Analysis of the Effects of Different Spectral Transformation Methods on the Estimation of Chlorophyll Content of Reclaimed Vegetation in Rare Earth Mining Areas
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area Overview
2.2. Data Acquisition and Preprocessing
2.3. Vegetation Spectral Data Processing Methods
2.3.1. Mathematical Transformation Methods for Vegetation Spectra
2.3.2. Fractional Order Differentiation of Vegetation Spectra
2.3.3. Discrete Wavelet Transform of Vegetation Spectra
2.3.4. Continuous Wavelet Transform of Vegetation Spectra
2.4. Estimation Model Construction and Testing
2.4.1. Random Forest Regression Model
2.4.2. Partial Least Squares Regression Model
2.4.3. Support Vector Regression Model
2.4.4. Model Validation
3. Results
3.1. Original Spectral Characterisation
3.2. Effect of Different Spectral Transformations on the Correlation Between SPAD Values and Spectral Parameters
3.3. Impact of Different Spectral Transformations on Chlorophyll Content Estimation in Reclaimed Vegetation
3.3.1. Comparison of Chlorophyll Content Estimation Methods for Reclaimed Vegetation Under Different Spectral Transformations
3.3.2. Comparison of Chlorophyll Estimation Methods for Reclaimed Vegetation in Different Regression Models
3.3.3. Estimation of Chlorophyll Content of Reclaimed Vegetation Incorporating Multispectral Transform Features
4. Discussion
5. Conclusions
- (1)
- The spectral characteristics of the three reclaimed vegetation types varied due to environmental stress in the RE mining area. These changes reflect how the reclaimed vegetation adapted to the environment.
- (2)
- Spectral transformation methods effectively reduce background noise, enhance spectral data, and improve the correlation between spectral parameters and chlorophyll content in reclaimed vegetation.
- (3)
- The effectiveness of spectral transformation methods in improving chlorophyll content estimation accuracy varies, and suitable spectral transformation methods can significantly improve the estimation accuracy of chlorophyll content.
- (4)
- Integrating multiple spectral transformation features significantly improved the estimation accuracy of chlorophyll content, demonstrating the effectiveness of this approach for reclaimed vegetation.
- (5)
- When comparing different regression models, the RF model outperformed both the PLSR and SVR models. It better captured the relationship between spectra and chlorophyll content, providing more accurate estimates.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qiao, J.; Li, L.; Liu, J.; Wu, N.; Liu, W.; Wu, F.; Zeng, Z. The Vital Application of Rare Earth for Future High-Performance Electromagnetic Wave Absorption Materials: A Review. J. Mater. Sci. Technol. 2024, 176, 188–203. [Google Scholar] [CrossRef]
- Tian, S.; Liu, Z.; Mao, Q.; Ye, H.; Tian, C.; Zhu, Y.; Zhang, L. Leaching Characteristics and Environmental Impact of Heavy Metals in Tailings under Rainfall Conditions: A Case Study of an Ion-Adsorption Rare Earth Mining Area. Ecotoxicol. Environ. Saf. 2024, 281, 116642. [Google Scholar] [CrossRef] [PubMed]
- Li, H. Multi-Source Remote Sensing Monitoring Method of Surface Environment in Ion Adsorption Rare Earth Mining Area, 1st ed.; Metallurgical Industry Press: Beijing, China, 2019; pp. 13–33. [Google Scholar]
- Wang, P.; Richter, A.S.; Kleeberg, J.R.W.; Geimer, S.; Grimm, B. Post-Translational Coordination of Chlorophyll Biosynthesis and Breakdown by BCMs Maintains Chlorophyll Homeostasis during Leaf Development. Nat. Commun. 2020, 11, 1254. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Cui, L.; Dou, Z.; Wang, J.; Zhai, X.; Li, J.; Zhao, X.; Lei, Y.; Wang, J.; Li, W. Hyperspectral Analysis and Regression Modeling of SPAD Measurements in Leaves of Three Mangrove Species. Forests 2023, 14, 1566. [Google Scholar] [CrossRef]
- Zhang, Y.; Chang, Q.; Chen, Y.; Liu, Y.; Jiang, D.; Zhang, Z. Hyperspectral Estimation of Chlorophyll Content in Apple Tree Leaf Based on Feature Band Selection and the CatBoost Model. Agronomy 2023, 13, 2075. [Google Scholar] [CrossRef]
- Tuerxun, N.; Zheng, J.; Wang, R.; Wang, L.; Liu, L. Hyperspectral Estimation of Chlorophyll Content in Jujube Leaves: Integration of Derivative Processing Techniques and Dimensionality Reduction Algorithms. Front. Plant Sci. 2023, 14, 1260772. [Google Scholar] [CrossRef]
- Li, Y.; Xu, X.; Wu, W.; Zhu, Y.; Yang, G.; Yang, X.; Meng, Y.; Jiang, X.; Xue, H. Hyperspectral Estimation of Chlorophyll Content in Grape Leaves Based on Fractional-Order Differentiation and Random Forest Algorithm. Remote Sens. 2024, 16, 2174. [Google Scholar] [CrossRef]
- Li, X.; Chen, B.; Zhou, B.; Shi, Z.; Hong, G. Predicting the content of chlorophyll in cotton using hyperspectral reflectance of leaves. J. Huazhong Agric. Univ. 2023, 42, 195–202. [Google Scholar]
- Xiao, B.; Li, S.; Dou, S.; He, H.; Fu, B.; Zhang, T.; Sun, W.; Yang, Y.; Xiong, Y.; Shi, J.; et al. Comparison of Leaf Chlorophyll Content Retrieval Performance of Citrus Using FOD and CWT Methods with Field-Based Full-Spectrum Hyperspectral Reflectance Data. Comput. Electron. Agric. 2024, 217, 108559. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; LI, L.; LI, N.; Jiang, Q.; Gu, X.; Yang, X.; Lin, J. Quantitative Inversion of Chlorophyll Content in Stem and Branch of Pitaya Based on Discrete Wavelet Differential Transform Algorithm. Spectrosc. Spectr. Anal. 2023, 43, 549–556. [Google Scholar]
- Gui, H.; Yang, K.; Zhang, W.; Liu, C.; Xia, T. Spectra Recognition of Corn Pollution Degree under Copper and Lead Ion Stress. Spectrosc. Spectr. Anal. 2018, 38, 212–217. [Google Scholar]
- Ren, Y.; Huang, W.; Ye, H.; Zhou, X.; Ma, H.; Dong, Y.; Shi, Y.; Geng, Y.; Huang, Y.; Jiao, Q.; et al. Quantitative Identification of Yellow Rust in Winter Wheat with a New Spectral Index: Development and Validation Using Simulated and Experimental Data. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102384. [Google Scholar] [CrossRef]
- Zhai, W.; Li, C.; Fei, S.; Liu, Y.; Ding, F.; Cheng, Q.; Chen, Z. CatBoost Algorithm for Estimating Maize Above-Ground Biomass Using Unmanned Aerial Vehicle-Based Multi-Source Sensor Data and SPAD Values. Comput. Electron. Agric. 2023, 214, 108306. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated Narrow-Band Vegetation Indices for Prediction of Crop Chlorophyll Content for Application to Precision Agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Qiao, X.; Ma, S.; Hou, H.; Hao, R. Hyper-spectral features of heavy metal pollutants in vegetables and their inversion model in the mining areas. J. Health Saf. 2018, 18, 335–341. [Google Scholar]
- Huang, Z.; Huang, W.; Li, S.; Ni, B.; Zhang, Y.; Wang, M.; Chen, M.; Zhu, F. Inversion Evaluation of Rare Earth Elements in Soil by Visible-Shortwave Infrared Spectroscopy. Remote Sens. 2021, 13, 4886. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, H.; Lu, X.; Zhang, Y.; Wan, H.; Luo, X.; Zhang, J. Estimation of Chlorophyll Content of Cinnamomum Camphora Leaves Based on Hyperspectral and Fractional Order Differentiation. Int. J. Remote Sens. 2024, 45, 5113–5129. [Google Scholar] [CrossRef]
- Zhao, Q.; Ge, X.; Ding, J.; Wang, J.; Zhang, Z.; Tian, M. Combination of fractional order differential and machine learning algorithm for spectral estimation of soil organic carbon content. Laser Optoelectron. Prog. 2020, 57, 153001. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, F.; Kung, H.; Johnson, V.C. New Methods for Improving the Remote Sensing Estimation of Soil Organic Matter Content (SOMC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR) in Northwest China. Remote Sens. Environ. 2018, 218, 104–118. [Google Scholar] [CrossRef]
- Zhang, J.; Niu, Z.; Ma, X.; Wang, J.; Xu, C.; Shi, L.; Fernando, B.; Shi, H. Hyperspectral Feature Extraction and Estimation of Soil Total Nitrogen Based on Discrete Wavelet Transform. Spectrosc. Spectr. Anal. 2023, 43, 3223–3229. [Google Scholar]
- Cheng, T.; Rivard, B.; Sánchez-Azofeifa, A.G.; Féret, J.-B.; Jacquemoud, S.; Ustin, S.L. Predicting Leaf Gravimetric Water Content from Foliar Reflectance across a Range of Plant Species Using Continuous Wavelet Analysis. J. Plant Physiol. 2012, 169, 1134–1142. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; An, L.; Song, D.; Li, M.; Qiao, L.; Liu, N.; Sun, H. Detection of Chlorophyll Fluorescence Parameters of Potato Leaves Based on Continuous Wavelet Transform and Spectral Analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 259, 119768. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Song, D.; Gao, D.; Sun, H.; Qiao, L.; Zhao, R.; Tang, W.; Li, M. Chlorophyll Content Estimation Based on Cascade Spectral Optimizations of Interval and Wavelength Characteristics. Comput. Electron. Agric. 2021, 189, 106413. [Google Scholar] [CrossRef]
- Li, F.; Yin, C.; Li, Z.; Wang, J.; Jiang, L.; Hou, B.; Shi, J. Inversion Modeling of Chlorophyll Fluorescence Parameters in Cotton Canopy via Moisture Data and Spectral Analysis. Agronomy 2024, 14, 2190. [Google Scholar] [CrossRef]
- Li, H.; Zhou, B.; Xu, F. Variation Analysis of Spectral Characteristics of Reclamation Vegetation in a Rare Earth Mining Area Under Environmental Stress. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, J.; Sun, H.; Li, X. Sensitive bands extraction and prediction model of tomato chlorophyll in glass greenhouse. Spectrosc. Spectr. Anal. 2017, 37, 194–199. [Google Scholar]
- Wei, L.; Ming, S.; Feng, Z.; Feng, W. Hyperspectral Estimation of Chlorophyll Content in Winter Wheat Leaves under Low Temperature Stress. Chin. J. Agrometeorol. 2022, 43, 137–147. [Google Scholar]
- Yang, Y.; Nan, R.; Mi, T.; Song, Y.; Shi, F.; Liu, X.; Wang, Y.; Sun, F.; Xi, Y.; Zhang, C. Rapid and Nondestructive Evaluation of Wheat Chlorophyll under Drought Stress Using Hyperspectral Imaging. Int. J. Mol. Sci. 2023, 24, 5825. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Xin, W.; Qing, P.; Jin, X.; Jin, Z.; Ping, M. Hyperspectral Response Characteristics and Chlorophyll Content Estimation of Phyllostachys Violascens Leaves under Drought Stress. Acta Ecol. Sin. 2018, 38, 6677–6684. [Google Scholar]
- Cui, H.; Zhang, H.; Ma, H.; Ji, J. Research on SPAD Estimation Model for Spring Wheat Booting Stage Based on Hyperspectral Analysis. Sensors 2024, 24, 1693. [Google Scholar] [CrossRef] [PubMed]
Vegetation Type | Green Peak | Red Valley | Red Edge | |||
---|---|---|---|---|---|---|
Position | Reflectance | Position | Reflectance | Position | Slope | |
Normal Eucalyptus globulus | 557 | 0.1389 | 672 | 0.0762 | 706 | 0.0133 |
Reclaimed Eucalyptus globulus | 555 | 0.1926 | 673 | 0.0729 | 701 | 0.0172 |
Normal Photinia serrulata | 554 | 0.1234 | 671 | 0.0501 | 711 | 0.0125 |
Reclaimed Photinia serrulata | 556 | 0.1679 | 675 | 0.0629 | 701 | 0.0154 |
Normal Vernicia fordii | 553 | 0.0936 | 669 | 0.0567 | 718 | 0.0133 |
Reclaimed Vernicia fordii | 555 | 0.1796 | 673 | 0.0653 | 700 | 0.0182 |
Method | Form | Eucalyptus globulus | Photinia serrulata | Vernicia fordii | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Top 3 Bands | R2 | RMSE | MRE | Top 3 Bands | R2 | RMSE | MRE | Top 3 Bands | R2 | RMSE | MRE | ||
OR | R | 704, 705, 698 | 0.538 | 4.539 | 9.29% | 706, 698, 703 | 0.814 | 4.788 | 13.15% | 704, 700, 699 | 0.767 | 3.061 | 10.48% |
MT | LFD | 752, 753, 747 | 0.722 | 3.520 | 11.25% | 676, 482, 745 | 0.921 | 3.124 | 9.63% | 666, 652, 667 | 0.807 | 2.781 | 10.14% |
RFD | 704, 705, 698 | 0.829 | 2.757 | 9.27% | 646, 753, 631 | 0.934 | 2.858 | 6.84% | 656, 666, 487 | 0.770 | 3.037 | 10.15% | |
CRFD | 753, 631, 747 | 0.726 | 3.494 | 9.64% | 753, 747, 756 | 0.907 | 3.376 | 7.27% | 652, 666, 657 | 0.798 | 2.849 | 9.68% | |
LOFD | 753, 747, 752 | 0.738 | 3.419 | 11.30% | 756, 748, 744 | 0.929 | 2.963 | 8.90% | 666, 751, 744 | 0.803 | 2.815 | 11.17% | |
RT | 707, 699, 704 | 0.530 | 4.580 | 9.27% | 699, 698, 706 | 0.744 | 5.609 | 13.84% | 699, 608, 703 | 0.755 | 3.135 | 9.32% | |
RTFD | 590, 716, 722 | 0.716 | 3.558 | 7.86% | 675, 756, 751 | 0.842 | 4.402 | 11.37% | 715, 725, 716 | 0.835 | 2.572 | 9.17% | |
ATFD | 752, 658, 589 | 0.668 | 3.847 | 10.41% | 755, 744, 743 | 0.931 | 2.920 | 8.94% | 665, 680, 667 | 0.820 | 2.692 | 12.36% | |
OFD | 645, 646, 647 | 0.811 | 2.902 | 6.76% | 756, 755, 485 | 0.891 | 3.665 | 7.98% | 665, 656, 553 | 0.771 | 3.034 | 12.56% | |
CR | 746, 714, 708 | 0.685 | 3.746 | 11.50% | 752, 743, 751 | 0.925 | 3.043 | 8.29% | 744, 745, 743 | 0.835 | 2.577 | 7.35% | |
FOD | 0.2 | 693, 705, 702 | 0.588 | 4.285 | 9.55% | 693, 695, 696 | 0.745 | 5.592 | 13.72% | 695, 697, 699 | 0.783 | 2.955 | 10.26% |
0.4 | 704, 699, 703 | 0.725 | 3.504 | 7.56% | 699, 568, 515 | 0.794 | 5.032 | 13.01% | 694, 696, 519 | 0.795 | 2.872 | 11.55% | |
0.6 | 689, 700, 688 | 0.722 | 3.522 | 7.61% | 647, 554, 708 | 0.810 | 4.829 | 11.65% | 671, 663, 693 | 0.768 | 3.053 | 11.14% | |
0.8 | 647, 648, 698 | 0.824 | 2.798 | 7.00% | 510, 512, 491 | 0.800 | 4.958 | 11.81% | 669, 693, 658 | 0.778 | 2.984 | 11.35% | |
1.0 | 645, 646, 697 | 0.815 | 2.875 | 6.96% | 756, 755, 753 | 0.876 | 3.902 | 8.96% | 486, 660, 665 | 0.786 | 2.934 | 11.89% | |
1.2 | 644, 645, 646 | 0.833 | 2.729 | 6.56% | 746, 745, 736 | 0.897 | 3.557 | 10.56% | 663, 501, 693 | 0.831 | 2.604 | 11.56% | |
1.4 | 644, 646, 695 | 0.750 | 3.341 | 7.40% | 619, 730, 596 | 0.917 | 3.200 | 8.88% | 659, 658, 604 | 0.835 | 2.575 | 10.33% | |
1.6 | 644, 651, 643 | 0.786 | 3.092 | 7.87% | 713, 712, 633 | 0.909 | 3.339 | 9.48% | 603, 644, 637 | 0.840 | 2.533 | 10.23% | |
1.8 | 650, 644, 649 | 0.795 | 3.026 | 7.60% | 503, 632, 508 | 0.902 | 3.476 | 8.95% | 667, 603, 625 | 0.813 | 2.742 | 10.81% | |
2.0 | 650, 638, 654 | 0.798 | 3.002 | 7.22% | 706, 624, 508 | 0.884 | 3.779 | 10.58% | 667, 524, 639 | 0.856 | 2.406 | 8.62% | |
DWT | d1 | 683, 699, 687 | 0.655 | 3.922 | 8.46% | 517, 694, 697 | 0.694 | 6.135 | 13.07% | 694, 668, 693 | 0.816 | 2.721 | 9.22% |
d2 | 652, 660, 699 | 0.730 | 3.472 | 9.01% | 675, 539, 662 | 0.823 | 4.667 | 12.52% | 699, 650, 665 | 0.850 | 2.454 | 6.81% | |
d3 | 630, 655, 631 | 0.838 | 2.692 | 6.32% | 704, 601, 625 | 0.930 | 2.930 | 10.53% | 527, 544, 521 | 0.821 | 2.683 | 10.96% | |
d4 | 621, 655, 1051 | 0.712 | 3.584 | 8.37% | 747, 748, 539 | 0.761 | 5.417 | 12.49% | 540, 654, 511 | 0.861 | 2.364 | 8.59% | |
d5 | 825, 754, 725 | 0.795 | 3.025 | 8.36% | 666, 755, 737 | 0.842 | 4.412 | 10.52% | 565, 664, 629 | 0.822 | 2.673 | 10.41% | |
d6 | 710, 672, 627 | 0.645 | 3.977 | 7.71% | 765, 764, 589 | 0.916 | 3.217 | 8.91% | 520, 581, 519 | 0.795 | 2.872 | 11.17% | |
d7 | 423, 575, 426 | 0.618 | 4.125 | 8.50% | 801, 685, 693 | 0.835 | 4.503 | 10.50% | 704, 584, 803 | 0.773 | 3.021 | 12.35% | |
d8 | 740, 1212, 746 | 0.261 | 5.739 | 14.53% | 558, 557, 556 | 0.789 | 5.093 | 10.12% | 564, 566, 577 | 0.564 | 4.186 | 13.05% | |
CWT | C1 | 697, 649, 681 | 0.719 | 3.537 | 8.49% | 665, 540, 684 | 0.841 | 4.422 | 14.23% | 679, 678, 656 | 0.814 | 2.736 | 7.36% |
C2 | 648, 647, 621 | 0.766 | 3.233 | 7.00% | 632, 577, 622 | 0.829 | 4.587 | 13.92% | 508, 651, 656 | 0.865 | 2.327 | 8.27% | |
C3 | 652, 672, 651 | 0.792 | 3.044 | 6.90% | 653, 700, 701 | 0.887 | 3.729 | 10.65% | 629, 618, 506 | 0.860 | 2.373 | 10.35% | |
C4 | 623, 639, 566 | 0.815 | 2.875 | 7.16% | 469, 707, 472 | 0.828 | 4.592 | 10.47% | 656, 501, 524 | 0.794 | 2.874 | 11.24% | |
C5 | 622, 620, 621 | 0.714 | 3.570 | 7.13% | 757, 501, 664 | 0.904 | 3.428 | 9.19% | 483, 482, 673 | 0.840 | 2.538 | 10.51% | |
C6 | 514, 723, 717 | 0.584 | 4.307 | 9.76% | 796, 806, 803 | 0.836 | 4.494 | 12.17% | 719, 716, 350 | 0.760 | 3.105 | 12.38% | |
C7 | 351, 352, 873 | 0.518 | 4.635 | 12.12% | 876, 867, 718 | 0.831 | 4.562 | 9.65% | 447, 864, 445 | 0.799 | 2.841 | 10.56% | |
C8 | 356, 408, 709 | 0.584 | 4.308 | 10.00% | 361, 351, 357 | 0.845 | 4.367 | 8.08% | 412, 361, 436 | 0.843 | 2.510 | 9.26% | |
C9 | 580, 613, 575 | 0.142 | 6.185 | 22.99% | 699, 728, 1340 | 0.632 | 6.729 | 14.51% | 714, 713, 709 | 0.699 | 3.479 | 11.35% | |
C10 | 355, 350, 351 | 0.056 | 6.489 | 19.32% | 435, 434, 415 | 0.394 | 8.631 | 17.82% | 485, 494, 495 | 0.660 | 3.697 | 14.92% |
Method | Form | Eucalyptus globulus | Photinia serrulata | Vernicia fordii | ||||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | MRE | R2 | RMSE | MRE | R2 | RMSE | MRE | ||
OR | R | 0.401 | 8.877 | 15.55% | 0.744 | 4.845 | 11.35% | 0.690 | 4.180 | 9.64% |
MT | LFD | 0.649 | 4.286 | 8.47% | 0.804 | 3.996 | 10.48% | 0.783 | 4.664 | 11.88% |
RFD | 0.617 | 4.068 | 8.11% | 0.751 | 4.550 | 11.17% | 0.765 | 3.166 | 8.42% | |
CRFD | 0.788 | 3.202 | 6.42% | 0.806 | 4.183 | 10.70% | 0.720 | 4.749 | 11.61% | |
LOFD | 0.532 | 5.033 | 10.19% | 0.790 | 4.816 | 9.25% | 0.806 | 3.932 | 9.74% | |
RT | 0.403 | 5.376 | 10.41% | 0.627 | 5.308 | 12.52% | 0.648 | 4.973 | 12.84% | |
RTFD | 0.481 | 4.776 | 9.52% | 0.807 | 5.394 | 11.08% | 0.746 | 4.379 | 11.62% | |
ATFD | 0.599 | 4.397 | 8.55% | 0.816 | 3.785 | 9.55% | 0.703 | 5.410 | 11.40% | |
OFD | 0.635 | 4.060 | 8.18% | 0.825 | 5.367 | 10.43% | 0.745 | 3.085 | 8.33% | |
CR | 0.520 | 4.551 | 9.08% | 0.807 | 4.086 | 9.54% | 0.724 | 4.298 | 11.05% | |
FOD | 0.2 | 0.529 | 7.779 | 14.92% | 0.574 | 7.136 | 14.69% | 0.745 | 3.555 | 8.45% |
0.4 | 0.573 | 5.644 | 11.15% | 0.753 | 6.809 | 14.55% | 0.721 | 3.459 | 8.91% | |
0.6 | 0.729 | 3.561 | 7.55% | 0.826 | 5.006 | 9.75% | 0.710 | 3.326 | 8.20% | |
0.8 | 0.807 | 3.132 | 6.54% | 0.851 | 4.343 | 7.47% | 0.761 | 3.179 | 7.51% | |
1 | 0.768 | 3.198 | 6.45% | 0.836 | 4.570 | 8.86% | 0.835 | 2.736 | 7.70% | |
1.2 | 0.714 | 3.748 | 7.11% | 0.791 | 5.239 | 10.69% | 0.823 | 4.236 | 9.37% | |
1.4 | 0.723 | 4.110 | 7.90% | 0.662 | 7.510 | 13.79% | 0.668 | 6.072 | 10.25% | |
1.6 | 0.557 | 5.090 | 9.86% | 0.560 | 7.457 | 12.84% | 0.736 | 6.029 | 11.00% | |
1.8 | 0.377 | 6.572 | 13.00% | 0.380 | 8.420 | 16.30% | 0.809 | 6.808 | 7.23% | |
2 | 0.313 | 7.167 | 14.52% | 0.570 | 7.239 | 15.11% | 0.710 | 3.559 | 9.48% | |
DWT | d1 | 0.399 | 7.452 | 14.63% | 0.765 | 5.975 | 17.46% | 0.697 | 5.804 | 14.72% |
d2 | 0.336 | 6.590 | 13.07% | 0.749 | 6.720 | 13.77% | 0.755 | 3.776 | 9.55% | |
d3 | 0.751 | 3.493 | 6.92% | 0.832 | 4.474 | 8.48% | 0.710 | 4.838 | 12.09% | |
d4 | 0.796 | 4.438 | 9.69% | 0.821 | 4.765 | 8.69% | 0.843 | 2.748 | 6.63% | |
d5 | 0.658 | 5.391 | 10.33% | 0.822 | 4.595 | 7.63% | 0.761 | 3.432 | 8.44% | |
d6 | 0.554 | 5.215 | 9.86% | 0.764 | 6.397 | 12.95% | 0.798 | 2.935 | 7.29% | |
d7 | 0.734 | 3.766 | 7.64% | 0.799 | 6.075 | 12.90% | 0.763 | 5.068 | 13.77% | |
d8 | 0.557 | 4.613 | 9.32% | 0.734 | 6.857 | 11.20% | 0.677 | 6.168 | 16.58% | |
CWT | C1 | 0.697 | 4.325 | 8.70% | 0.623 | 8.570 | 14.66% | 0.623 | 4.762 | 12.96% |
C2 | 0.680 | 4.411 | 8.61% | 0.610 | 8.217 | 14.22% | 0.652 | 4.477 | 12.04% | |
C3 | 0.750 | 3.977 | 7.87% | 0.734 | 6.768 | 13.88% | 0.785 | 3.020 | 7.73% | |
C4 | 0.777 | 3.496 | 7.36% | 0.753 | 4.419 | 9.22% | 0.710 | 3.294 | 9.28% | |
C5 | 0.671 | 4.438 | 9.14% | 0.779 | 4.123 | 9.27% | 0.659 | 4.569 | 10.85% | |
C6 | 0.766 | 4.082 | 8.55% | 0.758 | 4.316 | 9.23% | 0.726 | 3.689 | 9.46% | |
C7 | 0.364 | 7.291 | 14.81% | 0.742 | 4.713 | 10.12% | 0.757 | 3.240 | 9.12% | |
C8 | 0.548 | 8.427 | 17.21% | 0.648 | 5.014 | 14.49% | 0.634 | 4.950 | 13.43% | |
C9 | 0.227 | 9.727 | 20.25% | 0.431 | 8.595 | 15.07% | 0.679 | 5.182 | 12.25% | |
C10 | 0.234 | 6.632 | 14.08% | 0.422 | 8.493 | 16.73% | 0.502 | 7.717 | 15.83% |
Method | Form | Eucalyptus globulus | Photinia serrulata | Vernicia fordii | ||||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | MRE | R2 | RMSE | MRE | R2 | RMSE | MRE | ||
OR | R | 0.571 | 5.008 | 10.58% | 0.637 | 7.851 | 12.94% | 0.721 | 4.687 | 11.19% |
MT | LFD | 0.708 | 4.956 | 9.73% | 0.651 | 6.603 | 12.18% | 0.784 | 2.919 | 10.50% |
RFD | 0.754 | 3.621 | 7.59% | 0.723 | 5.017 | 10.88% | 0.778 | 3.012 | 11.05% | |
CRFD | 0.619 | 5.245 | 11.43% | 0.706 | 6.342 | 12.91% | 0.785 | 2.942 | 11.15% | |
LOFD | 0.704 | 4.931 | 10.66% | 0.656 | 6.565 | 12.47% | 0.812 | 3.796 | 8.50% | |
RT | 0.524 | 5.194 | 10.81% | 0.603 | 8.282 | 13.66% | 0.598 | 4.486 | 11.60% | |
RTFD | 0.735 | 3.787 | 8.59% | 0.696 | 6.503 | 8.37% | 0.734 | 3.218 | 7.59% | |
ATFD | 0.710 | 4.792 | 10.24% | 0.635 | 6.584 | 11.80% | 0.760 | 3.032 | 10.09% | |
OFD | 0.618 | 4.910 | 10.47% | 0.766 | 5.092 | 9.95% | 0.770 | 3.066 | 9.88% | |
CR | 0.626 | 4.451 | 9.59% | 0.804 | 5.588 | 10.83% | 0.772 | 3.301 | 9.16% | |
FOD | 0.2 | 0.610 | 4.146 | 8.84% | 0.739 | 6.253 | 12.99% | 0.744 | 5.096 | 13.01% |
0.4 | 0.638 | 4.345 | 8.88% | 0.714 | 6.220 | 13.14% | 0.795 | 5.130 | 12.67% | |
0.6 | 0.669 | 4.615 | 9.49% | 0.795 | 6.111 | 12.55% | 0.819 | 4.662 | 11.72% | |
0.8 | 0.627 | 5.009 | 10.12% | 0.775 | 6.063 | 12.01% | 0.783 | 4.431 | 11.84% | |
1 | 0.610 | 4.918 | 10.47% | 0.776 | 6.092 | 11.25% | 0.804 | 4.386 | 11.26% | |
1.2 | 0.630 | 4.670 | 9.89% | 0.787 | 5.980 | 12.05% | 0.768 | 4.016 | 10.40% | |
1.4 | 0.629 | 4.689 | 9.94% | 0.765 | 6.443 | 12.65% | 0.791 | 4.092 | 10.53% | |
1.6 | 0.591 | 4.669 | 9.88% | 0.722 | 6.735 | 13.57% | 0.813 | 3.499 | 8.74% | |
1.8 | 0.587 | 4.899 | 10.24% | 0.715 | 6.673 | 12.83% | 0.791 | 3.788 | 9.35% | |
2 | 0.588 | 4.940 | 10.31% | 0.702 | 7.137 | 14.27% | 0.833 | 2.534 | 6.71% | |
DWT | d1 | 0.388 | 5.737 | 12.38% | 0.570 | 8.580 | 17.60% | 0.672 | 3.815 | 10.14% |
d2 | 0.450 | 5.267 | 11.38% | 0.577 | 8.136 | 16.60% | 0.709 | 3.410 | 8.34% | |
d3 | 0.735 | 3.727 | 7.85% | 0.714 | 7.038 | 14.80% | 0.809 | 3.499 | 8.95% | |
d4 | 0.602 | 4.513 | 9.22% | 0.690 | 7.293 | 14.81% | 0.817 | 3.333 | 8.51% | |
d5 | 0.590 | 4.771 | 10.26% | 0.712 | 6.348 | 12.49% | 0.767 | 4.366 | 10.87% | |
d6 | 0.528 | 4.835 | 10.33% | 0.558 | 7.166 | 12.71% | 0.507 | 4.547 | 11.80% | |
d7 | 0.497 | 4.878 | 10.11% | 0.509 | 7.389 | 13.24% | 0.646 | 5.585 | 14.74% | |
d8 | 0.271 | 6.149 | 13.21% | 0.542 | 7.656 | 15.85% | 0.591 | 5.318 | 12.54% | |
CWT | C1 | 0.505 | 5.201 | 11.27% | 0.609 | 8.285 | 17.16% | 0.751 | 3.198 | 8.07% |
C2 | 0.470 | 5.292 | 11.19% | 0.519 | 7.445 | 15.60% | 0.776 | 3.012 | 7.70% | |
C3 | 0.604 | 4.568 | 9.76% | 0.465 | 8.116 | 15.76% | 0.736 | 3.724 | 9.66% | |
C4 | 0.749 | 4.266 | 9.09% | 0.510 | 7.767 | 13.85% | 0.721 | 4.643 | 11.89% | |
C5 | 0.400 | 5.358 | 11.63% | 0.764 | 5.926 | 10.46% | 0.736 | 5.400 | 14.66% | |
C6 | 0.349 | 5.377 | 11.47% | 0.784 | 6.735 | 13.86% | 0.665 | 6.020 | 15.49% | |
C7 | 0.371 | 5.333 | 11.70% | 0.712 | 8.778 | 18.34% | 0.729 | 4.703 | 11.93% | |
C8 | 0.605 | 5.370 | 10.33% | 0.613 | 8.392 | 17.65% | 0.769 | 3.447 | 9.18% | |
C9 | 0.007 | 8.755 | 18.16% | 0.534 | 8.932 | 18.31% | 0.676 | 6.499 | 13.25% | |
C10 | 0.017 | 7.817 | 16.75% | 0.370 | 8.430 | 18.51% | 0.687 | 4.804 | 11.15% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Li, H.; Liu, K.; Wang, X.; Li, C.; Yuan, W. Analysis of the Effects of Different Spectral Transformation Methods on the Estimation of Chlorophyll Content of Reclaimed Vegetation in Rare Earth Mining Areas. Forests 2025, 16, 26. https://doi.org/10.3390/f16010026
Zhou Z, Li H, Liu K, Wang X, Li C, Yuan W. Analysis of the Effects of Different Spectral Transformation Methods on the Estimation of Chlorophyll Content of Reclaimed Vegetation in Rare Earth Mining Areas. Forests. 2025; 16(1):26. https://doi.org/10.3390/f16010026
Chicago/Turabian StyleZhou, Zhifa, Hengkai Li, Kunming Liu, Xiuli Wang, Chige Li, and Wubin Yuan. 2025. "Analysis of the Effects of Different Spectral Transformation Methods on the Estimation of Chlorophyll Content of Reclaimed Vegetation in Rare Earth Mining Areas" Forests 16, no. 1: 26. https://doi.org/10.3390/f16010026
APA StyleZhou, Z., Li, H., Liu, K., Wang, X., Li, C., & Yuan, W. (2025). Analysis of the Effects of Different Spectral Transformation Methods on the Estimation of Chlorophyll Content of Reclaimed Vegetation in Rare Earth Mining Areas. Forests, 16(1), 26. https://doi.org/10.3390/f16010026