LIDAR-Based Forest Biomass Remote Sensing: A Review of Metrics, Methods, and Assessment Criteria for the Selection of Allometric Equations
Abstract
:1. Introduction
Criteria for Literature Review
2. LIDAR Technology for Biomass Studies
2.1. Waveform or Discrete Return Signal
2.2. Profiling or Scanning Pattern
2.3. Small or Large Footprint Size
2.4. Spaceborne, Airborne, or Terrestrial Platform
2.5. Errors and Accuracy of LIDAR Measurements
3. Height Metrics for Biomass Model
3.1. LIDAR Metrics for Closed-Canopy and Open-Canopy Conditions
3.2. Metrics Selection for LIDAR Biomass Model
4. Biomass Estimation Methods
4.1. Model Development
4.1.1. Parametric-Based Model
4.1.2. Nonparametric-Based Model
5. Biomass Model Assessment
5.1. Coefficient of Determination
5.2. Root Mean Square Error
5.3. Information Criterion
5.4. Cross-Validation
6. Uncertainty Analysis
7. LIDAR Technology for Biomass Studies: Emerging Trends
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Global Forest Resources Assessment 2010. Available online: https://www.fao.org/publications/card/en/c/e4fa9d60-5207-5a96-976c-cd2e6f3519a5 (accessed on 21 August 2023).
- Pan, Y.; Birdsey, R.A.; Phillips, O.L.; Jackson, R.B. The Structure, Distribution, and Biomass of the World’s Forests. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 593–622. [Google Scholar] [CrossRef]
- WMO. Essential Climate Variables. Available online: https://public.wmo.int/en/programmes/global-climate-observing-system/essential-climate-variables (accessed on 19 August 2023).
- Fischer, R.; Knapp, N.; Bohn, F.; Shugart, H.H.; Huth, A. The Relevance of Forest Structure for Biomass and Productivity in Temperate Forests: New Perspectives for Remote Sensing. Surv. Geophys. 2019, 40, 709–734. [Google Scholar] [CrossRef]
- Kreuzberg, E. EO College MOOC Course Material_Biomass Estimation. Available online: https://eo-college.org/courses/forest-monitoring/lessons/biomass-estimation-2/ (accessed on 1 April 2023).
- Malhi, Y.; Wood, D.; Baker, T.R.; Wright, J.; Phillips, O.L.; Cochrane, T.; Meir, P.; Chave, J.; Almeida, S.; Arroyo, L.; et al. The regional variation of aboveground live biomass in old-growth Amazonian forests. Glob. Chang. Biol. 2006, 12, 1107–1138. [Google Scholar] [CrossRef]
- Jenkins, J.C.; Birdsey, R.A.; Pan, Y. Biomass and Npp Estimation for the Mid-Atlantic Region (USA) Using Plot-Level Forest Inventory Data. Ecol. Appl. 2001, 11, 1174–1193. [Google Scholar] [CrossRef]
- Blackard, J.; Finco, M.; Helmer, E.; Holden, G.; Hoppus, M.; Jacobs, D.; Lister, A.; Moisen, G.; Nelson, M.; Riemann, R.; et al. Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information. Remote Sens. Environ. 2008, 112, 1658–1677. [Google Scholar] [CrossRef]
- Wang, G.; Weng, Q. Remote Sensing of Natural Resources; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Foody, G.M.; Boyd, D.S.; Cutler, M.E.J. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sens. Environ. 2003, 85, 463–474. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Q.; Wang, G.; Liu, L.; Li, G.; Moran, E. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. Int. J. Digit. Earth 2014, 9, 63–105. [Google Scholar] [CrossRef]
- Wulder, M.A.; Bater, C.W.; Coops, N.C.; Hilker, T.; White, J.C. The role of LiDAR in sustainable forest management. For. Chron. 2008, 84, 807–826. [Google Scholar] [CrossRef]
- Hollaus, M.; Wagner, W.; Maier, B.; Schadauer, K. Airborne Laser Scanning of Forest Stem Volume in a Mountainous Environment. Sensors 2007, 7, 1559–1577. [Google Scholar] [CrossRef]
- Akay, A.E.; Oğuz, H.; Karas, I.R.; Aruga, K. Using LiDAR technology in forestry activities. Environ. Monit. Assess. 2009, 151, 117–125. [Google Scholar] [CrossRef]
- Lefsky, M.A.; Cohen, W.B.; Parker, G.G.; Harding, D.J. LIDAR remote sensing for ecosystem studies. BioScience 2002, 52, 19–30. [Google Scholar] [CrossRef]
- Gatziolis, D.; Andersen, H.E. A Guide to LIDAR Data Acquisition and Processing for the Forests of the Pacific Northwest; USDA Forest Service—General Technical Report PNW-GTR; USDA: Washington, DC, USA, 2008; Volume 768. [Google Scholar]
- Reutebuch, S.E.; Andersen, H.; Mcgaughey, R.J. Light Detection and Ranging (LIDAR): An emerging tool for Multiple Resource Inventory. J. For. 2005, 103, 286–292. [Google Scholar]
- Rosette, J.; Suárez, J.; Nelson, R.; Los, S.; Cook, B.; North, P. LIDAR Remote Sensing for Biomass Assessment. Remote Sens. Biomass Princ. Appl. 2012, 1–25. [Google Scholar] [CrossRef]
- Reese, H.; Olsson, H. Remote Sensing of Forest. In Meteorology of Tropical West Africa: The Foreca Sters’ Handbook; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Wulder, M.A.; White, J.C.; Bater, C.W.; Coops, N.C.; Hopkinson, C.; Chen, G. LIDAR plots—A new large-area data collection option: Context, concepts, and case study. Can. J. Remote Sens. 2012, 38, 600–618. [Google Scholar] [CrossRef]
- Wulder, M.A.; Franklin, E.S. Remote Sensing of Forest Environments Concepts and Case Studies, 1st ed.; Kluwer Academic Publisher: Alphen am Rhein, The Netherlands, 2003. [Google Scholar]
- Dubayah, R.O.; Drake, J.B. LIDAR Remote Sensing for Forestry. J. For. 2000, 98, 44–46. [Google Scholar]
- Quegan, S.; Le Toan, T.; Chave, J.; Dall, J.; Exbrayat, J.-F.; Minh, D.H.T.; Lomas, M.; D’Alessandro, M.M.; Paillou, P.; Papathanassiou, K.; et al. The European Space Agency BIOMASS mission: Measuring forest above-ground biomass from space. Remote Sens. Environ. 2019, 227, 44–60. [Google Scholar] [CrossRef]
- Demol, M.; Verbeeck, H.; Gielen, B.; Armston, J.; Burt, A.; Disney, M.; Duncanson, L.; Hackenberg, J.; Kükenbrink, D.; Lau, A.; et al. Estimating forest above-ground biomass with terrestrial laser scanning: Current status and future directions. Methods Ecol. Evol. 2022, 13, 1628–1639. [Google Scholar] [CrossRef]
- Lefsky, M.A. A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Flores-Anderson, A.I.; Herndon, K.E.; Thapa, R.B.; Cherrington, E. SAR Handbook: Comprehensive Methodologies for Forest Monitoring and Biomass Estimation; NASA: Washington, DC, USA, 2019. [Google Scholar]
- Meyer, V.; Saatchi, S.S.; Chave, J.; Dalling, J.W.; Bohlman, S.; Fricker, G.A.; Robinson, C.; Neumann, M.; Hubbell, S. Detecting tropical forest biomass dynamics from repeated airborne LIDAR measurements. Biogeosciences 2013, 10, 5421–5438. [Google Scholar] [CrossRef]
- Newnham, G.J.; Armston, J.D.; Calders, K.; Disney, M.I.; Lovell, J.L.; Schaaf, C.B.; Strahler, A.H.; Danson, F.M. Terrestrial Laser Scanning for Plot-Scale Forest Measurement. Curr. For. Rep. 2015, 1, 239–251. [Google Scholar] [CrossRef]
- Stovall, A.E.L.; Anderson-Teixeira, K.J.; Shugart, H.H. Assessing terrestrial laser scanning for developing non-destructive biomass allometry. For. Ecol. Manag. 2018, 427, 217–229. [Google Scholar] [CrossRef]
- Lau, A.; Calders, K.; Bartholomeus, H.; Martius, C.; Raumonen, P.; Herold, M.; Vicari, M.; Sukhdeo, H.; Singh, J.; Goodman, R. Tree Biomass Equations from Terrestrial LIDAR: A Case Study in Guyana. Forests 2019, 10, 527. [Google Scholar] [CrossRef]
- van Leeuwen, M.; Nieuwenhuis, M. Retrieval of forest structural parameters using LiDAR remote sensing. Eur. J. For. Res. 2010, 129, 749–770. [Google Scholar] [CrossRef]
- Dong, P.; Chen, Q. LIDAR Remote Sensing and Applications; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2020; Volume 21. [Google Scholar]
- Evans, J.; Hudak, A.; Faux, R.; Smith, A.M. Discrete Return LIDAR in Natural Resources: Recommendations for Project Planning, Data Processing, and Deliverables. Remote Sens. 2009, 1, 776–794. [Google Scholar] [CrossRef]
- Jubanski, J.; Ballhorn, U.; Kronseder, K.; Franke, J.; Siegert, F. Detection of large above-ground biomass variability in lowland forest ecosystems by airborne LIDAR. Biogeosciences 2013, 10, 3917–3930. [Google Scholar] [CrossRef]
- Jensen, J.R. Remote Sensing of the Environment: An Earth Resource Perspective, 2nd ed.; Pearson Education Limited: Harlow, UK, 2014; Volume 1. [Google Scholar]
- Pascual, C.; García-Abril, A.; Cohen, W.B.; Martín-Fernández, S. Relationship between LiDAR-derived forest canopy height and Landsat images. Int. J. Remote Sens. 2010, 31, 1261–1280. [Google Scholar] [CrossRef]
- Cao, L.; Pan, J.; Li, R.; Li, J.; Li, Z. Integrating Airborne LIDAR and Optical Data to Estimate Forest Aboveground Biomass in Arid and Semi-Arid Regions of China. Remote Sens. 2018, 10, 532. [Google Scholar] [CrossRef]
- Popescu, S.C.; Wynne, R.H.; Nelson, R.F. Measuring individual tree crown diameter with LIDAR and assessing its influence on estimating forest volume and biomass. Can. J. Remote Sens. 2003, 29, 564–577. [Google Scholar] [CrossRef]
- Chen, Q.; Baldocchi, D.; Gong, P.; Kelly, M. Isolating Individual Trees in a Savanna Woodland Using Small Footprint LIDAR Data. Photogramm. Eng. Remote Sens. 2006, 72, 923–932. [Google Scholar] [CrossRef]
- Coops, N.C.; Tompalski, P.; Goodbody, T.R.H.; Queinnec, M.; Luther, J.E.; Bolton, D.K.; White, J.C.; Wulder, M.A.; van Lier, O.R.; Hermosilla, T. Modelling LIDAR-derived estimates of forest attributes over space and time: A review of approaches and future trends. Remote Sens. Environ. 2021, 260, 112477. [Google Scholar] [CrossRef]
- Chen, Q. LIDAR Remote Sensing of Vegetation Biomass. In Remote Sensing of Natural Resources, 1st ed.; Routledge: London, UK, 2013. [Google Scholar]
- Bian, Y.; Zou, P.; Shu, Y.; Yu, R. Individual tree delineation in deciduous forest areas with LIDAR point clouds. Can. J. Remote Sens. 2014, 40, 152–163. [Google Scholar] [CrossRef]
- Silva, C.A.; Hudak, A.T.; Vierling, L.A.; Loudermilk, E.L.; O’brien, J.J.; Hiers, J.K.; Jack, S.B.; Gonzalez-Benecke, C.; Lee, H.; Falkowski, M.J.; et al. Imputation of Individual Longleaf Pine (Pinus palustris Mill.) Tree Attributes from Field and LIDAR Data. Can. J. Remote Sens. 2016, 42, 554–573. [Google Scholar] [CrossRef]
- Kwak, D.-A.; Lee, W.-K.; Lee, J.-H.; Biging, G.S.; Gong, P. Detection of individual trees and estimation of tree height using LIDAR data. J. For. Res. 2010, 12, 425–434. [Google Scholar] [CrossRef]
- Adhikari, A.; Montes, C.R.; Peduzzi, A. A Comparison of Modeling Methods for Predicting Forest Attributes Using LIDAR Metrics. Remote Sens. 2023, 15, 1284. [Google Scholar] [CrossRef]
- Matasci, G.; Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C.; Hobart, G.W.; Zald, H.S.J. Large-area mapping of Canadian boreal forest cover, height, biomass and other structural attributes using Landsat composites and LIDAR plots. Remote Sens. Environ. 2018, 209, 90–106. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, T.; Skidmore, A.K.; Heurich, M. Important LIDAR metrics for discriminating forest tree species in Central Europe. ISPRS J. Photogramm. Remote Sens. 2018, 137, 163–174. [Google Scholar] [CrossRef]
- Li, Y.; Wang, R.; Shi, W.; Yu, Q.; Li, X.; Chen, X. Research on Accurate Estimation Method of Eucalyptus Biomass Based on Airborne LIDAR Data and Aerial Images. Sustainability 2022, 14, 10576. [Google Scholar] [CrossRef]
- Michez, A.; Bauwens, S.; Bonnet, S.; Lejeune, P. Characterization of Forests with LIDAR Technology. In Land Surface Remote Sensing in Agriculture and Forest; Elsevier: Amsterdam, The Netherlands, 2016; pp. 331–362. [Google Scholar]
- Yang, Q.; Su, Y.; Hu, T.; Jin, S.; Liu, X.; Niu, C.; Liu, Z.; Kelly, M.; Wei, J.; Guo, Q. Allometry-based estimation of forest aboveground biomass combining LIDAR canopy height attributes and optical spectral indexes. For. Ecosyst. 2022, 9, 100059. [Google Scholar] [CrossRef]
- Chen, Q.; Vaglio Laurin, G.; Battles, J.J.; Saah, D. Integration of airborne LIDAR and vegetation types derived from aerial photography for mapping aboveground live biomass. Remote Sens. Environ. 2012, 121, 108–117. [Google Scholar] [CrossRef]
- Brown, J.H.; West, G.B.; Enquist, B.J. Yes, West, Brown and Enquist's model of allometric scaling is both mathematically correct and biologically relevant. Funct. Ecol. 2005, 19, 735–738. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Q.; Wang, G.; Moran, E.; Batistella, M.; Zhang, M.; Vaglio Laurin, G.; Saah, D. Aboveground Forest Biomass Estimation with Landsat and LIDAR Data and Uncertainty Analysis of the Estimates. Int. J. For. Res. 2012, 2012, 436537. [Google Scholar] [CrossRef]
- Means, J.E.; Acker, S.A.; Harding, D.J.; Blair, J.B.; Lefsky, M.A.; Cohen, W.B.; Harmon, M.E.; McKee, W.A. Use of Large-Footprint Scanning Airborne LIDAR to Estimate Forest Stand Characteristics in the Western Cascades of Oregon. Remote Sens. Environ. 1999, 67, 298–308. [Google Scholar] [CrossRef]
- Li, L.; Guo, Q.; Tao, S.; Kelly, M.; Xu, G. LIDAR with multi-temporal MODIS provide a means to upscale predictions of forest biomass. ISPRS J. Photogramm. Remote Sens. 2015, 102, 198–208. [Google Scholar] [CrossRef]
- Holmgren, J.; Persson, Å. Identifying species of individual trees using airborne laser scanner. Remote Sens. Environ. 2004, 90, 415–423. [Google Scholar] [CrossRef]
- Reitberger, J.; Schnörr, C.; Krzystek, P.; Stilla, U. 3D segmentation of single trees exploiting full waveform LIDAR data. ISPRS J. Photogramm. Remote Sens. 2009, 64, 561–574. [Google Scholar] [CrossRef]
- Namaalwa, J.; Sankhayan, P.L.; Hofstad, O. A dynamic bio-economic model for analyzing deforestation and degradation: An application to woodlands in Uganda. For. Policy Econ. 2007, 9, 479–495. [Google Scholar] [CrossRef]
- Saei Jamalabad, M.; Abkar, A.A. Forest Canopy Density Monitoring, Using Satellite Images. In Proceedings of the Geo-Imagery Bridging Continents XXth ISPRS Congress, Istanbul, Turkey, 12–23 July 2004. [Google Scholar]
- Falkowski, M.J.; Gessler, P.E.; Morgan, P.; Hudak, A.T.; Smith, A.M.S. Characterizing and mapping forest fire fuels using ASTER imagery and gradient modeling. For. Ecol. Manag. 2005, 217, 129–146. [Google Scholar] [CrossRef]
- Joshi, C.; de Leeuwa, J.; van Durena, I.C. Remote Sensing and GIS Applications for Mapping Spatial Modelling of Invasive Spesies. Geo. Inf. Sci. 2002, 2, 669–677. [Google Scholar]
- Basuki, T.M.; van Laake, P.E.; Skidmore, A.K.; Hussin, Y.A. Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. For. Ecol. Manag. 2009, 257, 1684–1694. [Google Scholar] [CrossRef]
- Mukuralinda, A.; Kuyah, S.; Ruzibiza, M.; Ndoli, A.; Nabahungu, N.L.; Muthuri, C. Allometric equations, wood density and partitioning of aboveground biomass in the arboretum of Ruhande, Rwanda. Trees For. People 2021, 3, 100050. [Google Scholar] [CrossRef]
- Nam, V.T.; van Kuijk, M.; Anten, N.P. Allometric Equations for Aboveground and Belowground Biomass Estimations in an Evergreen Forest in Vietnam. PLoS ONE 2016, 11, e0156827. [Google Scholar] [CrossRef] [PubMed]
- Chave, J.; Coomes, D.; Jansen, S.; Lewis, S.L.; Swenson, N.G.; Zanne, A.E. Towards a worldwide wood economics spectrum. Ecol. Lett. 2009, 12, 351–366. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.C.; Malczewski, G. Wood carbon content of tree species in Eastern China: Interspecific variability and the importance of the volatile fraction. J. Environ. Manag. 2007, 85, 659–662. [Google Scholar] [CrossRef] [PubMed]
- Muller-Landau, H.C. Interspecific and inter-site variation in wood specific gravity of tropical trees. Biotropica 2004, 36, 20–32. [Google Scholar] [CrossRef]
- Ediriweera, S.; Pathirana, S.; Danaher, T.; Nichols, D. LIDAR Remote Sensing of Structural Properties of Subtropical Rainforest and Eucalypt Forest in Complex Terrain in North-Eastern Australia. J. Trop. For. Sci. 2014, 26, 397–408. [Google Scholar]
- Drake, J.B.; Robert, G.K.; Ralph, O.D.; David, B.C.; Richard, C.; Blair, J.B.; Hofton, M. Above-Ground Biomass Estimation in Closed Canopy Neotropical Forests Using LIDAR Remote Sensing: Factors Affecting the Generality of Relationships. Glob. Ecol. Biogeogr. 2003, 12, 147–159. [Google Scholar] [CrossRef]
- Asner, G.P.; Mascaro, J. Mapping tropical forest carbon: Calibrating plot estimates to a simple LIDAR metric. Remote Sens. Environ. 2014, 140, 614–624. [Google Scholar] [CrossRef]
- Andersen, H.-E.; McGaughey, R.J.; Reutebuch, S.E. Estimating forest canopy fuel parameters using LIDAR data. Remote Sens. Environ. 2005, 94, 441–449. [Google Scholar] [CrossRef]
- Gleason, C.J.; Im, J. Forest biomass estimation from airborne LIDAR data using machine learning approaches. Remote Sens. Environ. 2012, 125, 80–91. [Google Scholar] [CrossRef]
- Riaño, D.; Chuvieco, E.; Condés, S.; González-Matesanz, J.; Ustin, S.L. Generation of crown bulk density for Pinus sylvestris L. from LIDAR. Remote Sens. Environ. 2004, 92, 345–352. [Google Scholar] [CrossRef]
- Labriere, N.; Tao, S.; Chave, J.; Scipal, K.; Le Toan, T.; Abernethy, K.; Alonso, A.; Barbier, N.; Bissiengou, P.; Casal, T.; et al. In Situ Reference Datasets from the TropiSAR and AfriSAR Campaigns in Support of Upcoming Spaceborne Biomass Missions. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3617–3627. [Google Scholar] [CrossRef]
- Næsset, E. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens. Environ. 2002, 80, 88–99. [Google Scholar] [CrossRef]
- Solberg, S.; Naesset, E.; Bollandsås, O.M. Single tree segmentation using airborne laser scanner data in a structurally heterogeneous spruce forest. Photogramm. Eng. Remote Sens. 2006, 72, 1369–1378. [Google Scholar] [CrossRef]
- Coomes, D.A.; Dalponte, M.; Jucker, T.; Asner, G.P.; Banin, L.F.; Burslem, D.F.R.P.; Lewis, S.L.; Nilus, R.; Phillips, O.L.; Phua, M.-H.; et al. Area-based vs tree-centric approaches to mapping forest carbon in Southeast Asian forests from airborne laser scanning data. Remote Sens. Environ. 2017, 194, 77–88. [Google Scholar] [CrossRef]
- Morsdorf, F.; Meier, E.; Kötz, B.; Itten, K.I.; Dobbertin, M.; Allgöwer, B. LIDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management. Remote Sens. Environ. 2004, 92, 353–362. [Google Scholar] [CrossRef]
- Queinnec, M.; Coops, N.C.; White, J.C.; McCartney, G.; Sinclair, I. Developing a forest inventory approach using airborne single photon LIDAR data: From ground plot selection to forest attribute prediction. For. Int. J. For. Res. 2021, 95, 347–362. [Google Scholar] [CrossRef]
- Deb, D.; Singh, J.P.; Deb, S.; Datta, D.; Ghosh, A.; Chaurasia, R.S. An alternative approach for estimating above ground biomass using Resourcesat-2 satellite data and artificial neural network in Bundelkhand region of India. Environ. Monit. Assess. 2017, 189, 576. [Google Scholar] [CrossRef]
- Xiao, C.-W.; Ceulemans, R. Allometric relationships for below- and aboveground biomass of young Scots pines. For. Ecol. Manag. 2004, 203, 177–186. [Google Scholar] [CrossRef]
- Vashum, K.T.; Jayakumar, S. Methods to Estimate Above-Ground Biomass and Carbon Stock in Natural Forests—A Review. J. Ecosyst. Ecography 2012, 2, 1000116. [Google Scholar] [CrossRef]
- Sessa, R. Biomass; FAO: Rome, Italy, 2009. [Google Scholar]
- Zianis, D.; Mencuccini, M. On simplifying allometric analyses of forest biomass. For. Ecol. Manag. 2004, 187, 311–332. [Google Scholar] [CrossRef]
- St-Onge, B.; Hu, Y.; Vega, C. Mapping the height and above-ground biomass of a mixed forest using LIDAR and stereo Ikonos images. Int. J. Remote Sens. 2008, 29, 1277–1294. [Google Scholar] [CrossRef]
- Lu, D. The potential and challenge of remote sensing-based biomass estimation. Int. J. Remote Sens. 2006, 27, 1297–1328. [Google Scholar] [CrossRef]
- Picard, N.; Saint-André, L.; Henry, M. Manual for Building Tree Volume and Biomass Allometric Equation; FAO: Rome, Italy, 2012. [Google Scholar]
- Vahedi, A.A. Artificial neural network application in comparison with modeling allometric equations for predicting above-ground biomass in the Hyrcanian mixed-beech forests of Iran. Biomass Bioenergy 2016, 88, 66–76. [Google Scholar] [CrossRef]
- Liu, Z.; Peng, C.; Xiang, W.; Tian, D.; Deng, X.; Zhao, M. Application of artificial neural networks in global climate change and ecological research: An overview. Chin. Sci. Bull. 2010, 55, 3853–3863. [Google Scholar] [CrossRef]
- Walton, J.T. Subpixel urban land cover estimation: Comparing cubist, random forests, and support vector regression. Photogramm. Eng. Remote Sens. 2008, 74, 1213–1222. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Sileshi, G.W. A critical review of forest biomass estimation models, common mistakes and corrective measures. For. Ecol. Manag. 2014, 329, 237–254. [Google Scholar] [CrossRef]
- Zhang, D. A Coefficient of Determination for Generalized Linear Models. Am. Stat. 2017, 71, 310–316. [Google Scholar] [CrossRef]
- Henry, M.; Besnard, A.; Asante, W.; Eshun, J.; Adu-Bredu, S.; Valentini, R.; Bernoux, M.; Saint-André, L. Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. For. Ecol. Manag. 2010, 260, 1375–1388. [Google Scholar] [CrossRef]
- Kebede, B.; Soromessa, T. Allometric equations for aboveground biomass estimation of Olea europaea L. subsp. cuspidata in Mana Angetu Forest. Ecosyst. Health Sustain. 2018, 4, 1433951. [Google Scholar] [CrossRef]
- IPCC. IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4 Agriculture, Forestry and Other Land Use; IPCC: Geneva, Switzerland, 2006. [Google Scholar]
- Chave, J.; Chust, G.; Condit, R.; Aguilar, S.; Hernandez, A.; Lao, S.; Perez, R. Error propagation and scaling for tropical forest biomass estimates. In Tropical Forests and Global Atmospheric Change; Oxford Academic: Oxford, UK, 2004; Volume 3. [Google Scholar] [CrossRef]
- Chen, Q.; Vaglio Laurin, G.; Valentini, R. Uncertainty of remotely sensed aboveground biomass over an African tropical forest: Propagating errors from trees to plots to pixels. Remote Sens. Environ. 2015, 160, 134–143. [Google Scholar] [CrossRef]
- Chen, Q.; McRoberts, R.E.; Wang, C.; Radtke, P.J. Forest aboveground biomass mapping and estimation across multiple spatial scales using model-based inference. Remote Sens. Environ. 2016, 184, 350–360. [Google Scholar] [CrossRef]
- Brown, S. Measuring carbon in forests: Current status and future challenges. Environ. Pollut. 2002, 116, 363–372. [Google Scholar] [CrossRef] [PubMed]
Criteria | Search Terms |
---|---|
Type of Document | Articles, Conference papers, Book chapters |
Keywords (1) | “LIDAR” “Aboveground biomass” “Metrics” “Estimation” |
Keywords (2) | “Biomass” “Allometric equation” “Assessment” “Criteria” “Uncertainty” |
Period | January 1999–April 2023 |
Language | English |
Publication Categories Based on Research Objectives | Number of Papers | Percentage Reviewed Literature | References |
---|---|---|---|
LIDAR technology for biomass studies | 31 | 31% | [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31] |
Height metrics for biomass models | 47 | 47% | [32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78] |
Assessment criteria for the selection of allometric equation | 22 | 22% | [79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100] |
Formula | Description | Reference |
---|---|---|
Δ is the difference between an in situ checkpoint measurement and measurement obtained from remote sensing at the same site n is the total number of tested checkpoints | [35] | |
Horizontal = 2.4477 × 0.5 × (RMSEx + RMSEy) | Horizontal accuracy determined with confidence level of 0.95 | |
Vertical = 1.96 × RMSEz | Vertical accuracy determined with confidence level of 0.95 |
LIDAR Platform | Instrument | Return Signal | Scanning Pattern | Footprint Size | Measurement Accuracy | Ref. |
---|---|---|---|---|---|---|
Airborne | Riegl LMS—Q560 Airborne Laser Scanner | Waveform | Scanning | 0.25 m Footprint Diameter | ±0.15 m Vertical Accuracy/±0.50 m Horizontal Accuracy | [34] |
Airborne | TopoSys II Airborne LIDAR System | Waveform | Scanning | 0.95 m Footprint Diameter | ±0.15 m Vertical Accuracy/±0.50 m Horizontal Accuracy | [36] |
Airborne | Leica Airborne Laser Scanner (ALS70) | Waveform | Scanning | 0.35 m Footprint Diameter | ±0.3 m Vertical Accuracy/±0.1 m Horizontal Accuracy | [37] |
Airborne | AeroScan Airborne LIDAR System | Waveform | Scanning | 0.65 m | ±0.25 m Vertical Accuracy/±0.50 m Horizontal Accuracy | [38] |
Airborne | Optech ALTM 2025 Airborne LIDAR System | Discrete Return | Scanning | 0.18 m | ±0.18 m Vertical Accuracy/±0.16 m Horizontal Accuracy | [39] |
Airborne | RIEGL VZ—400 3D terrestrial laser scanner | Waveform | Scanning | - | 5 mm Accuracy/3 mm Precision | [30] |
Airborne | Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud, and land Elevation Satellite (ICESat) | Waveform | Profiling | - | - | [25] |
Airborne | ATLAS onboard ICESat-2 Satellite | Discrete Return | Profiling | 14 m | - | [40] |
LIDAR-Based Metric 1 | LIDAR Return Information | Description 2 | Ref. |
---|---|---|---|
Minimum | First return | xmin value | - |
Maximum | First return | xmax value | - |
Range | First return | [(xmax) − (xmin)] | [33] |
75th percentile value | All returns | - | [20] |
Hp25, Hp90 | All returns | 25th height percentile, 90th height percentile | [47] |
Kurtosis | All returns | [33] | |
L-moment (kurtosis) | First return | - | [20] |
Canopy relief ratio | All returns | [33] |
Metrics 1 | Scale | Study Area | Modeling Method | Analysis Level | Accuracies | Error | Data Period | LIDAR Platform | Ref. |
---|---|---|---|---|---|---|---|---|---|
Canopy Base Height, Canopy Fuel Weight, Canopy Height | Local | 5.2 km2, Capitol State Forest, Washington State, USA | Regression | Plot | R2 = 0.770 R2 = 0.860 R2 = 0.980 | N/A | 1999 | Airborne | [71] |
Canopy Volume, Height Metrics, LAI, Crown | Local | 1700 ha, Heiberg Memorial Forest, Tully, USA | Support Vector Machine | Plot | N/A | RMSE = 0.13 | 2010 | Airborne | [72] |
Crown Volume, Crown Bulk Density, Foliage Biomass | Local | Sierra de Guadarrama, 50 km to Madrid North, Spain | K-Mean Clustering | Plot | R2 = 0.800 R2 = 0.920 R2 = 0.840 | N/A | 2002 | Airborne | [73] |
CHM Median Height | Local | French Guiana in South America and Gabon | Regression (Ordinary Least Square) | Plot | R2 = 0.790 | RMSE = 14.3 | 2009–2016 | Airborne | [74] |
Wood Density, Large Canopy Area | Local | America | Regression (Jackknife) | Plot | R2 = 0.790 | RMSE = 14.3 | 2009–2016 | Airborne | [74] |
Dominant Height, Mean Height, Basal Area, Mean Diameter | Local | 1000 ha, Valer municipality, Southeast Norway | Regression | Plot | R2 = 0.74–0.93 R2 = 0.50–0.68 R2 = 0.82–0.95 R2 = 0.39–0.78 | SD = 0.61–1.17 m SD = 0.70–1.33 m SD = 2.33–2.54 m2/ha SD =1.37–1.61 cm | 1996 | Airborne | [75] |
Basal Area, Wood Density, Height Metrics | N/A | Hawaii, Colombia, Madagascar, Peru, Panama | Power Law Model | Plot | R2 = 0.920 | RMSE = 17.1 t/ha | N/A | Airborne | [70] |
Crown Base, Height, Crown Height, Crown Diameter | N/A | 6 km2, Oslo, Southeastern Norway | Linear Regression | Tree | N/A | RMSE = 2.7–3.7 m RMSE = 0.8–3.3 m RMSE = 1.1–2.1 m | 2003 | Airborne | [76] |
Height Metrics, Gap Fraction | Local | 670 ha, East coast of Sabah, Malaysia | Power Law Model | Plot | N/A | RMSE = 0.13 | 2014 | Airborne | [77] |
Volume, Basal Area, Dominant Height | Local | Bio Bio Region, Chile | Adaptive Least Absolute Shrinkage and Selection Operator, Least Square Regression, Random Forest, Generalized Additive Modeling Selection | Plot | R2 = 0.880 R2 = 0.870 R2 = 0.830 | N/A | 2021 | Airborne | [45] |
Quadratic Mean Height | Local | 3925 ha, US Forest Service Sagehen Creek Experimental Forest, USA | Stepwise Regression | Plot | R2 = 0.77–0.83 | RMSE = 80.8–72.2 t/ha | 2005 | Airborne | [51] |
Crown Based Height | Local | Remningstorp area, Sweden | N/A | Tree | R = 0.840 | N/A | 2000 | Airborne | [56] |
Centroid Height, Quadratic Mean Canopy Profile Height | Local | 33,178 ha, Central Kalimantan, Indonesia | Regression | Plot | R2 = 0.880 | N/A | 2007 | Airborne | [34] |
Canopy Height | Local | South America, North America | Regression | Plot | R2 = 0.670 | RMSE = 5.9 m | 2003–2007 | Spaceborne | [25] |
Canopy Height | Local | 2777.55 hm2, Zengcheng Forestry Field, China | Linear Regression, Random Forest | Tree | R2 = 0.935 R2 = 0.867 | RMSE = 8.840 RMSE = 15.04 | 2019 | Airborne | [48] |
Canopy Cover, Stand Height, Basal Area | Local | Canada | Random Forest | Plot | R2 = 0.49–0.61 | N/A | 2010 | Airborne | [46] |
Mean Canopy Height | Local | 1500 ha, Barro Colorado Island, Panama | Regression | Plot | R2 = 0.700 | RMSE = 27.6 t/ha | 1998–2009 | Airborne | [27] |
Tree Height, Crown Diameter | Local | Switzerland | Robust Regression | Tree | R2 = 0.200 | N/A | 2002 | Airborne | [78] |
Canopy Height | Local | 127 ha, Western Slope of Fuenfria Valley, Spain | Forward Stepwise Regression | Plot | R2 = 0.65–0.70 | N/A | N/A | Airborne | [36] |
Canopy Height, Crown Diameter | Local | USA | Linear Regression, Cross-Validation | Tree | R2 = 0.62–0.63 | RMSE = 1.36–1.41 m | 1999 | Airborne | [38] |
Individual Tree Height, Stem Volume, Basal Area | Local | 11,700 ha, Ichauway, southwestern Georgia, USA | Random Forest, K-Nearest Neighbor | Tree | N/A | RMSE = 02.96 RMSE = 58.62 RMSE = 08.19 | 2008 | Airborne | [43] |
Canopy Cover, Hmax, Hmean, HSD, HCV | Local | 10.247 km2, Tianlaochi Catchment, China | Random Forest, Support Vector Machine, K-Nearest Neighbor, Back Propagation, Neural Networks, Generalized Linear Mixed Model | Plot | R2 = 0.899 R2 = 0.835 R2 = 0.913 | RMSE = 14.00 t/ha RMSE = 22.72 t/ha RMSE = 13.35 t/ha | 2012 | Airborne | [37] |
Tree Diameter, Tree Height, Crown Diameter | Local | East Berbice-Corentyne Region, Guyana | Least-Squares Linear Regression, Backwards Stepwise Regression | Plot | R2 = 0.92–0.93 R2 = 0.85–0.89 | RMSE = 0.33 RMSE = 0.37–0.44 | 2017 | Terrestrial | [30] |
Lorey’s Height, Basal Area, Stem Density, Quadratic Mean Diameter at Breast Height | Local | 630,000 ha, Canada | Random Forest | Plot | N/A | RMSE = 08.50 RMSE = 19.76 RMSE = 13.97 RMSE = 30.82 RMSE = 21.53 | 2018 | Airborne | [79] |
Canopy Height Metrics, Canopy Cover | Local | N/A | Multiple Regression (Stepwise) | Plot | R2 = 0.910 | N/A | 1995–1996 | Spaceborne | [15] |
N/A | Local | India | Artificial Neural Network (ANN) | Plot | R2 = 0.980 | AIC = 32.00 BIC = 54.90 RSE = 0.007 | N/A | N/A | [80] |
Regression | Model Description Sample 1 | Ref. |
---|---|---|
Simple Linear Regression | Y = a + bX + ε | [87] |
In(Y) = a0 + bIn(D2H) +ε | ||
Multiple Regression | Y = ao + a1 × 1 + a2X2 +…… + apXp + ε | [87] |
In(Y) = a0 + a1In(D2H) + a2In(σ) + ε |
Model | Description | Merit | Demerit | Ref. |
---|---|---|---|---|
Artificial neural networks (ANNs) | ANN imitates the methods used by the human nervous system to acquire knowledge and process information in similar ways. It has proven to be effective for ecological applications and data modeling. | The issue of collinearity does not affect ANN results. This sets ANN apart from conventional statistical methods and is a significant reason why ANN is preferable. | In addition, the lack of transparency about the internal operations of the system can make it challenging to identify and address potential overfitting issues. | [88,89] |
Random forest (RF) | RF is a set of binary decisions based on rules that determine the relationship between an input and its explanatory variable. | Complicated associations existing between variables at different magnitudes can be depicted accurately by regression trees. | Overfitting of large noise data samples is often encountered. | [11,90] |
Support vector machine (SVM) | In order for SVM to be effective, it assumes that each group of input parameters has a unique relationship with its corresponding dependent variable and that relating these predictors to each other is adequate to find rules that can be applied to forecast biomass from a set of inputs. | SVM has demonstrated the ability to reduce overfitting, which hinders a model’s capacity to effectively characterize new, unobserved data. | Creating a good model is challenging when there are lots of training samples. | [11,91] |
Criterion | Application | Weaknesses | Ref. |
---|---|---|---|
Coefficient of determination | R2 = 1 implies that the variability in the dependent variable can be explained by variation in the independent variable. | In comparing the quality of one model to another, R2 increases automatically when a polynomial term is added to the model. | [92] |
R2 = 0 implies that none of the variations in the dependent variable can be explained by variation in the independent variable. | R2 automatically increases when new independent variables are added to the model. | [87] | |
Root mean square error | A model with the smallest RMSE value is mostly preferred. | In comparing the quality of one model to another, RMSE decreases automatically with an increase in R2. | [92] |
Small values of RMSE are mostly observed in over-fit models. RMSE is observed to be ineffective for comparing models with collinear variables. | |||
Akaike information criterion | A model with the smallest AIC is mostly preferred. | The basic assumption of AIC suggests that all candidate models are good reflections of reality. The AIC method does not presume that the correct model is among the models being assessed. Therefore, a model can always be selected out of outrageous ones. | [92] |
Cross-validation | Used to estimate the performance of biomass estimation models via the use of an independent dataset. It is often used to curtail overfitting problems. | The greater the number of folds used, the higher the variance. | [92] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borsah, A.A.; Nazeer, M.; Wong, M.S. LIDAR-Based Forest Biomass Remote Sensing: A Review of Metrics, Methods, and Assessment Criteria for the Selection of Allometric Equations. Forests 2023, 14, 2095. https://doi.org/10.3390/f14102095
Borsah AA, Nazeer M, Wong MS. LIDAR-Based Forest Biomass Remote Sensing: A Review of Metrics, Methods, and Assessment Criteria for the Selection of Allometric Equations. Forests. 2023; 14(10):2095. https://doi.org/10.3390/f14102095
Chicago/Turabian StyleBorsah, Abraham Aidoo, Majid Nazeer, and Man Sing Wong. 2023. "LIDAR-Based Forest Biomass Remote Sensing: A Review of Metrics, Methods, and Assessment Criteria for the Selection of Allometric Equations" Forests 14, no. 10: 2095. https://doi.org/10.3390/f14102095