A Pseudo-Waveform-Based Method for Grading ICESat-2 ATL08 Terrain Estimates in Forested Areas
Abstract
:1. Introduction
2. Study Areas and Datasets
2.1. Study Areas
2.2. Datasets
2.2.1. ICESat-2 ATL03 and ATL08 Data
2.2.2. Airborne Lidar-Derived DTM
2.2.3. Vegetation Coverage Field Data
3. Methods
3.1. Continuous Terrain Fitting
3.2. Generation of Pseudo-Waveform
3.2.1. Establishment of Statistical Buffer Zones
3.2.2. Pseudo-Waveform Generation
3.3. Grading of Terrain Estimates Based on the Pseudo-Waveform
- L1 (highest accuracy): ATL03 photons are concentrated near the fitted terrain, indicating the highest accuracy of the ATL08 terrain estimates. These estimates provide the most precise terrain elevation information.
- L2 (moderate accuracy): Approximately 50% of ATL03 photons are concentrated near the fitted terrain, with a few photons scattered in the canopy. The accuracy of these terrain estimates is slightly lower than that of the L1 estimates.
- L3 (lowest accuracy): ATL03 photons are far away from the fitted terrain. These estimates indicate the lowest accuracy, possibly mistaking noise points as valid elevation control points. As a result, they should be excluded due to poor precision.
3.4. Elevation Accuracy Assessment
4. Results and Discussion
4.1. Results
4.2. Discussion
4.2.1. Comparison Between the Proposed Method and Existing Methods
4.2.2. Limitations and Improvement for Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Level | Sufficient Condition | Necessary Conditions | Description |
---|---|---|---|
Level1 (highest accuracy) | The first highest peak is close to the ground surface, while the second highest peak is 10 m above the ground, and the highest peak value is 1.2 times greater than the secondary peak value. | ||
The first and second highest peaks are distributed on either size of the zero value, which could be caused by the fitting errors, but it still indicates a strong ground signal. | |||
The first highest peak is close to the canopy, while the second highest peak is around the ground. However, their height difference is not significant, indicating that it still represents a strong ground signal. | |||
Level2 (moderate accuracy) | There are many branches below the canopy, and photons are concentrated near ground. In addition, two peaks are near the ground surface, which are caused by fitting errors. | ||
& or | The first highest peak appears near the ground or canopy. The second highest peak is either close to or far away from the first highest peak. And their value ratio is larger than 1.5 also appear near the ground surface or canopy, which corresponds to the shrub area and forest area, respectively. | ||
The secondary peak is close to the ground surface, corresponding to relatively dense and short shrubs on the ground. In addition, there is another peak in the middle layer, corresponding to certain branches below the canopy. | |||
The secondary peak is above 8 m, corresponding to a relatively dense sub-canopy layer. In addition, there is also a peak on the ground, corresponding to some low and dense shrub cover on the ground. | |||
Except for the main peak in the canopy, there are two peaks near the zero value, which may be caused by fitting errors. | |||
There are two peaks in total, with one peak near the ground surface. This indicates that the terrain belongs to an ideal forest area with obvious stratification. | |||
Level3 (lowest accuracy) | All peak points are greater than 5 m, and there are no peaks near the ground, indicating that the ATL08 misidentified ground noise as terrain points. In this case, ICESat-2 ATL08 ground elevation indicates a negative bias. | ||
There are peaks below 3 m, indicating that the ATL08 misidentified the photon points above the ground as terrain points. In this case, ICESat-2 ATL08 ground elevation indicates a positive bias. |
References
- Hesari, M.Z.; Shataee, S.; Maghsoudi, Y.; Mohammadi, J.; Fransson, J.E.S.; Persson, H.J. Forest Variable Estimations Using TanDEM-X Data in Hyrcanian Forests. Can. J. Remote Sens. 2020, 46, 166–176. [Google Scholar] [CrossRef]
- Zhao, R.; Li, Z.W.; Feng, G.C.; Wang, Q.J.; Hu, J. Monitoring Surface Deformation over Permafrost with an Improved SBAS-InSAR Algorithm: With Emphasis on Climatic Factors Modeling. Remote Sens. Environ. 2016, 184, 276–287. [Google Scholar] [CrossRef]
- Zhou, Y.S.; Li, Z.W.; Li, J.; Zhao, R.; Ding, X.L. Geodetic Glacier Mass Balance (1975–1999) in the Central Pamir Using the SRTM DEM and KH-9 Imagery. J. Glaciol. 2019, 65, 309–320. [Google Scholar] [CrossRef]
- Mason, D.C.; Trigg, M.; Garcia-Pintado, J.; Cloke, H.L.; Neal, J.C.; Bates, P.D. Improving the TanDEM-X Digital Elevation Model for Flood Modelling Using Flood Extents from Synthetic Aperture Radar Images. Remote Sens. Environ. 2016, 173, 15–28. [Google Scholar] [CrossRef]
- Leitão, J.; De Sousa, L. Towards the Optimal Fusion of High-Resolution Digital Elevation Models for Detailed Urban Flood Assessment. J. Hydrol. 2018, 561, 651–661. [Google Scholar] [CrossRef]
- AL-Areeq, A.M.; Sharif, H.O.; Abba, S.; Chowdhury, S.; Al-Suwaiyan, M.; Benaafi, M.; Yassin, M.A.; Aljundi, I.H. Digital Elevation Model for Flood Hazards Analysis in Complex Terrain: Case Study from Jeddah, Saudi Arabia. Int. J. Appl. Earth Obs. Geoinf. 2023, 119, 103330. [Google Scholar] [CrossRef]
- Bürgmann, R.; Rosen, P.A.; Fielding, E.J. Synthetic Aperture Radar Interferometry to Measure Earth’s Surface Topography and Its Deformation. Annu. Rev. Earth Planet. Sci. 2000, 28, 169–209. [Google Scholar] [CrossRef]
- Rosen, P.A.; Hensley, S.; Joughin, I.R.; Li, F.K.; Madsen, S.N.; Rodriguez, E.; Goldstein, R.M. Synthetic Aperture Radar Interferometry. Proc. IEEE 2000, 88, 333–382. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, Z.; Fu, H.; Zhou, C.; Zhou, Y.; Wang, H.; Xie, Y. High-Resolution Sub-Canopy Topography Mapping via TanDEM-X DEM Combined with Future P-Band BIOMASS PolInSAR Data. J. Geod. 2023, 97, 114. [Google Scholar] [CrossRef]
- Atwood, D.K.; Guritz, R.M.; Muskett, R.R.; Lingle, C.S.; Sauber, J.M.; Freymueller, J.T. DEM Control in Arctic Alaska with ICESat Laser Altimetry. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3710–3720. [Google Scholar] [CrossRef]
- Wessel, B.; Gruber, A.; Huber, M.; Roth, A. TanDEM-X: Block Adjustment of Interferometric Height Models. In Proceedings of the ISPRS Hannover Workshop 2009 “High-Resolution Earth Imaging for Geospatioal Information”, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Hannover, Germany, 2–9 June 2009; pp. 1–6. [Google Scholar]
- Gruber, A.; Wessel, B.; Huber, M.; Roth, A. Operational TanDEM-X DEM Calibration and First Validation Results. ISPRS J. Photogramm. Remote Sens. 2012, 73, 39–49. [Google Scholar] [CrossRef]
- Satirapod, C.; Trisirisatayawong, I.; Homniam, P. Establishing Ground Control Points for High-Resolution Satellite Imagery Using GPS Precise Point Positioning. In Proceedings of the IGARSS 2003: IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; Volume 7, pp. 4486–4488. [Google Scholar]
- Chen, C.; Yang, S.; Li, Y. Accuracy Assessment and Correction of SRTM DEM Using ICESat/GLAS Data under Data Coregistration. Remote Sens. 2020, 12, 3435. [Google Scholar] [CrossRef]
- Li, H.; Zhao, J.; Yan, B.; Yue, L.; Wang, L. Global DEMs Vary from One to Another: An Evaluation of Newly Released Copernicus, NASA and AW3D30 DEM on Selected Terrains of China Using ICESat-2 Altimetry Data. Int. J. Digit. Earth 2022, 15, 1149–1168. [Google Scholar] [CrossRef]
- Lee, H.; Hahn, M. ICESat-2 Data Application for DEM Bias Compensation Based on Point-to-Surface Matching. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5623811. [Google Scholar] [CrossRef]
- Li, H.; Zhao, J. Evaluation of the Newly Released Worldwide AW3D30 DEM over Typical Landforms of China Using Two Global DEMs and ICESat/GLAS Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 4430–4440. [Google Scholar] [CrossRef]
- Liu, Z.W.; Zhu, J.J.; Fu, H.Q.; Zhou, C.; Zuo, T.Y. Evaluation of the Vertical Accuracy of Open Global DEMs over Steep Terrain Regions Using ICESat Data: A Case Study over Hunan Province, China. Sensors 2020, 20, 4865. [Google Scholar] [CrossRef] [PubMed]
- Schutz, B.E.; Zwally, H.J.; Shuman, C.A.; Hancock, D.; DiMarzio, J.P. Overview of the ICESat Mission. Geophys. Res. Lett. 2005, 32, L21S01. [Google Scholar] [CrossRef]
- Howat, I.M.; Smith, B.E.; Joughin, I.; Scambos, T.A. Rates of Southeast Greenland Ice Volume Loss from Combined ICESat and ASTER Observations. Geophys. Res. Lett. 2008, 35, L17505. [Google Scholar] [CrossRef]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D.; et al. The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2): Science Requirements, Concept, and Implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Neuenschwander, A.L.; Magruder, L.A. Canopy and Terrain Height Retrievals with ICESat-2: A First Look. Remote Sens. 2019, 11, 1721. [Google Scholar] [CrossRef]
- Neuenschwander, A.; Pitts, K.; Jelley, B.; Robbins, J.; Markel, J.; Popescu, S.; Nelson, R.; Harding, D.; Pederson, D.; Klotz, B.; et al. Ice, Cloud, and Land Elevation Satellite 2 (ICESat-2) Algorithm Theoretical Basis Document (ATBD) for Land-Vegetation Along-Track Products (ATL08), Version 6; National Aeronautics and Space Administration: Washington, DC, USA, 2022.
- Neuenschwander, A.; Pitts, K. The ATL08 Land and Vegetation Product for the ICESat-2 Mission. Remote Sens. Environ. 2019, 221, 247–259. [Google Scholar] [CrossRef]
- Barbarella, M.; Di Benedetto, A.; Fiani, M. Application of Supervised Machine Learning Technique on LiDAR Data for Monitoring Coastal Land Evolution. Remote Sens. 2021, 13, 4782. [Google Scholar] [CrossRef]
- Neuenschwander, A.; Guenther, E.; White, J.C.; Duncanson, L.; Montesano, P. Validation of ICESat-2 Terrain and Canopy Heights in Boreal Forests. Remote Sens. Environ. 2020, 251, 112110. [Google Scholar] [CrossRef]
- Xing, Y.; Huang, J.; Gruen, A.; Qin, L. Assessing the Performance of ICESat-2/ATLAS Multi-Channel Photon Data for Estimating Ground Topography in Forested Terrain. Remote Sens. 2020, 12, 2084. [Google Scholar] [CrossRef]
- Zhu, J.; Yang, P.; Li, Y.; Xie, Y.; Fu, H. Accuracy Assessment of ICESat-2 ATL08 Terrain Estimates: A Case Study in Spain. J. Cent. South Univ. 2022, 29, 226–238. [Google Scholar] [CrossRef]
- Tian, X.; Shan, J. Comprehensive Evaluation of the ICESat-2 ATL08 Terrain Product. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8195–8209. [Google Scholar] [CrossRef]
- Li, B.; Xie, H.; Liu, S.; Tong, X.; Tang, H.; Wang, X. A Method of Extracting High-Accuracy Elevation Control Points from ICESat-2 Altimetry Data. Photogramm. Eng. Remote Sens. 2021, 87, 821–830. [Google Scholar] [CrossRef]
- González, J.H.; Bachmann, M.; Scheiber, R.; Krieger, G. Definition of ICESat Selection Criteria for Their Use as Height References for TanDEM-X. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2750–2757. [Google Scholar] [CrossRef]
- Ye, J.; Qiang, Y.; Zhang, R.; Liu, X.; Deng, Y.; Zhang, J. High-Precision Digital Surface Model Extraction from Satellite Stereo Images Fused with ICESat-2 Data. Remote Sens. 2021, 14, 142. [Google Scholar] [CrossRef]
- Shang, D.; Zhang, Y.; Dai, C.; Ma, Q.; Wang, Z. Extraction Strategy for ICESat-2 Elevation Control Points Based on ATL08 Product. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5705012. [Google Scholar] [CrossRef]
- Heckman, K.A.; Nave, L.E.; Bowman, M.; Gallo, A.; Hatten, J.A.; Matosziuk, L.M.; Possinger, A.R.; SanClements, M.; Strahm, B.D.; Weiglein, T.L.; et al. Divergent Controls on Carbon Concentration and Persistence between Forests and Grasslands of the Conterminous US. Biogeochemistry 2021, 156, 41–56. [Google Scholar] [CrossRef]
- Neumann, T.A.; Martino, A.J.; Markus, T.; Bae, S.; Bock, M.R.; Brenner, A.C.; Brunt, K.M.; Cavanaugh, J.; Fernandes, S.T.; Hancock, D.W.; et al. The Ice, Cloud, and Land Elevation Satellite–2 Mission: A Global Geolocated Photon Product Derived from the Advanced Topographic Laser Altimeter System. Remote Sens. Environ. 2019, 233, 111325. [Google Scholar] [CrossRef]
- National Ecological Observatory Network (NEON) Elevation—LiDAR (DP3.30024.001), Provisional Data. Available online: https://data.neonscience.org/data-products/DP3.30024.001 (accessed on 5 May 2024).
- Myers, E.; Hess, K.; Yang, Z.; Xu, J.; Wong, A.; Doyle, D.; Woolard, J.; White, S.; Le, B.; Gill, S.; et al. VDatum and Strategies for National Coverage. In Proceedings of the OCEANS 2007, Aberdeen, Scotland, 18–21 June 2007; pp. 1–8. [Google Scholar]
- Hess, K.; Kenny, M.; Myers, E. Standard Procedures to Develop and Support NOAA’s Vertical Datum Transformation Tool, VDATUM; NOAA NOS Technical Report; NOAA: Silver Spring, MD, USA, 2012.
- Sexton, J.O.; Song, X.-P.; Feng, M.; Noojipady, P.; Anand, A.; Huang, C.; Kim, D.-H.; Collins, K.M.; Channan, S.; DiMiceli, C.; et al. Global, 30-m Resolution Continuous Fields of Tree Cover: Landsat-Based Rescaling of MODIS Vegetation Continuous Fields with Lidar-Based Estimates of Error. Int. J. Digit. Earth 2013, 6, 427–448. [Google Scholar] [CrossRef]
- Perperoglou, A.; Sauerbrei, W.; Abrahamowicz, M.; Schmid, M. A Review of Spline Function Procedures in R. BMC Med. Res. Methodol. 2019, 19, 46. [Google Scholar] [CrossRef] [PubMed]
- Arun, P. A Terrain-Based Hybrid Approach towards DEM Interpolation. Ann. GIS 2013, 19, 245–252. [Google Scholar] [CrossRef]
- Heer, J. Fast & Accurate Gaussian Kernel Density Estimation. In Proceedings of the IEEE Visualization Conference (VIS), New Orleans, LA, USA, 24–29 October 2021; pp. 11–15. [Google Scholar]
- Liu, G.; Ke, J. End-to-End Full-Waveform Echo Decomposition Based on Self-Attention Classification and U-Net Decomposition. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 7978–7987. [Google Scholar] [CrossRef]
- Kim, H.; Jung, M.; Lee, J.; Wie, G. Progressive Gaussian Decomposition of Airborne Bathymetric LiDAR Waveform for Improving Seafloor Point Extraction. Appl. Sci. 2023, 13, 10939. [Google Scholar] [CrossRef]
- Imoto, S.; Konishi, S. Selection of Smoothing Parameters in B-Spline Nonparametric Regression Models Using Information Criteria. Ann. Inst. Stat. Math. 2003, 55, 671–687. [Google Scholar] [CrossRef]
- Corcoran, F.; Parrish, C.E. Diffuse Attenuation Coefficient (Kd) from ICESat-2 ATLAS Spaceborne LiDAR Using Random-Forest Regression. Photogramm. Eng. Remote Sens. 2021, 87, 831–840. [Google Scholar] [CrossRef]
- Kwon, S.-K.; Jung, H.-S.; Baek, W.-K.; Kim, D. Classification of Forest Vertical Structure in South Korea from Aerial Orthophoto and Lidar Data Using an Artificial Neural Network. Appl. Sci. 2017, 7, 1046. [Google Scholar] [CrossRef]
- Olivier, R.; Cao, H. Nearest Neighbor Value Interpolation. Int. J. Adv. Comput. Sci. Appl. 2012, 3, 25–30. [Google Scholar] [CrossRef]
- He, L.; Pang, Y.; Zhang, Z.; Liang, X.; Chen, B. ICESat-2 Data Classification and Estimation of Terrain Height and Canopy Height. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103233. [Google Scholar] [CrossRef]
- Wang, M.; Wei, Y.; Yang, B.; Zhou, X. Extraction and analysis of global elevation control points from ICESat-2/ATLAS data. Geomat. Inf. Sci. Wuhan Univ. 2021, 46, 184–192. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, Y.; Wang, T.; Zhao, X.; Zhang, K.; Wang, L. Elevation Control Points Extraction and Accuracy Validation based on ICESat-2 Data. J. Geo-Inf. Sci. 2022, 24, 1234–1244. [Google Scholar] [CrossRef]
- Feng, T.; Duncanson, L.; Montesano, P.; Hancock, S.; Minor, D.; Guenther, E.; Neuenschwander, A. A Systematic Evaluation of Multi-Resolution ICESat-2 ATL08 Terrain and Canopy Heights in Boreal Forests. Remote Sens. Environ. 2023, 291, 113570. [Google Scholar] [CrossRef]
- Wang, R.; Lv, X.; Zhang, L. A Novel Three-Dimensional Block Adjustment Method for Spaceborne InSAR-DEM Based on General Models. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 3973–3987. [Google Scholar] [CrossRef]
- Wu, K.; Fu, H.; Zhu, J.; Hu, H.; Li, Y.; Liu, Z.; Wan, A.; Wang, F. InSAR-DEM Block Adjustment Model for Upcoming BIOMASS Mission: Considering Atmospheric Effects. Remote Sens. 2024, 16, 1764. [Google Scholar] [CrossRef]
- Magruder, L.; Neuenschwander, A.; Klotz, B. Digital Terrain Model Elevation Corrections Using Space-Based Imagery and ICESat-2 Laser Altimetry. Remote Sens. Environ. 2021, 264, 112621. [Google Scholar] [CrossRef]
- Li, Y.; Fu, H.; Zhu, J.; Wu, K.; Yang, P.; Wang, L.; Gao, S. A Method for SRTM DEM Elevation Error Correction in Forested Areas Using ICESat-2 Data and Vegetation Classification Data. Remote Sens. 2022, 14, 3380. [Google Scholar] [CrossRef]
- Li, B.; Xie, H.; Tong, X.; Tang, H.; Liu, S. A Global-Scale DEM Elevation Correction Model Using ICESat-2 Laser Altimetry Data. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4408715. [Google Scholar] [CrossRef]
Study Area | Climate Characteristics | Mean Annual Precipitation (mm) | Average Annual Temperature (°C) |
---|---|---|---|
DELA | Subtropical climate. | 1370 | 7.6 |
MLBS | Humid continental climate. | 1227 | 8.6 |
GRSM | The variable elevations reflect the diverse climate and habitat changes characteristic of the study area. | 1440 (lower valleys)~2160 (some of the highest peaks) | 13.1 |
TREE | Bitterly cold winters and generally cool summers with brief periods of excessive heat. | 797 | 4.8 |
Study Area | Forest Type | Tree Species | Average Forest Height (m) | Vegetation Coverage Fraction (%) | Terrain Slope (°) |
---|---|---|---|---|---|
DELA | broad-leaf forests | Bottomland hardwood forest, oak and hickory with some pine | 14.84 | 61.14 | 3.45 |
12.68 | 4.77 | ||||
(10–90) | (0–40) | ||||
MLBS | broad-leaf forests | Red maple and white oak | 13.35 | 52.07 | 15.24 |
9.10 | 8.76 | ||||
(33–67) | (0–45) | ||||
GRSM | broad-leaf forests | Yellow poplar, red maple and chestnut oak | 16.27 | 59.68 | 25.41 |
8.14 | 11.44 | ||||
(18–82) | (0–68) | ||||
TREE | coniferous forests | Black spruce and tamarack | 9.09 | 76.27 | 7.82 |
9.60 | 6.98 | ||||
(13–92) | (0–40) |
Study Area | Acquisition Dates | Data Acquisition |
---|---|---|
DELA | 26 November 2018 | ATL03/ATL08_20181126072045_08960106_005_01.h5 |
7 May 2019 | ATL03/ATL08_20190507113156_05990302_005_01.h5 | |
4 September 2019 | ATL03/ATL08_20190904054742_10410402_005_01.h5 | |
4 December 2019 | ATL03/ATL08_20191204012732_10410502_005_01.h5 | |
24 May 2020 | ATL03/ATL08_20200524051937_08960706_005_01.h5 | |
3 August 2020 | ATL03/ATL08_20200803135050_05990802_005_01.h5 | |
23 August 2020 | ATL03/ATL08_20200823005922_08960806_005_01.h5 | |
2 November 2020 | ATL03/ATL08_20201102093039_05990902_005_01.h5 | |
MLBS | 23 March 2019 | ATL03/ATL08_20190323011928_12920206_005_01.h5 |
20 March 2020 | ATL03/ATL08_20200320075832_12920606_005_01.h5 | |
GRSM | 6 May 2019 | ATL03/ATL08_20190506232207_05910306_005_01.h5 |
13 July 2019 | ATL03/ATL08_20190713080125_02330402_005_01.h5 | |
11 August 2019 | ATL03/ATL08_20190811063738_06750402_005_01.h5 | |
10 November 2019 | ATL03/ATL08_20191110021732_06750502_005_01.h5 | |
10 April 2020 | ATL03/ATL08_20200410190101_02330702_005_01.h5 | |
3 August 2020 | ATL03/ATL08_20200803014101_05910806_005_01.h5 | |
TREE | 4 September 2019 | ATL03/ATL08_20190904054742_10410402_005_01.h5 |
5 November 2019 | ATL03/ATL08_20191105025131_05990502_005_01.h5 | |
11 November 2019 | ATL03/ATL08_20191111145042_06980506_005_01.h5 | |
10 February 2020 | ATL03/ATL08_20200210103025_06980606_005_01.h5 |
Dataset | Fields | Explanations |
---|---|---|
ATL08 | lon_ph | Longitude and latitude of the center-most signal photon within each segment. |
lat_ph | ||
h_te_best_fit | The best-fit terrain elevation at the midpoint location of each 100 m segment, relative to WGS-84. | |
ATL03 | lon_ph, | Longitude and latitude of each received photon. |
lat_ph | ||
h_ph | Height of each received photon, relative to WGS-84. | |
ds_gt | Recordings of the ground tracks (gt1l, gt1r, gt2l, gt2r, gt3l, gt3r), which are used for recognizing strong beams. | |
sc_orient | Tracking spacecraft orientations. |
Parameters | Explanation |
---|---|
LgstPeak_Value | The maximum peak value in the pseudo-waveform, which is the maximum value of the function established by KDE. |
LgstPeak_Index | The elevation difference between the maximum value point and ground. |
SecPeak_Value | The second largest peak value in the pseudo-waveform. |
SecPeak_Index | The elevation difference between the second largest value point and ground. |
ThdPeak_Value | The third largest peak value in the pseudo-waveform. |
ThdPeak_Index | The elevation difference between the third largest value point and ground. |
Study Area | Indicator | Raw | L1 | L2 | L3 |
---|---|---|---|---|---|
DELA | RMSE (m) | 2.05 | 0.99 | 1.75 | 4.85 |
R2 | 0.92 | 0.98 | 0.92 | 0.26 | |
STD (m) | 2.04 | 0.94 | 1.68 | 4.56 | |
RMSE_flu | - | −51.7% | −14.63% | +136.6% | |
MLBS | RMSE (m) | 1.22 | 0.51 | 1.46 | 4.96 |
R2 | 1.0 | 1.0 | 1.0 | 1.0 | |
STD (m) | 1.17 | 0.46 | 1.36 | 4.48 | |
RMSE_flu | - | −58.2% | +19.7% | +306.5% | |
GRSM | RMSE (m) | 11.13 | 1.88 | 6.69 | 14.4 |
R2 | 1.0 | 1.0 | 1.0 | 1.0 | |
STD (m) | 11.03 | 1.88 | 6.66 | 13.98 | |
RMSE_flu | - | −83.1% | −39.9% | +29.4% | |
TREE | RMSE (m) | 2.08 | 0.65 | 1.54 | 6.57 |
R2 | 0.99 | 1.0 | 1.0 | 0.93 | |
STD (m) | 2.03 | 0.62 | 1.45 | 6.07 | |
RMSE_flu | - | −68.8% | −26.0% | +215.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, R.; Hu, Q.; Liu, Z.; Li, Y.; Zhang, K. A Pseudo-Waveform-Based Method for Grading ICESat-2 ATL08 Terrain Estimates in Forested Areas. Forests 2024, 15, 2113. https://doi.org/10.3390/f15122113
Zhao R, Hu Q, Liu Z, Li Y, Zhang K. A Pseudo-Waveform-Based Method for Grading ICESat-2 ATL08 Terrain Estimates in Forested Areas. Forests. 2024; 15(12):2113. https://doi.org/10.3390/f15122113
Chicago/Turabian StyleZhao, Rong, Qing Hu, Zhiwei Liu, Yi Li, and Kun Zhang. 2024. "A Pseudo-Waveform-Based Method for Grading ICESat-2 ATL08 Terrain Estimates in Forested Areas" Forests 15, no. 12: 2113. https://doi.org/10.3390/f15122113
APA StyleZhao, R., Hu, Q., Liu, Z., Li, Y., & Zhang, K. (2024). A Pseudo-Waveform-Based Method for Grading ICESat-2 ATL08 Terrain Estimates in Forested Areas. Forests, 15(12), 2113. https://doi.org/10.3390/f15122113