indicated that terrestrial water storage anomalies
generally exhibited a decreasing trend across most of the basin, affecting 86.87% of the
area. Within this region in a decline trend, significant and weakly significant decreases
accounted for 4.12% and a smaller portion of the basin area, respectively. In contrast, 12.17%
of the basin area showed no significant change, with these regions primarily situated in
the southern and eastern parts of the basin. Conversely, some areas of the Huaihe River
Basin, particularly in the southern and eastern regions, displayed an increasing trend in
water storage. This increasing trend affected only 0.96% of the basin area. Within this small
region, significant and weakly significant increases each represented 50% of the area with
an upward trend.

As shown in Table 1, the areas experiencing a decrease in terrestrial water storage
were predominantly located in the upper, middle, and Yi-Shu-Si River basins, comprising
77.55%, 90.86%, and 100% of these regions, respectively. Conversely, areas with no signifi-
cant change were distributed across the upper, middle, and lower reaches, representing
22.45%, 9.14%, and 44% of their respective areas, with the lower reaches having a higher
proportion of such areas. Increasing trends in water storage were observed primarily in the
downstream regions, accounting for only 8% of the downstream area.

Figure 4 illustrates the spatial distribution of the magnitude of change in terrestrial
water storage anomalies across the Huaihe River Basin. The figure reveals that 4.8% of
the basin area had a magnitude of change greater than 0, with all rates ranging between 0
and 0.26 cm/year. Conversely, 2.16% of the area exhibited a magnitude of change less than
−2 cm/year, 15.59% fell between −2 and −1 cm/year, and 77.46% was between −1 and
0 cm/year. This indicates that 95.2% of the basin area has a magnitude of change less than
0 cm/year. Specifically, 87.24% of the regions showed a magnitude of change between −1
and 0 cm/year, reflecting a slow decrease in surface water storage in the majority of these
areas. In contrast, regions with an increasing trend all exhibited a magnitude of change
between 0 and 0.26 cm/year, indicating a very gradual increase in surface water storage.
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3.1.2. Trend of Surface Water Storage Anomalies

Figure 5 presents the results of the Mann-Kendall trend test for surface water stor-
age anomalies in the Huaihe River Basin. The analysis indicated that 53.7% of the basin
area showed no significant change in surface water storage anomalies. Areas exhibit-
ing a decreasing trend account for 29.12% of the basin area, with 75.41% of this region
showing significant decreases and 24.59% showing weakly significant decreases. Con-
versely, 17.18% of the basin area displayed an increasing trend in surface water storage.
Within this area, 40.28% showed significant increases, while 59.72% showed weakly sig-
nificant increases. This indicated that the regions with increasing water storage trends
constituted 17.18% of the basin area, with a notable proportion demonstrating varying
levels of statistical significance.
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As detailed in Table 2, the areas experiencing a decrease in surface water storage were
primarily concentrated in the upper and middle reaches, comprising 53.07% and 45.68% of
these respective areas. Regions with no significant change were distributed throughout
the entire basin, representing 46.94% of the upper reaches, 50.76% of the middle reaches,
56% of the lower reaches, and 60.16% of the Yi-Shu-Si River Basin. The areas showing an
increase in surface water storage were predominantly located in the lower reaches and the
Yi-Shu-Si River Basin, accounting for 44% and 34.96% of these respective regions.

Table 2. Statistics on the number of zonal grids for surface water storage trends.

Trend Upstream Middlestream Downstream Yi-Shu-Si River Total

Significant decrease 19 71 0 2 92

Weakly significant decrease 7 19 0 4 30

No significant change 23 100 28 74 225

Weakly significant increase 0 5 8 16 29

Significantly increased 0 2 14 27 43

Total 49 197 50 123 419

Figure 6 illustrates the spatial distribution of the magnitude of change of surface
water storage in the Huaihe River basin. The magnitude of change in the basin was as
follows: greater than 3 cm/year, accounting for 0.96%; between 2 and 3 cm/year, accounting
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for 4.57%; between 1 and 2 cm/year, accounting for 15.63%; and between 0 and 1 cm/year,
accounting for 23.08%. The total area with a magnitude of change greater than 0 cm/year
was 44.23%. On the other hand, the magnitude of change in the basin was less than
−4 cm/year, accounting for 0.72%; between −4 and −3 cm/year, accounting for 0.72%;
between −3 and −2 cm/year, accounting for 23.08%. The rate less than −4 cm/year
accounted for 0.72%; that between −4 and −3 cm/year accounted for 5.29%; that between
−3 and −2 cm/year accounted for 13.94%; that between −2 and −1 cm/year accounted
for 14.42%; and that between −1 and 0 cm/year accounted for 21.39%. The total area
of the magnitude of change less than 0 cm/year was 55.77%. Overall, most areas in the
basin experienced a magnitude of change less than 0 cm/year, indicating a decreasing
tendency for surface water storage. Additionally, 69.05% of the areas had a magnitude of
change between 0 and −2 cm/year, suggesting that most of the reduced areas had a slower
decrease rate in surface water storage. Conversely, in areas where the magnitude of change
was greater than 0 cm/year, 87.52% of the areas had a magnitude of change between 0 and
2 cm/year, indicating a slower increase rate in the most regions with an increasing trend. 

3 

 
  Figure 6. Magnitude of change in surface water storage anomalies.

3.2. Calculation and Trend Analysis of Groundwater Storage Anomalies
3.2.1. Calculation and Verification of Groundwater Storage Anomalies
Calculation of Groundwater Storage Anomalies

Figure 7 provides insights into the changes in water storage within the Huaihe River
Basin. Figure 7a shows the average terrestrial water storage changes over time. The analysis
revealed an overall decreasing trend in terrestrial water storage, with an annual magnitude
of change of −7.5 cm/year according to least-squares fitting. The highest recorded change
in terrestrial water storage anomalies was 10.26 cm in September 2005, while the lowest
was −22.56 cm in March 2020. The average monthly change in terrestrial water storage
anomalies peaked at 38.75 cm in July and reached its minimum at 17.65 cm in January.
Seasonal variations showed a maximum average change of 39.66 cm in summer and a
minimum of 22.38 cm in winter. Figure 7b illustrates groundwater storage changes. This
figure demonstrates an upward trend in groundwater storage, with an annual magnitude
of change of 4.02 cm/year based on least-squares fitting. The highest change in ground-
water storage anomalies was 16.40 cm in October 2017, and the lowest was −16.58 cm
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in February 2013. The average monthly change in groundwater storage anomalies was
highest in August at 27.7 cm and lowest in April at 17.08 cm. The seasonal average change
was greatest in autumn at 24.12 cm and smallest in winter at 18.55 cm. Overall, while
terrestrial water storage showed a declining trend, groundwater storage demonstrated an
increasing trend over the observed period.
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Verification of Groundwater Storage Anomalies

Due to the fact that changes in groundwater storage can be obtained by multiplying
water level changes by specific yield, water level dynamics can be used to characterize
the groundwater storage changes. As GRACE and GLDAS data reflect average conditions
at a grid scale, while well observation data reflect water level changes at specific points,
the results have a certain degree of uncertainty. However, at a large regional scale, this
method and its associated results can reflect the overall trend and changing characteristics
of groundwater storage. Therefore, validation of groundwater storage anomalies was car-
ried out using collected monthly groundwater level data from the Huaihe River Basin. The
process involved extracting groundwater storage change values from the GRACE Mascons
data corresponding to the latitude and longitude of the monitoring stations. These ex-
tracted data were then compared to the measured groundwater level data to determine the
correlation between the two datasets. Table 3 presents the Pearson correlation coefficients
between the measured groundwater level data and the GRACE-derived groundwater stor-
age changes. The results indicated a generally strong correlation, with coefficients reaching
up to 0.69. However, some stations exhibited lower correlation coefficients, which may
be attributed to factors such as excessive groundwater extraction due to human activities.
Figure 8 illustrates the consistency between groundwater storage changes derived from the
GRACE Mascons data and the trend observed in the measured groundwater levels. This
visual representation confirms that the GRACE-derived groundwater storage anomalies
closely aligned with the actual changes in groundwater storage as recorded by the monitor-
ing stations. The consistency between the GRACE data and the measured data confirmed
the high accuracy of the GRACE satellite data in reflecting groundwater storage variations
in the Huaihe River Basin.
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Table 3. Correlation coefficients between measured groundwater level data and groundwater stor-
age anomalies.

Station Code Station Name Longitude Latitude Correlation Coefficient

40177397 Guo Yukai Lankao No. 2 114.7651◦ E 34.82942◦ N 0.69

50261127 Guo Yuzhu Queshan No. 2 114.0482◦ E 32.59691◦ N 0.57

50261551 Guo Yuzhu Zhengyang No. 2 114.3159◦ E 32.47336◦ N 0.66

50261869 Guo Yuzhu Zhengyang No. 7 114.3269◦ E 32.38529◦ N 0.61

50370040 Aiting 115.2387◦ E 32.68268◦ N 0.61

50465040 Huoqiu 116.2962◦ E 32.36457◦ N 0.45

50465080 Hongji 116.1771◦ E 31.90755◦ N 0.45

50971160 Qiuji 118.314◦ E 32.83671◦ N 0.36

50971200 Taiping 118.4673◦ E 33.52594◦ N 0.48

51162049 Xiaogu Town 119.4256◦ E 35.33786◦ N 0.45

51162073 Taoge 119.3772◦ E 35.28697◦ N 0.68
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3.2.2. Trend Analysis of Groundwater Storage Anomalies

Figure 9 displays the results of the Mann–Kendall trend test for groundwater storage
anomalies in the Huaihe River Basin. The figure indicates a predominance of increasing
trends in groundwater storage across the basin. Specifically, 77.33% of the basin area
demonstrated an increasing trend. Of the increasing area, 89.2% showed a statistically
significant increase, while 10.8% exhibited a weakly significant increase. Conversely, 22.67%
of the basin area showed no significant change in groundwater storage anomalies. This
overall trend suggested that groundwater storage generally increased in the Huaihe River
Basin, with significant increases observed in the majority of the region.
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Table 4 details the distribution of groundwater storage anomalies within the Huaihe
River Basin. It shows that areas with no significant change were widespread, representing
53.06%, 22.84%, 34%, and 5.69% of the upper, middle, lower, and Yi-Shu-Si River basins,
respectively. Conversely, the areas exhibiting an increase in groundwater storage were
predominantly located in the middle and Yi-Shu-Si River basins, accounting for 77.16% and
94.31% of the area in the lower and Yi-Shu-Si River basins, respectively. This distribution
highlighted a significant regional variation in groundwater storage trends, with notable
increases primarily concentrated in the middle and Yi-Shu-Si River basins.

Table 4. Statistics on the number of grids in the zones of groundwater storage changes.

Trend Upstream Middlestream Downstream Yi-Shu-Si River Total

No significant change 26 45 17 7 95

Weakly significant increase 16 10 9 0 35

Significantly increased 7 142 24 116 289

Total 49 197 50 123 419

Significantly increased 0 0 2 0 2

Total 49 197 50 123 419

Figure 10 depicts the spatial distribution of groundwater storage change rates in the
Huaihe River Basin. The figure illustrates that the magnitude of change varied between
−0.05 and 0.94 cm/year, indicating a very gradual trend in both increasing and decreasing
groundwater storage across the basin. Notably, 98.3% of the basin area exhibited a mag-
nitude of change greater than 0 cm/year, with values ranging from 0 to 0.94 cm/year. In
contrast, only 1.7% of the basin area showed a magnitude of change less than 0 cm/year,
with values ranging between −0.05 and 0 cm/year. This distribution suggested that
groundwater storage across the basin generally increased, although the increase rate was
very modest.
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3.3. Groundwater Drought Characteristics
3.3.1. Drought Frequency, Total Duration, and Total Intensity

Figure 11 illustrates the spatial distributions of groundwater drought frequency, total
duration, and total intensity in the Huaihe River Basin from April 2002 to December 2022.
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  Figure 11. Groundwater drought characterization variables. (a) shows the total number of groundwa-
ter droughts, (b) shows the total duration of groundwater droughts, and (c) shows the total intensity
of groundwater droughts.
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As shown in Figure 11a, the frequency of groundwater drought events in the basin
ranged from 14 to 33 occurrences. The distribution revealed a gradual increase in drought
frequency from north to south. The middle and lower reaches of the basin experienced a
higher frequency of droughts, whereas the Yi-Shu-Si River Basin exhibited relatively fewer
drought events. Areas with more than 23 drought occurrences during the study period
were common, with some regions experiencing up to 30 droughts. This high frequency of
groundwater droughts exacerbated local water resource issues and posed risks to ecological
and environmental health, including soil degradation and reduced vegetation cover.

Figure 11b illustrates the total duration of groundwater droughts, which varied from
78 to 152 months, accounting for approximately 31.32% to 61.04% of the total study period of
249 months. The duration of droughts at the grid level within the basin showed significant
variation. Nearly half of the regions experienced droughts lasting over 110 months, with
substantial portions of these areas being under drought conditions for almost half of the
study period. The total duration of groundwater droughts increased from north to south,
following a similar spatial pattern to drought frequency. Longer drought durations were
primarily observed in the lower reaches, southern, and western parts of the middle reaches,
whereas the Yi-Shu-Si River Basin experienced shorter drought durations.

Figure 11c depicts the groundwater drought intensity, which ranged from 82.77 to
104.40. The intensity showed a gradual increase from the southern to the northern regions
of the basin. About half of the basin experienced drought intensities between 93 and 104.
Notably high drought intensities were observed in the western section of the middle
reaches, the eastern part of the lower reaches, and the western portion of the Yi-Shu-Si
River Basin.

3.3.2. Maximum Duration and Intensity

Figure 12 illustrates the spatial distribution of the maximum duration and intensity of
single groundwater drought events in the Huaihe River Basin.
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Figure 12a shows that the maximum duration of a single groundwater drought event
ranged from 10 to 42 months. The spatial variation in maximum drought duration was
significant. Areas with drought durations exceeding 40 months accounted for 1.21% of the
basin, those with durations between 30 and 40 months represented 0.24%, durations from
20 to 30 months covered 38.41%, and durations from 10 to 20 months comprised 60.14%.
Most areas experienced a maximum drought duration between 10 and 20 months, with the
western and northern parts of the basin exhibiting durations exceeding 20 months.

Figure 12b presents the maximum intensity of a single drought event, which ranged
from 9.63 to 28.80. The spatial distribution of maximum drought intensity was also notable.
Areas with an intensity greater than 20 account for 65.94% of the basin, while those with
intensity less than 20 made up 34.06%. Lower maximum intensity areas were predominantly
located in the eastern and southern parts of the basin.
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3.3.3. Average Drought Duration and Average Intensity

Figure 13 illustrates the average duration and intensity of groundwater droughts
across the Huaihe River Basin.
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In Figure 13a, the average drought duration ranged from 4.03 to 8.79 months. The
data showed a decreasing trend from north to south, with shorter durations in the southern
and central regions of the basin and in the western Yi-Shu-Si River Basin.

Figure 13b indicates that the average drought intensity ranged from 2.81 to 7.27,
also decreasing from north to south. The Yi-Shu-Si and Surabaya River basins display
relatively higher average drought intensity. The spatial distribution of the duration and
intensity of groundwater drought were similar, indicating a close relationship between the
two. Prolonged drought often leads to an increase in its intensity. This poses significant
challenges for regional ecological and water resources management.

4. Discussion

Changes in groundwater storage anomalies directly affect the occurrence and char-
acteristics of groundwater drought, forming a negative feedback loop. The reduction in
groundwater storage exacerbates the frequency and duration of drought, and the occurrence
of groundwater drought will further weaken the recovery capacity of groundwater storage.

4.1. Water Storage Anomalies

During the study period, both land water storage and surface water storage exhibited a
decreasing trend. The most probable explanation for this trend is the relatively low rainfall
in the study area during this period. According to the China Water and Drought Bulletin,
the Huaihe River Basin experienced five relatively severe drought events during the study
period. For example, the summer drought in 2014 was particularly severe, accompanied
by prolonged high temperatures, leading to a decrease in water levels in the upper and
middle reaches of the Huaihe River. Influenced by the high temperatures and relatively low
rainfall, the basin experienced strong evapotranspiration, exacerbating the drought. This
finding aligned with the research of Zhao et al. [33] and Li et al. [34]. Precipitation, runoff,
evapotranspiration, and human activities were found to influence terrestrial water storage.
Wu et al. [35] demonstrated that precipitation and runoff were the primary factors affecting
changes in terrestrial water storage, with a positive correlation between these variables
and water storage trends. Moreover, increasing evapotranspiration led to a more rapid
decline in water storage. Additionally, Feng et al. [36] highlighted that human activities
significantly impacted water storage. The high population density in the Huaihe River
Basin has led to overexploitation of water resources to meet various demands, further
contributing to the observed decline in terrestrial water storage.
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The overall trend of groundwater storage in the Huaihe River Basin exhibited a modest
increasing trend, distinct from the changing trends of terrestrial water and surface water
storage. This finding was consistent with that of Zhou et al. [37], though their study focused
solely on the period from 2003 to 2009. In contrast, Wang et al. [38] extended their analysis
of groundwater storage trends in the Huang-Huai-Hai region from 2003 to 2021, revealing
an increase in groundwater storage in the upper and middle reaches of the Huaihe River
Basin, while changes in the lower reaches remained relatively insignificant. Precipitation
infiltration was identified as the most direct factor influencing changes in groundwater
reserves. The Huaihe River Basin, characterized by abundant precipitation and significant
inter-annual variability, provides conditions conducive to groundwater recharge, facilitat-
ing the recovery of groundwater reserves. As a result, several studies have demonstrated a
notable correlation between groundwater reserve changes and precipitation trends.

4.2. Drought Characteristics

In general, groundwater drought in the Huaihe River Basin was characterized by
prolonged durations, low intensity, and minimal disaster impact in most regions. However,
some areas in the northern part of the basin experienced groundwater droughts with shorter
duration but higher intensity. Groundwater drought events developed relatively slowly,
making them challenging to detect and address. Consequently, groundwater droughts
were prone to evolving into long-term and high-intensity disasters. Meteorological drought,
being the initial phase of the drought transmission chain, often preceded other types of
droughts, which typically lagged behind meteorological drought. Yan et al. [39] analyzed
meteorological drought characteristics in the Huaihe River Basin using SPI. Their findings
indicated that the spatial distribution of drought frequency mirrored that of groundwater
drought and was generally greater. However, there was a discrepancy in the spatial
distribution of the average duration and intensity of the two types of droughts, with
groundwater drought exhibiting greater average duration and intensity compared to
meteorological drought. Therefore, while meteorological drought is strongly associated
with groundwater drought, the duration and intensity of groundwater drought generally
exceed those of meteorological drought.

4.3. Limitations and Recommendations

This study has several limitations. (1) Human activities, e.g., coal mining, reservoir
storage, large-scale construction, and inter-basin water transfers, may impact the Earth’s
gravitational field, thereby influencing the accuracy of the results. Additionally, the limited
number of observation wells (11 in total) used to validate the calculated groundwater
storage in this study may also affect the accuracy of the results. (2) Whist the results
here need further assessment and testing requires longer and more detailed (e.g., better
characterization of human actions) observation data, it is an encouraging step forward in
groundwater drought estimation in large river basins. (3) Based on the spatial resolution
of GRACE and GLDAS data, the grid resolution used for computation and analysis in
this study was 0.25◦ × 0.25◦. Consequently, the spatial distribution maps of related
groundwater storage and drought analysis exhibit a jagged appearance. However, at
large-scale basins such as the Huaihe River Basin, this resolution can capture the spatial
distribution of relevant information in the study area, and has a relatively minimal impact
on the overall accuracy of the results [40].

5. Conclusions

In this study the characteristics of groundwater drought in the Huaihe River Basin was
investigated. Due to the difficulty in obtaining large-scale groundwater data, the GRACE
data were used to retrieve changes in terrestrial water storage. Changes in surface water
storage were obtained from the GLDAS data, which were then used to derive groundwater
storage variations. Qualitative analysis was conducted on the trends of terrestrial, surface,
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and groundwater storage changes. A drought index was applied to study the characteristics
of groundwater drought. The main findings are as follows:

The majority of the basin showed a decreasing trend in terrestrial water storage, cover-
ing 86.87% of the basin area, while about 77.33% of the basin area showed an increasing
trend in groundwater storage. There were 14 to 33 groundwater drought events in Huaihe
basin over the study period, with a gradual increase in drought frequency from north to
south across the basin. The duration of groundwater drought showed significant spatial
variations with an increasing trend from north to south. Groundwater drought severity
exhibited a gradually increasing trend from south to north across the basin, with total
severity from 82.77 to 104.40. The variations in groundwater drought indicate the potential
risk to environment and water resources management in the Huaihe River Basin.
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