Provincial Carbon Emissions Efficiency and Its Influencing Factors in China
Abstract
:1. Introduction
2. Literature Review
2.1. The Measurement of Carbon Emission
2.2. Related Research on Carbon Emission Efficiency
2.3. Related Research on Influencing Factors of Carbon Emission
3. Evaluation of Chinese Provincial Carbon Emission Efficiency
3.1. Measurement of Chinese Provincial Carbon Emission
3.2. Single-Factor Carbon Emission Efficiency
3.2.1. Per Capita Carbon Emission
3.2.2. Carbon Intensity
3.3. Total-Factor Carbon Emission Efficiency
4. Measurement of Carbon Emission Efficiency under Meta-Frontier Model
4.1. Meta-Frontier Model
4.2. Carbon Emission Performance under Group Frontier
4.3. Technology Gap Ratio of Carbon Emissions (TGR)
5. Analysis of Factors Influencing Carbon Emissions Efficiency
5.1. Tobit Model
5.2. Regression Result and Analysis
6. Conclusions and Discussion
6.1. Main Conclusions
6.2. Discussion
7. Policy Suggestions
7.1. Optimization of Industrial Structure
7.2. Rational Utilization of Foreign Fund
7.3. Improvement of Energy Efficiency
7.4. The Strengthening of Government Intervention
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Herendeen, R.; Tanaka, J. Energy cost of living. Energy 1976, 1, 165–178. [Google Scholar] [CrossRef]
- Kok, R.; Benders, R.M.J.; Moll, H.C. Measuring the environmental load of household consumption using some methods based on input–output energy analysis: A comparison of methods and a discussion of results. Energy Policy 2006, 34, 2744–2761. [Google Scholar] [CrossRef]
- Lenzen, M. Primary energy and greenhouse gases embodied in Australian final consumption: An input–output analysis. Energy Policy 1998, 26, 495–506. [Google Scholar] [CrossRef]
- Cho, S.H.; Chae, C.U. A Study on Life Cycle CO2 Emissions of Low-Carbon Building in South Korea. Sustainability 2016, 8, 579. [Google Scholar] [CrossRef]
- Zhang, L.x.; Hu, Q.H.; Zahng, F. Input-output modeling for urban energy consumption in Beijing: Dynamics and comparison. PLoS ONE 2014, 9, e89850. [Google Scholar] [CrossRef]
- Li, F.; Song, Z.; Liu, W. China’s energy consumption under the global economic crisis: Decomposition and sectoral analysis. Energy Policy 2014, 64, 193–202. [Google Scholar] [CrossRef]
- Xi, W.; Hua, C.; Florig, H.K. Energy-saving implications from supply chain improvement: An exploratory study on China’s consumer goods retail system. Energy Policy 2016, 95, 411–420. [Google Scholar]
- Supasa, T.; Hsiau, S.S.; Lin, S.M.; Wongsapai, W.; Chang, K.F.; Wu, J.C. Sustainable energy and CO2 reduction policy in Thailand: An input–output approach from production- and consumption-based perspectives. Energy Sustain. Dev. 2017, 41, 36–48. [Google Scholar] [CrossRef]
- Rui, X.; Hu, G.; Zhang, Y.; Yu, L. Provincial transfers of enabled carbon emissions in China: A supply-side perspective. Energy Policy 2017, 107, 688–697. [Google Scholar]
- Ju, Y.Y.; Kiyoshi, F. Modeling the cost transmission mechanism of the emission trading scheme in China. Appl. Energy 2019, 236, 172–182. [Google Scholar] [CrossRef]
- Schimel. CO2 and Carbon Cycle in Climate Change 1994: Radioactive Forcing of Climate Change (IPCC); Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Kasperowicz, R. Economic growth and CO2 emissions: The ECM analysis. J. Int. Stud. 2015, 8, 91–98. [Google Scholar]
- Zimmermannová, J.; Čermák, P.; Novák, P. Ex-post analysis of the EU emission trading in year 2013 in the Czech Republic. Econ. Sociol. 2015, 8, 172–189. [Google Scholar] [CrossRef] [PubMed]
- Stavytskyy, A.; Kharlamova, G.; Giedraitis, V.; Šumskis, V. Estimating the interrelation between energy security and macroeconomic factors in European countries. J. Int. Stud. 2018, 11, 217–238. [Google Scholar] [CrossRef] [PubMed]
- Straczewska, I. System of environmental management as an element of bioeconomy development. J. Int. Stud. 2013, 6, 155–163. [Google Scholar] [CrossRef]
- Sun, J.W. The decrease of CO emission intensity is decarbonization at national and global levels. Energy Policy 2005, 33, 975–978. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W. A Brief History of a Long Collaboration in Developing Industrial Uses of Linear Programming. Oper. Res. 2002, 50, 35–41. [Google Scholar]
- Hu, J.L.; Wang, S.C. Total-factor energy efficiency of regions in China. Energy Policy 2006, 34, 3206–3217. [Google Scholar] [CrossRef]
- Forsund, F.R.; Kittelsen, S.A. Productivity development of Norwegian electricity distribution utilities. Resour. Energy Econ. 1998, 20, 207–224. [Google Scholar] [CrossRef]
- Wang, M.; Yu, L.; Liu, Y.; Yang, S.X. Assessing Multiple Pathways for Achieving China’s National Emissions Reduction Target. Sustainability 2018, 10, 2196. [Google Scholar] [CrossRef]
- Hayami, Y. Sources of agricultural productivity gap among selected countries. Am. J. Agric. Econ. 1969, 51, 564–575. [Google Scholar] [CrossRef]
- Battese, G.E.; Rao, D.P. Technology gap, efficiency, and a stochastic metafrontier function. Int. J. Bus. Econ. 2002, 1, 87–93. [Google Scholar]
- O’donnell, C.J.; Rao, D.P.; Battese, G.E. Metafrontier frameworks for the study of firm-level efficiencies and technology ratios. Empir. Econ. 2008, 34, 231–255. [Google Scholar] [CrossRef]
- Wu, L.; Kaneko, S.; Matsuoka, S. Dynamics of energy-related CO2 emissions in China during 1980 to 2002: The relative importance of energy supply-side and demand-side effects. Energy Policy 2006, 34, 3549–3572. [Google Scholar] [CrossRef]
- Galeotti, M.; Lanza, A. Desperately seeking environmental Kuznets. Environ. Model. Softw. 2005, 20, 1379–1388. [Google Scholar] [CrossRef]
- Su, B.; Ang, B.W.; Li, Y. Input-output and structural decomposition analysis of Singapore’s carbon emissions. Energy Policy 2017, 105, 484–492. [Google Scholar] [CrossRef]
- Morioka, R.; Nansai, K.; Tsuda, K. Role of linkage structures in supply chain for managing greenhouse gas emissions. J. Econ. Struct. 2018, 7, 7–26. [Google Scholar] [CrossRef]
- Hu, Y.; Yin, Z.; Ma, J.; Du, W.C.; Liu, D.H.; Sun, L.X. Determinants of GHG emissions for a municipal economy: Structural decomposition analysis of Chongqing. Appl. Energy 2017, 196, 162–169. [Google Scholar] [CrossRef]
- Wang, H.; Ang, B.W.; Su, B. A Multi-region Structural Decomposition Analysis of Global CO2 Emission Intensity. Ecol. Econ. 2017, 142, 163–176. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Bian, X.J.; Tan, W.; Song, J. The indirect energy consumption and CO2 emission caused by household consumption in China: An analysis based on the input–output method. J. Clean. Prod. 2017, 163, 69–83. [Google Scholar] [CrossRef]
- Shao, L.; Li, Y.; Feng, K.; Meng, J. Carbon emission imbalances and the structural paths of Chinese regions. Appl. Energy 2018, 215, 396–404. [Google Scholar] [CrossRef]
- Seiford, L.M.; Zhu, J. Modeling undesirable factors in efficiency evaluation. Eur. J. Oper. Res. 2002, 142, 16–20. [Google Scholar] [CrossRef]
- Dong, F.; Li, X.; Long, R.; Liu, X. Regional carbon emission performance in China according to a stochastic frontier model. Renew. Sustain. Energy Rev. 2013, 28, 525–530. [Google Scholar] [CrossRef]
- Huang, B.; Meng, L. Convergence of per capita carbon dioxide emissions in urban China: A spatio-temporal perspective. Appl. Geogr. 2013, 40, 21–29. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, K. Convergence of carbon dioxide emissions in different sectors in China. Energy 2014, 65, 605–611. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, P.; Huang, D.; Cai, C. Convergence behavior of carbon dioxide emissions in China. Econ. Model. 2014, 43, 75–80. [Google Scholar] [CrossRef]
- Zhang, M.; Mu, H.; Ning, Y.; Song, Y. Decomposition of energy-related CO2 emission over 1991–2006 in China. Ecol. Econ. 2009, 68, 2122–2128. [Google Scholar] [CrossRef]
- Luukkanen, J.; Kaivo-Oja, J. ASEAN tigers and sustainability of energy use-decomposition analysis of energy and CO2 efficiency dynamics. Energy Policy 2002, 30, 281–292. [Google Scholar] [CrossRef]
- Ang, B.W. Is the energy intensity a less useful indicator than the carbon factor in the study of climate change? Energy Econ. 1999, 32, 194–201. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, L.C.; Wu, G.; Tsai, H.-T.; Wei, Y.-M. Changes in carbon intensity in China: Empirical findings from 1980–2003. Ecol. Econ. 2007, 62, 683–691. [Google Scholar] [CrossRef]
- Stern, D.I.; Jotzo, F. How ambitious are China and India’s emissions intensity targets. Energy Policy 2010, 38, 6776–6783. [Google Scholar] [CrossRef]
District | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 2.08 | 1.98 | 2.02 | 2.19 | 2.16 | 2.11 | 2.12 | 1.99 | 1.92 | 1.83 | 1.65 | 1.58 | 1.54 |
Tianjin | 2.59 | 2.69 | 2.94 | 3.29 | 3.45 | 3.56 | 3.64 | 3.43 | 3.53 | 4.04 | 4.25 | 4.09 | 4.11 |
Hebei | 1.39 | 1.53 | 1.74 | 2.01 | 2.50 | 2.67 | 2.90 | 2.99 | 3.17 | 3.33 | 3.74 | 3.76 | 3.81 |
Shanxi | 3.23 | 3.92 | 4.40 | 4.63 | 5.08 | 5.61 | 5.81 | 5.55 | 5.46 | 5.60 | 6.14 | 6.37 | 6.40 |
Inner Monglia | 1.74 | 1.92 | 2.50 | 3.15 | 3.89 | 6.20 | 5.18 | 6.12 | 6.60 | 7.25 | 9.06 | 9.40 | 9.41 |
Liaoning | 2.41 | 2.49 | 2.71 | 2.99 | 3.36 | 3.59 | 3.84 | 3.99 | 4.11 | 4.47 | 4.74 | 4.87 | 4.89 |
Jilin | 1.30 | 1.35 | 1.53 | 1.63 | 1.89 | 1.99 | 2.10 | 2.36 | 2.41 | 2.67 | 3.07 | 3.03 | 3.04 |
Heilongjiang | 1.39 | 1.38 | 1.54 | 1.68 | 1.89 | 2.01 | 2.16 | 2.30 | 2.40 | 2.60 | 2.79 | 2.93 | 3.01 |
Shanghai | 3.11 | 3.17 | 3.36 | 3.38 | 3.47 | 3.31 | 3.23 | 3.28 | 3.15 | 3.29 | 3.30 | 3.18 | 3.20 |
Jiangsu | 0.99 | 1.06 | 1.19 | 1.45 | 1.87 | 2.01 | 2.15 | 2.16 | 2.24 | 2.48 | 2.84 | 2.88 | 2.91 |
Zhejiang | 1.05 | 1.20 | 1.33 | 1.53 | 1.76 | 1.95 | 2.14 | 2.16 | 2.22 | 2.29 | 2.41 | 2.33 | 2.35 |
Anhui | 0.75 | 0.78 | 0.87 | 0.89 | 0.96 | 1.03 | 1.15 | 1.31 | 1.44 | 1.57 | 1.69 | 1.74 | 1.77 |
Fujian | 0.57 | 0.67 | 0.79 | 0.90 | 1.10 | 1.21 | 1.36 | 1.41 | 1.64 | 1.77 | 2.00 | 1.97 | 2.01 |
Jiangxi | 0.50 | 0.52 | 0.61 | 0.74 | 0.81 | 0.87 | 0.95 | 0.96 | 0.99 | 1.15 | 1.26 | 1.25 | 1.22 |
Shandong | 0.99 | 1.08 | 1.31 | 1.66 | 2.28 | 2.59 | 2.80 | 2.95 | 3.05 | 3.32 | 3.48 | 3.63 | 3.71 |
Henan | 0.69 | 0.75 | 0.76 | 1.07 | 1.34 | 1.52 | 1.69 | 1.73 | 1.75 | 1.91 | 2.11 | 1.95 | 2.01 |
Hubei | 0.86 | 0.92 | 1.02 | 1.13 | 1.25 | 1.40 | 1.55 | 1.51 | 1.62 | 1.86 | 2.10 | 2.09 | 2.11 |
Hunan | 0.49 | 0.52 | 0.59 | 0.72 | 1.01 | 1.08 | 1.24 | 1.22 | 1.28 | 1.32 | 1.47 | 1.43 | 1.41 |
Guangdong | 0.83 | 0.88 | 0.98 | 1.10 | 1.22 | 1.31 | 1.38 | 1.39 | 1.44 | 1.58 | 1.69 | 1.65 | 1.72 |
Guangxi | 0.35 | 0.36 | 0.42 | 0.55 | 0.63 | 0.68 | 0.78 | 0.79 | 0.87 | 1.11 | 1.34 | 1.46 | 1.33 |
Hainan | 0.41 | 0.17 | 0.60 | 0.49 | 0.43 | 0.68 | 1.35 | 1.38 | 1.47 | 1.58 | 1.77 | 1.85 | 1.79 |
Chongqing | 0.65 | 0.74 | 0.89 | 0.98 | 1.07 | 1.16 | 1.26 | 1.30 | 1.39 | 1.52 | 1.72 | 1.66 | 1.77 |
Sichuan | 0.43 | 0.50 | 0.64 | 0.74 | 0.77 | 0.85 | 0.96 | 1.02 | 1.13 | 1.15 | 1.18 | 1.23 | 1.28 |
Guizhou | 0.83 | 0.87 | 1.10 | 1.28 | 1.33 | 1.55 | 1.70 | 1.75 | 1.96 | 2.00 | 2.34 | 2.42 | 2.33 |
Yunnan | 0.54 | 0.65 | 0.82 | 1.01 | 1.18 | 1.29 | 1.34 | 1.37 | 1.48 | 1.55 | 1.59 | 1.64 | 1.71 |
Shaanxi | 0.74 | 0.84 | 0.95 | 1.18 | 1.41 | 1.71 | 1.85 | 2.04 | 2.21 | 2.62 | 2.90 | 3.34 | 3.21 |
Gansu | 1.02 | 1.07 | 1.20 | 1.35 | 1.47 | 1.56 | 1.74 | 1.77 | 1.75 | 1.95 | 2.25 | 2.30 | 2.29 |
Qinghai | 0.91 | 0.88 | 0.97 | 1.01 | 1.36 | 1.57 | 1.85 | 1.94 | 1.95 | 1.93 | 2.22 | 2.61 | 2.57 |
Ningxia | 3.55 | 0.52 | 3.51 | 3.18 | 3.64 | 3.93 | 4.33 | 4.75 | 5.17 | 6.03 | 7.99 | 8.44 | 8.32 |
Xinjiang | 1.51 | 1.56 | 1.66 | 1.85 | 2.07 | 2.31 | 2.47 | 2.71 | 3.18 | 3.50 | 4.10 | 4.73 | 4.68 |
Nationwide | 1.01 | 1.08 | 1.24 | 1.43 | 1.66 | 1.85 | 1.98 | 2.05 | 2.16 | 2.35 | 2.60 | 2.65 | 2.71 |
District | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 1.07 | 0.94 | 0.88 | 0.86 | 0.78 | 0.70 | 0.65 | 0.59 | 0.54 | 0.49 | 0.42 | 0.39 | 0.38 |
Tianjin | 1.45 | 1.34 | 1.28 | 1.25 | 1.16 | 1.08 | 0.99 | 0.84 | 0.78 | 0.80 | 0.76 | 0.67 | 0.65 |
Hebei | 1.71 | 1.73 | 1.77 | 1.82 | 2.01 | 1.91 | 1.85 | 1.74 | 1.69 | 1.62 | 1.64 | 1.52 | 1.50 |
Shanxi | 5.90 | 6.39 | 6.29 | 5.78 | 5.67 | 5.58 | 5.01 | 4.44 | 4.16 | 3.90 | 3.81 | 3.61 | 3.55 |
Inner Monglia | 2.70 | 2.63 | 2.91 | 3.05 | 3.05 | 4.10 | 2.89 | 2.92 | 2.71 | 2.60 | 2.86 | 2.67 | 2.66 |
Liaoning | 2.04 | 1.92 | 1.87 | 1.83 | 1.84 | 1.74 | 1.63 | 1.50 | 1.37 | 1.32 | 1.25 | 1.17 | 1.02 |
Jilin | 1.77 | 1.68 | 1.73 | 1.65 | 1.71 | 1.57 | 1.42 | 1.39 | 1.25 | 1.22 | 1.23 | 1.08 | 1.05 |
Heilongjiang | 1.54 | 1.39 | 1.41 | 1.38 | 1.39 | 1.32 | 1.27 | 1.21 | 1.13 | 1.09 | 1.04 | 0.99 | 0.97 |
Shanghai | 1.05 | 0.99 | 0.96 | 0.88 | 0.84 | 0.74 | 0.65 | 0.63 | 0.58 | 0.57 | 0.54 | 0.49 | 0.48 |
Jiangsu | 0.77 | 0.75 | 0.75 | 0.80 | 0.91 | 0.86 | 0.80 | 0.72 | 0.67 | 0.66 | 0.69 | 0.63 | 0.60 |
Zhejiang | 0.76 | 0.77 | 0.76 | 0.77 | 0.80 | 0.79 | 0.77 | 0.71 | 0.68 | 0.65 | 0.63 | 0.56 | 0.52 |
Anhui | 1.34 | 1.28 | 1.30 | 1.20 | 1.13 | 1.08 | 1.05 | 1.07 | 1.04 | 0.96 | 0.91 | 0.84 | 0.77 |
Fujian | 0.46 | 0.50 | 0.53 | 0.55 | 0.60 | 0.58 | 0.57 | 0.53 | 0.55 | 0.53 | 0.54 | 0.48 | 0.46 |
Jiangxi | 0.97 | 0.91 | 0.95 | 1.03 | 1.00 | 0.97 | 0.94 | 0.84 | 0.78 | 0.79 | 0.78 | 0.70 | 0.68 |
Shandong | 0.97 | 0.94 | 1.02 | 1.12 | 1.34 | 1.34 | 1.28 | 1.21 | 1.12 | 1.10 | 1.04 | 1.00 | 0.98 |
Henan | 1.21 | 1.20 | 1.12 | 1.38 | 1.47 | 1.45 | 1.40 | 1.29 | 1.19 | 1.14 | 1.12 | 0.94 | 0.91 |
Hubei | 1.06 | 1.04 | 1.06 | 1.05 | 1.04 | 1.03 | 0.99 | 0.85 | 0.81 | 0.81 | 0.81 | 0.73 | 0.71 |
Hunan | 0.82 | 0.81 | 0.84 | 0.92 | 1.09 | 1.02 | 1.03 | 0.89 | 0.82 | 0.76 | 0.75 | 0.66 | 0.61 |
Guangdong | 0.70 | 0.67 | 0.66 | 0.65 | 0.64 | 0.62 | 0.58 | 0.54 | 0.52 | 0.53 | 0.52 | 0.47 | 0.42 |
Guangxi | 0.73 | 0.68 | 0.74 | 0.87 | 0.84 | 0.81 | 0.81 | 0.73 | 0.72 | 0.76 | 0.83 | 0.81 | 0.80 |
Hainan | 0.58 | 0.23 | 0.72 | 0.54 | 0.43 | 0.61 | 1.06 | 0.98 | 0.95 | 0.89 | 0.89 | 0.86 | 0.85 |
Chongqing | 1.04 | 1.08 | 1.16 | 1.14 | 1.12 | 1.08 | 1.01 | 0.92 | 0.87 | 0.81 | 0.80 | 0.68 | 0.61 |
Sichuan | 0.80 | 0.84 | 0.97 | 0.99 | 0.92 | 0.89 | 0.88 | 0.83 | 0.82 | 0.71 | 0.63 | 0.59 | 0.55 |
Guizhou | 2.93 | 2.83 | 3.30 | 3.47 | 3.09 | 3.14 | 2.96 | 2.72 | 2.68 | 2.39 | 2.43 | 2.22 | 2.14 |
Yunnan | 1.10 | 1.21 | 1.42 | 1.60 | 1.72 | 1.70 | 1.58 | 1.47 | 1.43 | 1.34 | 1.22 | 1.12 | 1.07 |
Shaanxi | 1.52 | 1.55 | 1.58 | 1.74 | 1.85 | 1.98 | 1.85 | 1.75 | 1.68 | 1.74 | 1.70 | 1.74 | 1.73 |
Gansu | 2.32 | 2.23 | 2.25 | 2.28 | 2.22 | 2.11 | 2.10 | 1.95 | 1.74 | 1.74 | 1.78 | 1.63 | 1.57 |
Qinghai | 1.65 | 1.43 | 1.42 | 1.33 | 1.61 | 1.66 | 1.73 | 1.61 | 1.48 | 1.28 | 1.31 | 1.38 | 1.32 |
Ningxia | 6.85 | 5.90 | 5.56 | 4.60 | 4.75 | 4.60 | 4.55 | 4.51 | 4.38 | 4.56 | 5.44 | 5.22 | 5.14 |
Xinjiang | 2.08 | 1.95 | 1.90 | 1.93 | 1.99 | 2.03 | 1.99 | 2.06 | 2.21 | 2.23 | 2.36 | 2.45 | 2.44 |
Nationwide | 1.22 | 1.18 | 1.22 | 1.25 | 1.29 | 1.27 | 1.19 | 1.11 | 1.05 | 1.01 | 1.01 | 0.93 | 0.88 |
District | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 0.81 | 0.77 | 0.77 | 0.76 | 0.79 | 0.82 | 0.82 | 0.85 | 0.85 | 0.86 | 0.89 | 0.88 | 0.87 |
Tianjin | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Hebei | 0.73 | 0.71 | 0.72 | 0.74 | 0.76 | 0.78 | 0.76 | 0.74 | 0.71 | 0.74 | 0.73 | 0.72 | 0.73 |
Shanxi | 0.68 | 0.66 | 0.69 | 0.72 | 0.73 | 0.74 | 0.72 | 0.68 | 0.64 | 0.63 | 0.61 | 0.62 | 0.61 |
Inner Monglia | 0.85 | 0.85 | 0.92 | 0.94 | 0.95 | 0.86 | 0.84 | 0.80 | 0.77 | 0.73 | 0.71 | 0.66 | 0.68 |
Liaoning | 0.96 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.98 | 0.96 | 0.89 | 0.90 | 0.88 | 0.80 | 0.88 |
Jilin | 0.85 | 0.86 | 0.88 | 0.89 | 0.91 | 0.88 | 0.86 | 0.80 | 0.74 | 0.70 | 0.68 | 0.67 | 0.65 |
Heilongjiang | 0.85 | 0.90 | 0.93 | 0.96 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Shanghai | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Jiangsu | 0.95 | 1.00 | 1.00 | 0.98 | 0.93 | 0.94 | 0.94 | 0.96 | 0.96 | 0.97 | 0.96 | 0.93 | 0.96 |
Zhejiang | 0.92 | 0.91 | 0.90 | 0.89 | 0.91 | 0.94 | 0.90 | 0.90 | 0.91 | 0.91 | 0.91 | 0.92 | 0.92 |
Anhui | 0.83 | 0.85 | 0.87 | 0.92 | 0.96 | 0.97 | 0.99 | 0.99 | 0.99 | 1.00 | 1.00 | 0.92 | 0.91 |
Fujian | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Jiangxi | 0.99 | 0.95 | 1.00 | 1.00 | 1.00 | 0.98 | 0.95 | 0.95 | 0.95 | 0.93 | 0.93 | 0.86 | 0.90 |
Shandong | 0.88 | 0.82 | 0.83 | 0.84 | 0.86 | 0.85 | 0.87 | 0.87 | 0.88 | 0.87 | 0.84 | 0.82 | 0.83 |
Henan | 0.81 | 0.80 | 0.77 | 0.81 | 0.84 | 0.84 | 0.83 | 0.80 | 0.77 | 0.73 | 0.71 | 0.70 | 0.72 |
Hubei | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Hunan | 0.96 | 1.00 | 0.94 | 0.97 | 0.97 | 0.97 | 0.99 | 1.00 | 0.99 | 0.97 | 0.95 | 0.96 | 0.96 |
Guangdong | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Guangxi | 0.97 | 0.94 | 0.92 | 0.90 | 0.95 | 0.95 | 0.93 | 0.90 | 0.88 | 0.81 | 0.75 | 0.72 | 0.73 |
Hainan | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Chongqing | 0.67 | 0.75 | 0.74 | 0.72 | 0.69 | 0.69 | 0.70 | 0.71 | 0.71 | 0.73 | 0.76 | 0.77 | 0.78 |
Sichuan | 0.86 | 0.81 | 0.80 | 0.83 | 0.85 | 0.86 | 0.88 | 0.87 | 0.87 | 0.89 | 0.91 | 0.92 | 0.93 |
Guizhou | 0.68 | 0.62 | 0.61 | 0.64 | 0.66 | 0.69 | 0.71 | 0.71 | 0.72 | 0.72 | 0.74 | 0.74 | 0.75 |
Yunnan | 0.74 | 0.70 | 0.70 | 0.73 | 0.75 | 0.75 | 0.74 | 0.73 | 0.75 | 0.75 | 0.73 | 0.76 | 0.77 |
Shaanxi | 0.63 | 0.62 | 0.63 | 0.64 | 0.64 | 0.65 | 0.65 | 0.66 | 0.65 | 0.64 | 0.63 | 0.62 | 0.62 |
Gansu | 0.97 | 0.91 | 0.92 | 0.99 | 1.00 | 1.00 | 0.98 | 0.94 | 0.90 | 0.88 | 0.89 | 0.86 | 0.89 |
Qinghai | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Ningxia | 0.84 | 0.95 | 0.90 | 0.90 | 0.89 | 0.93 | 0.85 | 0.85 | 0.81 | 0.83 | 0.82 | 0.82 | 0.83 |
Xinjiang | 0.73 | 0.73 | 0.74 | 0.73 | 0.74 | 0.73 | 0.70 | 0.69 | 0.70 | 0.71 | 0.71 | 0.70 | 0.71 |
Nationwide | 0.87 | 0.87 | 0.87 | 0.88 | 0.89 | 0.89 | 0.88 | 0.88 | 0.87 | 0.86 | 0.86 | 0.84 | 0.85 |
District | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 0.82 | 0.78 | 0.77 | 0.76 | 0.79 | 0.82 | 0.82 | 0.85 | 0.85 | 0.86 | 0.89 | 0.88 | 0.89 |
Tianjin | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.96 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Hebei | 0.85 | 0.83 | 0.79 | 0.80 | 0.79 | 0.81 | 0.81 | 0.81 | 0.79 | 0.79 | 0.80 | 0.73 | 0.79 |
Liaoning | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 1.00 | 0.93 | 0.92 | 0.92 | 0.81 | 0.80 |
Shanghai | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Jiangsu | 0.95 | 1.00 | 1.00 | 0.98 | 0.93 | 0.94 | 0.94 | 0.96 | 0.96 | 0.97 | 0.97 | 0.93 | 0.96 |
Zhejiang | 0.93 | 0.92 | 0.90 | 0.89 | 0.91 | 0.94 | 0.90 | 0.90 | 0.91 | 0.91 | 0.91 | 0.92 | 0.92 |
Fujian | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Shandong | 0.93 | 0.90 | 0.87 | 0.87 | 0.87 | 0.87 | 0.88 | 0.89 | 0.91 | 0.89 | 0.89 | 0.82 | 0.88 |
Guangdong | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Hainan | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Shanxi | 0.68 | 0.66 | 0.70 | 0.73 | 0.74 | 0.74 | 0.72 | 0.68 | 0.64 | 0.64 | 0.61 | 0.62 | 0.63 |
Jilin | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Heilongjiang | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Anhui | 0.84 | 0.88 | 0.95 | 0.96 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Jiangxi | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Henan | 0.83 | 0.83 | 0.80 | 0.81 | 0.84 | 0.84 | 0.83 | 0.81 | 0.79 | 0.78 | 0.79 | 0.80 | 0.79 |
Hubei | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Hunan | 0.98 | 1.00 | 0.95 | 0.97 | 0.98 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 0.97 | 0.96 | 0.97 |
Inner Mongolia | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Guangxi | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Chongqing | 0.90 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Sichuan | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Guizhou | 0.71 | 0.68 | 0.67 | 0.66 | 0.67 | 0.70 | 0.73 | 0.76 | 0.80 | 0.81 | 0.82 | 0.81 | 0.81 |
Yunnan | 0.84 | 0.88 | 0.89 | 0.89 | 0.86 | 0.82 | 0.83 | 0.83 | 0.87 | 0.88 | 0.89 | 0.88 | 0.88 |
Shaanxi | 0.84 | 0.86 | 0.86 | 0.89 | 0.93 | 0.89 | 0.96 | 0.98 | 0.99 | 0.97 | 0.95 | 0.94 | 0.96 |
Gansu | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 0.99 | 0.95 | 0.97 |
Qinghai | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Ningxia | 1.00 | 0.95 | 0.90 | 0.90 | 0.89 | 0.95 | 0.86 | 0.87 | 0.83 | 0.85 | 0.84 | 0.84 | 0.83 |
Xinjiang | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 0.95 | 0.95 | 0.96 | 0.96 |
Nationwide | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.93 | 0.94 |
District | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 0.98 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Tianjin | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Hebei | 0.86 | 0.85 | 0.91 | 0.93 | 0.95 | 0.96 | 0.94 | 0.91 | 0.90 | 0.94 | 0.92 | 0.98 | 0.98 |
Liaoning | 0.96 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.98 | 0.97 | 0.96 | 0.98 | 0.96 | 0.99 | 0.99 |
Shanghai | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Jiangsu | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 1.00 | 1.00 |
Zhejiang | 0.99 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Fujian | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Shandong | 0.94 | 0.91 | 0.95 | 0.97 | 0.99 | 0.97 | 0.99 | 0.97 | 0.97 | 0.98 | 0.94 | 0.99 | 0.99 |
Guangdong | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Hainan | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Eastern region | 0.97 | 0.97 | 0.98 | 0.99 | 0.99 | 0.99 | 0.99 | 0.98 | 0.98 | 0.99 | 0.98 | 0.99 | 0.99 |
Shanxi | 1.00 | 1.00 | 0.98 | 0.98 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 1.00 | 1.00 | 1.00 |
Jilin | 0.85 | 0.86 | 0.88 | 0.89 | 0.91 | 0.88 | 0.86 | 0.80 | 0.74 | 0.70 | 0.68 | 0.67 | 0.71 |
Heilongjiang | 0.85 | 0.90 | 0.93 | 0.96 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Anhui | 1.00 | 0.97 | 0.91 | 0.96 | 0.97 | 0.97 | 0.99 | 0.99 | 0.99 | 1.00 | 1.00 | 0.92 | 0.94 |
Jiangxi | 0.99 | 0.95 | 1.00 | 1.00 | 1.00 | 0.98 | 0.95 | 0.95 | 0.95 | 0.93 | 0.93 | 0.86 | 0.91 |
Henan | 0.98 | 0.96 | 0.96 | 1.00 | 0.99 | 0.99 | 0.99 | 0.99 | 0.97 | 0.93 | 0.90 | 0.88 | 0.90 |
Hubei | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Hunan | 0.97 | 1.00 | 0.99 | 1.00 | 0.99 | 0.98 | 0.99 | 1.00 | 0.99 | 0.97 | 0.98 | 0.99 | 0.99 |
Central region | 0.95 | 0.96 | 0.96 | 0.98 | 0.98 | 0.98 | 0.97 | 0.97 | 0.96 | 0.95 | 0.94 | 0.92 | 0.94 |
Inner Mongolia | 0.85 | 0.85 | 0.92 | 0.94 | 0.95 | 0.86 | 0.84 | 0.80 | 0.77 | 0.73 | 0.71 | 0.66 | 0.71 |
Guangxi | 0.97 | 0.94 | 0.92 | 0.90 | 0.95 | 0.95 | 0.93 | 0.90 | 0.88 | 0.81 | 0.75 | 0.72 | 0.73 |
Chongqing | 0.75 | 0.75 | 0.74 | 0.72 | 0.69 | 0.69 | 0.70 | 0.71 | 0.71 | 0.73 | 0.76 | 0.77 | 0.77 |
Sichuan | 0.86 | 0.81 | 0.80 | 0.83 | 0.85 | 0.86 | 0.88 | 0.87 | 0.87 | 0.89 | 0.91 | 0.92 | 0.91 |
Guizhou | 0.96 | 0.90 | 0.91 | 0.97 | 0.99 | 0.99 | 0.97 | 0.94 | 0.89 | 0.89 | 0.90 | 0.90 | 0.89 |
Yunnan | 0.88 | 0.79 | 0.79 | 0.82 | 0.87 | 0.92 | 0.89 | 0.87 | 0.86 | 0.85 | 0.82 | 0.86 | 0.85 |
Shaanxi | 0.75 | 0.72 | 0.73 | 0.71 | 0.69 | 0.73 | 0.68 | 0.67 | 0.65 | 0.65 | 0.66 | 0.66 | 0.68 |
Gansu | 0.97 | 0.91 | 0.92 | 0.99 | 1.00 | 1.00 | 0.98 | 0.94 | 0.90 | 0.89 | 0.90 | 0.90 | 0.90 |
Qinghai | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Ningxia | 0.84 | 1.00 | 0.99 | 1.00 | 1.00 | 0.98 | 0.99 | 0.98 | 0.97 | 0.97 | 0.97 | 0.97 | 0.98 |
Xinjiang | 0.73 | 0.73 | 0.74 | 0.73 | 0.74 | 0.73 | 0.70 | 0.69 | 0.71 | 0.74 | 0.75 | 0.73 | 0.74 |
Western region | 0.87 | 0.85 | 0.86 | 0.87 | 0.88 | 0.88 | 0.87 | 0.85 | 0.84 | 0.83 | 0.83 | 0.83 | 0.83 |
Nationwide | 0.93 | 0.93 | 0.93 | 0.94 | 0.95 | 0.95 | 0.94 | 0.93 | 0.92 | 0.92 | 0.91 | 0.91 | 0.92 |
Variable Name | Definition of Variable | Unit |
---|---|---|
Economic scale | Per capita gross domestic product (GDP) | 10,000 Yuan RMB |
Industrial structure | Percent of secondary industry in GDP | |
Ownership structure | Percent of Stated-owned employees in year-end employees | |
Energy intensity | Real energy consumption per unit of GDP | Standard coal ton/10,000 Yuan RMB |
Opening-up degree | Percent of import-export trade in GDP | |
Foreign direct investment | Volume of direct foreign investment | 100 million dollar |
Capital–labor ratio | The ratio between capital stock and number of employee | 10,000 Yuan RMB/ person |
Government interference | Percent of government expenditure in GDP |
Influencing Factors | Eastern Region | Central Region | Western Region | |||
---|---|---|---|---|---|---|
Coefficient | P | Coefficient | P | Coefficient | P | |
Constant term | 1.0041 *** | 0.0000 | 1.2166 *** | 0.0000 | 0.9216 *** | 0.0000 |
Economic scale | 0.0037 | 0.6980 | 0.0984 *** | 0.0030 | 0.1091 *** | 0.0000 |
Square of economic scale | 0.0027 *** | 0.0070 | 0.0286 *** | 0.0000 | 0.0011 | 0.7240 |
Industrialstructure | −0.3154 ** | 0.0210 | −0.5202 *** | 0.0010 | −0.5901 *** | 0.0030 |
Ownership structure | 0.0383 | 0.7440 | −0.9474 * | 0.0720 | −0.1639 | 0.6920 |
Energy intensity | −0.2248 *** | 0.0060 | −0.0442 * | 0.0910 | −0.0095 | 0.4950 |
Capital–labor ratio | −0.0021 | 0.3340 | −0.0394 *** | 0.0000 | −0.0133 ** | 0.0390 |
Opening-up degree | 0.1052 | 0.5640 | 7.4163 *** | 0.0000 | 2.5360 ** | 0.0410 |
FDI | −0.0005 *** | 0.0000 | −0.0008 ** | 0.0330 | 0.0002 | 0.1050 |
Government interference | −0.2328 *** | 0.0060 | −0.1999 | 0.1580 | 0.0744 * | 0.0990 |
Influencing Factors | Eastern Region | Central Region | Western Region | |||
---|---|---|---|---|---|---|
Coefficient | P | Coefficient | P | Coefficient | P | |
Constant term | 1.0112 *** | 0.0000 | 1.3277 *** | 0.0000 | 0.9835 *** | 0.0000 |
Economic scale | 0.0085 * | 0.0952 | 0.1054 *** | 0.0000 | 0.1132 *** | 0.0000 |
Square of economic scale | 0.0031 *** | 0.0010 | 0.0219 *** | 0.0000 | 0.0018 | 0.8331 |
Industrialstructure | −0.3326 *** | 0.0014 | −0.5739 *** | 0.0000 | −0.6327 *** | 0.0010 |
Capital–labor ratio | −0.0036 | 0.3877 | −0.0414 *** | 0.0000 | −0.0318 ** | 0.0422 |
Opening-up degree | 0.1734 | 0.6792 | 8.6313 *** | 0.0000 | 2.9980 ** | 0.0378 |
Influencing Factor | Eastern Region | Central Region | Western Region | |||
---|---|---|---|---|---|---|
Coefficient | P | Coefficient | P | Coefficient | P | |
Constant term | 1.1130 *** | 0.0000 | 1.5176 *** | 0.0000 | 0.9891 *** | 0.0000 |
Economic scale | 0.0066 | 0.5790 | 0.0960 *** | 0.0010 | 0.0582 ** | 0.0280 |
Square of economic scale | 0.0203 *** | 0.0030 | 0.0288 *** | 0.0000 | 0.0011 | 0.7240 |
Industrial structure | −0.3492 ** | 0.0120 | −0.4526 *** | 0.0000 | −0.4059 ** | 0.0480 |
Ownership structure | −0.5253 *** | 0.0030 | −1.2216 *** | 0.0020 | −0.6553 * | 0.0530 |
Energy intensity | −0.0308 | 0.7990 | −0.0446 ** | 0.0540 | −0.0152 | 0.2690 |
Capital–labor ratio | −0.0064 ** | 0.0340 | −0.0456 *** | 0.0000 | −0.0252 *** | 0.0030 |
Degree of opening-up | 1.0127 *** | 0.0000 | 5.1576 *** | 0.0020 | 2.5360 ** | 0.0410 |
FDI | −0.0002 * | 0.0980 | −0.0003 | 0.2900 | 0.0001 | 0.3220 |
Government interference | −0.0483 | 0.6530 | −0.2085 * | 0.0760 | 0.0744 * | 0.0990 |
Influencing Factor | Eastern Region | Central Region | Western Region | |||
---|---|---|---|---|---|---|
Coefficient | P | Coefficient | P | Coefficient | P | |
Constant term | 1.5022 *** | 0.0000 | 1.4626 *** | 0.0000 | 0.1029 *** | 0.0000 |
Economic scale | 0.0093 * | 0.0821 | 0.1127 *** | 0.0000 | 0.0497 *** | 0.0079 |
Square of economic scale | 0.0314 *** | 0.0000 | 0.0528 *** | 0.0000 | 0.0004 | 0.5742 |
Industrial structure | −0.4128 *** | 0.0073 | −0.6626 *** | 0.0000 | −0.4171 ** | 0.0325 |
Ownership structure | −0.6651 *** | 0.0000 | −1.4144 *** | 0.0082 | −0.6792 ** | 0.0402 |
Capital–labor ratio | −0.0081 ** | 0.0129 | −0.0751 *** | 0.0000 | −0.0621 ** | 0.0140 |
Degree of opening-up | 1.4259 *** | 0.0000 | 4.7722 *** | 0.0011 | 2.9270 ** | 0.0382 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Wang, H.; Zhang, L.; Dang, J. Provincial Carbon Emissions Efficiency and Its Influencing Factors in China. Sustainability 2019, 11, 2355. https://doi.org/10.3390/su11082355
Wang S, Wang H, Zhang L, Dang J. Provincial Carbon Emissions Efficiency and Its Influencing Factors in China. Sustainability. 2019; 11(8):2355. https://doi.org/10.3390/su11082355
Chicago/Turabian StyleWang, Shi, Hua Wang, Li Zhang, and Jun Dang. 2019. "Provincial Carbon Emissions Efficiency and Its Influencing Factors in China" Sustainability 11, no. 8: 2355. https://doi.org/10.3390/su11082355
APA StyleWang, S., Wang, H., Zhang, L., & Dang, J. (2019). Provincial Carbon Emissions Efficiency and Its Influencing Factors in China. Sustainability, 11(8), 2355. https://doi.org/10.3390/su11082355