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Abstract: Research Highlights: A set of 128 potential bioenergy facility locations is established
and evaluated based on the transport cost to select optimal locations. Background and Objectives:
The identification of optimal facility locations to process recovered forest biomass is an important
decision in designing a bioenergy supply chain at the strategic planning level. The result of this
analysis can affect supply chain costs and the overall efficiency of the network, due to the low density
and dispersed nature of forest biomass and the high costs associated with its logistics operations.
In this study, we develop a two-stage decision support system to identify the optimal site locations
for forest biomass conversion based on biomass availability, transport distance and cost. Materials
and Methods: In the first stage, a GIS-based analysis is designed to identify strategic locations of
potential bioenergy sites. The second stage evaluates the most cost-effective locations individually
using a transportation cost model, based on the results from stage one. The sensitivity of inputs,
such as maximum allowable transport cost, the distance of transport and their relations to the profit
balance, and changes in fuel price are tested. The method is applied to a real case study in the state of
Queensland, Australia. Results and Conclusions: The GIS analysis resulted in 128 strategic candidate
locations being suggested for bioenergy conversion sites. The logistics analysis estimated the optimal
cost and transportation distance of each one of the locations and ranked them according to the overall
performance between capacities of 5 and 100 MW.

Keywords: forest biomass; bioenergy; logistics cost; optimal facility location; biomass utilization

1. Introduction

In Australia, native forests, timber plantations, and wood products absorbed 56.5 M tonnes of
carbon dioxide in the year 2005, which reduced the total emissions by almost 10% [1]. Australia
has 134 M hectares of forest, which is the seventh-largest reported forest area worldwide. Only one
percent of this area is harvested for commercial timber and wood products [2]. The leftover material,
forest biomass, can provide additional revenue streams for forest managers and supply a bioenergy
market, while further contributing to climate change mitigation efforts [3]. Using forest biomass for
bioenergy should be promoted to become an integrated part of forestry and a priority for all biomass
utilization projects [4]. Sustainably sourced forest biomass can be combusted to generate heat, steam,
and electricity [5,6]. However, this bioenergy trend receives little public attention and political support
in Australia [7]. The bioenergy market represents only 4% of total energy production in Australia [8]
and, of this, forest biomass is 25%, and bagasse or sugarcane residue is 29% [8,9]. With the lack
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of economic incentives, most of the non-merchantable forest biomass is burned in the forest after
harvesting operations or left to decompose on site. Therefore, one of the climate change mitigation
strategies using Australian forests is not being utilized.

A critical aspect of the economic incentive of using forest biomass for bioenergy is the viability of
the supply chain and the low marginal value of the material. The forest biomass supply chain includes
the following logistic steps of harvesting, collecting, storing, transporting and converting [5,10,11].
Intensive research has been performed for finding the most cost-effective way to recover forest
biomass [12] and over the last two decades, there have been many attempts to bring the recovered
biomass to energy conversion facilities with the lowest possible cost and emissions [13–15]. Nevertheless,
forests biomass remains scattered throughout the landscape and supply chain routes change constantly.
Ever-changing collection points for forest biomass make transport the most problematic yet decisive
component of the supply chain [16–18]. In addition, the volume of forest biomass that can be recovered
in forest changes significantly over time and space [19,20]. With finite truck capacity, the cost of
transport is also defined by the quantity of biomass available in the forest. One common strategy to
reduce the variation in transport and losses due to the bulkiness of the material is to pre-process the
biomass into wood chips on site. The downside of this strategy is the additional cost of relocating
equipment between different forest locations on a regular basis [21,22]. Storing biomass to reduce
moisture content is another strategy to reduce the cost of transportation. The reduced moisture content
of biomass is reflected by the lighter weight of the woodchips, which allows greater volumes to
be transported [23,24]. However, the transported volume is ultimately defined by truck size and
cargo regulations. Regardless of the effects pre-processing and storage have on the cost of transport,
the ultimate goal is to reduce the transport cost and emission by reducing the transport distance [25].
One can define the shortest path between forest and energy facilities, but with ever-changing forest
locations, the distance will vary over time. However, the level at which these distances change can be
regulated by improved planning and design of the destination energy facilities [26–28]. The optimal
setting of an energy conversion facility enables reduced transport costs while sustaining the continued
supply of biomass [16,29,30].

Research studies finding the optimal location for sitting a bioenergy facility often use one or
combine two of the following approaches [16,30]. The first approach involves an analysis to identify
locations that are suitable or eliminate unsuitable areas. Various constraints, such as proximity to the
forest resource, towns, roads, and rail or the electric grid will prioritize certain locations over others.
The term multi-criteria assessment (MCA) is used to describe this approach [29,31–33]. An MCA
is often performed using different spatial overlay mapping and a range of weighting operations in
geographical information systems (GIS) [29,34]. The second approach finds the best possible location
out of a set of potential facilities using a range of location–allocation techniques. The biomass resource
can be allocated to a single facility location or multiple locations [27]. Several metrics are in place to
satisfy the supply–demand criteria. The p-median problem aims to minimize the demand-weighted
distance between supply points and the location of the facility [35]. The maximum coverage seeks to
maximize the supply to satisfy the distance criteria [36]. Others include alternative location–allocation,
metaheuristic approaches, location set covering and different variable neighbourhood searches [30,37].
Any location–allocation will have a combination of three inputs: a set of supply points, a selection of
demand points and a measure of the distance between supply and demand points. A wide variety of
solution methods and modelling approaches can be used to find the optimal solution, depending on
the size of the problem and the availability of the data sources. Location–allocation patterns can be
visualized in a GIS platform to help decision making. Combining spatial and non-spatial methods in a
decision support system (DSS) is an effective way to find the least costly manner to supply new or
existing facilities with biomass from the forest [19,20].

The integration of GIS and mathematical modelling approaches has been applied in a range
of research cases as a DSS to locate new bioenergy conversion facilities [16,25,38,39] or to minimize
the cost of a supply chain in order to select the optimal facility [19,27,33,40–42]. Biomass Resource
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Assessment Version One (BRAVO), was the first reference GIS-based DSS for bioenergy facility locations
developed [25]. The BRAVO model was then altered by Voivontas et al. [20] to successfully implement
the use of suitability and optimality analyses, in a GIS DSS, for locating facilities. The suitability analysis
evaluated the centroids of administrative areas as potential facility locations. Shi et al. [16] converted
remotely sensed biomass data for the supply of resources in a service–area model, using potential facility
locations on a road network as demand points. Zhan et al. [38] established a delivery cost surface and
treated every point of the surface as a potential location for energy conversion. Guilhermino et al. [39]
applied a suitability analysis to different municipalities in a case study in Portugal to find the best
location for energy conversion. Ranta [19] applied a resource location–allocation model according
to supply resources from logging residues in Finland in a case study at the lowest cost possible.
Frombo et al. [40] described an environmental DDS (EDDS) to minimize the overall cost in the planning
of woody biomass logistics while taking into account the environmental impact. Freppaz et al. [42]
applied a DSS to minimize the cost of transport and to maximize the capacity of six candidate facilities
in a case study in Italy. Nord-Larsen and Talbot [41] estimated the total delivery cost of forest fuel
resources in Denmark using a linear programming model depending on different supply–demand
scenarios. Zhang et al. [27] applied a reduced transportation cost model to find the optimal location
for biomass conversion and tested its sensitivity to changes in fuel price, biomass availability and
transportation distance. Woo et al. [33] applied an MCA in combination with the lowest cost linear
programming in order to find the best location to convert woody biomass in a case study in Tasmania.
Each of these studies uses spatial components to visualize and calculate distances between supply
points and candidate facilities. The spatial component is then combined with non-spatial data for
transport, supply and demand quantities and other constraints in order to satisfy the objective function.

This paper presents a two-stage DSS approach that identifies the optimal location of forest
biomass-to-bioenergy facilities based on available biomass, transport distance, and transport cost.
The objectives of the DSS are (1) to identify strategic locations to convert forest biomass into bioenergy
products based on biomass availability using an advanced GIS analysis, and (2) select the optimal
bioenergy facility locations by reducing the distance and cost of transport using a transportation cost
model. The state of Queensland, Australia, is used as a case example to demonstrate the developed DSS.

The rest of the article is organized as follows: Section 2 describes an outline of the two-stage
DSS approach and briefly details the study area of Queensland, Australia. The results of the model
implementation and sensitivity analysis are given in Section 3. Section 4 discusses the key findings.
Finally, Section 5 presents concluding remarks and possible extensions for future studies.

2. Materials and Methods

The research applies a two-step DSS to optimize the location of bioenergy facilities. The first step
of the DSS is a GIS-based analysis to identify strategic facility locations based on the availability of
forest biomass and the suitability of a strategic location for bioenergy conversion. The second step is a
transportation model analysis to identify optimal facility locations. An overview of the objects and
attributes for strategic and optimal facility locations are presented in Figure 1.

2.1. GIS Analysis

GIS analysis is used to identify strategic locations to convert forest biomass to bioenergy products
based on the availability of forest biomass. The method was previously described and tested by
Van Holsbeeck and Srivastava [43] and consists of availability and suitability analyses. The availability
analysis considers the following attributes, as outlined in Figure 1: forest area, type, log harvesting
volumes, residue types, residue ratios, sustainability ratio, energy content, administrative area, and
relative footprint. The estimated forest footprint and the available forest biomass are combined in an
energy heatmap. The suitability analysis applies the Local Index of Spatial Autocorrelation (LISA) [44]
on the heatmap as a technique to identify significant hotspots or clusters of high forest biomass energy
in the forest. Centroids of significant highly forested areas are delineated and refined in an exclusion
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analysis. The hotspots or clusters that are not located within 200-m proximity of the road network
are eliminated form further analysis. The remainder of the locations are identified as strategic facility
locations due to their high forest biomass availability, proximity to the forest resource and road network
and can serve as a source of biomass demand points for the second stage (model analysis).
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Figure 1. An overview of the developed methodology.

2.2. Transportation Model Analysis

The transportation cost model uses forest locations as a source of supply, the strategic facility
locations (GIS analysis) as a source of demand, a set of transportation cost formulae and the one-way
supply–demand distances to find the optimal facility location. The shortest path distance between
forest and strategic locations is calculated by applying the Dijkstra algorithm [45]. To find the minimum
cost associated with the shortest path for each forest and strategic facility location, a distance-dependent
cost formula is developed for the transportation network.

2.2.1. Transportation Cost Formula

The development of a transportation cost formula is based on a What-IF analysis in Microsoft
Excel [46] and the formula is used to compute the cost of transportation. The analysis includes a range
of parameters for tractor–trailer, operator, utilization, operation distance, speed, and fuel consumption,
and operating cost based on experimental trucking data, adjusted to operations in Australia according
to the National Heavy Vehicle Regulator (2019) [47]. The following parameters and values are used for
the What-IF analysis:

• Tractor–Trailer:

# A B-train vehicle with a gross weight of 62.50 tonnes;
# A maximum volume of 300 m3;
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# A tractor purchase price of AUD 300k and a trailer price of AUD 85k;
# A tractor salvage value of AUD 60k and a trailer value of AUD 8.5k;
# A 5 y tractor life and 10 y trailer life.

• Operator:

# A rate of 40 AUD h−1;
# A 30% fringe benefit.

• Utilization:

# Two hundred and thirty operating days y−1—1 shift day−1;
# A maximum 12-h shift−1 with 0 h of shift−1 overtime;
# An operational delay time of 5% and 95% available time.

• Operation (loaded-unloaded):

# Class 1 road: 80–85 km h−1 speed and 81.3–41.0 L 100 km−1 fuel consumption;
# Class 2 road: 60 km h−1 speed and 89.8–48.0 L 100 km−1 fuel consumption;
# Class 3 road: 40 km h−1 speed and 113.9–55.0 L 100 km−1 fuel consumption;
# Class 4 road: 20–25 km h−1 speed and 137.9–60.7 L 100 km−1 fuel consumption;
# A loading/unloading/personal time of 70 min trip−1;
# An engine idle fuel consumption of 4 L h−1;
# A chip-weighted density of 425 kg/m3;
# A moisture content of 40%;
# A volume with a maximum weight of 89 m3.

• Operating cost:

# A fuel cost of 1.42 AUD L−1;
# A maintenance cost of 0.40 AUD km−1;
# A loan interest rate equal to 10%;
# Registration costs of 8k AUD y−1, 18k AUD y−1 insurance and 3k AUD y−1

miscellaneous costs;
# Profit and overhead costs equal to 8%;

A weighted linear equation is established in correspondence with the parameters of the What-IF
analysis described above, and is shown in Equation (1):

CT = 9150.77 +
(
179.37 ∗ li j

)
(1)

where CT is the one-way transportation cost per unit (AUD MW−1), lij is the one-way transportation
distance (km) between nodes. The equation consists of two components: a fixed cost, and a variable
(distance-dependent) cost. The fixed cost of 9150.77 AUD MW−1 covers the cost of salaries, maintenance,
depreciation and interests, registration and insurance, and profit and overheads. The constant coefficient
associated with the distance-dependent cost, 179.34 AUD MW−1 km−1, corresponds to the average fuel
cost of 1.42 AUD L−1 [48] and compensates both loaded and unloaded travel.

2.2.2. Transportation Model

A linear transportation cost model is formulated with the aim of calculating the total transport cost
between the available biomass supply points and each candidate facility location. Therefore, facilities
are not competing for the biomass; thus, one facility can be present at any given time. The model
consists of a set of m potential sites (forest nodes) where a set of n potential facilities (strategic locations)
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can be established whose demands can be satisfied from any available sites for procurement. The index
set of all candidate forest sites is denoted by I, for I = {1, . . . , i} and the index set of all potential facilities
is denoted by J, for J = {1, . . . , j}. For each potential facility j ∈ J a set of capacity levels is defined. Each
forest site has a certain amount of biomass available Qi in (MW) and each facility has a given demand
d j in (MW) supplied from m supply points. The unit transport cost between the source node and the
destination node is represented by ci j in (AUD MW−1). The distance from the harvesting sites and
the bioenergy facility is symbolized by lij in (km), and is calculated between each demand point j and
supply point i. For each demand point, the supply points are ranked based on the shortest distance.
The available quantity of forest biomass Qi of the supply points is added until the demand d j of a
facility j is fulfilled. When the condition is met, the demand of a facility is defined as displayed in
Equation (2):

d j =
∑m

i∈I
Qi (2)

The transportation cost for the jth demand point (TCj) is the sum product of the transport cost (cij)
for each of the m supply points and the amount of biomass Qi associated with that point. The unit cost
for operating trucks cij is found by using the cost formula in Equation (1). The total transport cost for
demand point j is found in Equation (3).

TC j =
∑m

i∈I

(
ci j ∗Qi

)
(3)

The average transportation cost per unit of biomass (AUD MW−1) for the jth demand point,
(ATCUj), is calculated using Equation (4) by dividing the total transportation cost for the jth demand
point (TCj) by the total demand at demand point j (dj). ATCUj is a normalized value from TCj to
improve readability and is given by Equation (4):

ATCU j =
TC j

d j
(4)

The total transportation distance for the jth demand point (TDj) in km is the sum of the transport
distance (lij) in km for each of the m demand points. The value of TDj is calculated according to
Equation (5):

TD j =
∑m

i∈I
li j (5)

Finally, the average transportation distance per unit of biomass (km MW−1) for a given facility
site (ATDUj), is calculated using Equation (6) by dividing the total transportation distance for the jth
demand point (TDj) by the total demand at demand point j (dj).

ATDU j =
TD j

d j
(6)

2.3. Study Area and Data Management

To demonstrate the developed DSS, this study uses the state of Queensland, Australia. Queensland
is the second largest state in the country, with a total forest area of 51 M ha [2]. An area of 20 M ha
of state-owned native forest is commercially available for timber harvest, together with 1 M ha of
private native forest and 216,000 ha of plantations [49,50]. The total timber volume processed in the
financial year 2017–2018 equalled 3,153,000 m3 [51]. The majority of harvest operation takes place in
softwood plantations mostly located in southeast Queensland. Previous studies by the Australian
government estimate a total annual production of 600,000 m3 of forest harvest residues and 950,000 m3

of sawmill residues [52]. There are 33 softwood sawmills and 61 hardwood sawmills in Queensland [50].
A densified fuel pellet production facility is located in southeast Queensland with a production capacity
of 125,000 tonnes per year [53]. Most of these pellets are shipped for overseas energy production and
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consumption and do not contribute to the Australian renewable energy target. Twenty-three percent
of the renewable energy in Queensland is derived from biomass resources (2% of the total energy
produced in Queensland) [54]. In September 2018, a total of 49 bioenergy projects were in operation in
Queensland, largely sourced by municipal waste (57%) and agricultural residue (27%) [8], while wood
waste, or forest biomass, is an underutilized renewable energy feedstock in Queensland that only runs
6% of renewable energy projects [8].

For the GIS availability analysis, log harvest volume databases published by the Australian Bureau
of Agriculture and Resource Economics and Sciences (ABARES) [55] and the Queensland Department
of Agriculture and Fisheries [49] are combined with a range of conversion factors derived from the
literature [43] and a mapping dataset [56–60]. The log harvest database for Queensland includes a
range of species under the soft and hardwood plantations and soft–hardwood native forests. For the
GIS suitability analysis, the Queensland road network and Australian Statistical Geography Standard
are combined with LISA analysis [61,62]. The availability and suitability analysis are performed in
ArcGIS Desktop Version 10.7 (ESRI Australia Pty. Ltd., Brisbane, QLD, Australia) [63].

For the model analysis, a total of 128 demand points or strategic facility locations, 80,920 forest
supply points and the Queensland road network are combined to calculate the shortest path distance
using the Origin-Destination Cost Matrix in ArcGIS [45,63]. The quantity Qi of forest biomass available
in megawatts (MW) at each supply point is determined in the availability study using the data described
in [43]. The results of the transportation cost model are analysed using What’sBest! Version 16.0
(LINDO Systems Inc., Chicago, IL, USA) [64].

2.4. Sensitivity

The model analysis is based upon a number of assumptions and the establishment of a base
case scenario which includes 100% availability of forest biomass and a fuel price of 1.42 AUD L−1.
The maximum transport distance and cost of the base case are established according to a reference
scenario that includes a harvest cost of 48.25 AUD odt−1, a stumpage cost of 0 AUD odt−1, and a
gate price of 64.80 AUD odt−1. In reality, this might not always be the case, as fuel prices go up and
down, all forest biomass might not be available and may find its way to alternative uses. Furthermore,
other costs such as stumpage and harvesting costs might change as the intensity of forest biomass for
bioenergy uses increases. With this in mind, the sensitivity of the transportation cost and distance and
the optimal facility location should be tested against changes in these key parameters. The sensitivity
analysis focused on the following three parameters:

• A combination of the gate price, harvest and stumpage cost;
• Biomass availability;
• Fuel price.

Each of these parameters is tested separately for deviations from the base case scenario. The ATDUj
and ATCUj from the different scenarios are compared to the reference base case. The combined effect of
the gate price, harvest and stumpage cost does not affect the calculation of ATCUj and ATDUj according
to Equations (4) and (6) but affects the maximum transportation distance by the incorporation of
Equations (1) and (5). The availability of biomass and the cost of fuel directly impact the formulation of
TCj in Equation (3), which is carried through into the calculation of ATCUj and ATDUj in Equations (4)
and (6). The sensitivity analysis for biomass availability and fuel price is only tested on the ten
best-performing facilities according to the model analysis of the base case.

2.4.1. Gate Price, Harvest and Stumpage Cost

As described earlier, the cost of transportation was defined by Equation (1), which corresponds to
a relationship between distance and the attributes of transportation, e.g., trailer, operator, utilization.
However, looking at feasible economic solutions, the cost of transport will be mostly limited by a profit
margin that is defined by other costs in the supply chain. In order to be profitable, the price a contractor
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receives for the delivered biomass at the bioenergy facility (gate price) needs to outweigh the cost or
spending that is associated with the delivery of biomass. These costs are inclusive of a stumpage cost
or the price paid to the forest biomass grower, a harvest cost for the harvest of forest biomass, and
a transport cost. Thus, resulting from those attributes, the maximum transport cost (TCmax) can be
redefined according to Equation (7):

TCmax = gate price − harvest cost − stumpage cost (7)

When substituting Equation (1) into Equation (7), the maximum transport distance can be
calculated according to Equation (8):

TDmax =
(gate price − harvest cost − stumpage cost) − 9150.77

179.37
(8)

Values for gate price, harvest cost, and stumpage cost can vary significantly based on the type of
harvest system, forest type, type of forest biomass or tree species, the amount of biomass, equipment
or even the deployment of biomass use in the area. A list of the used values is outlined in Appendix A.

The decision to include a low-cost scenario for the harvest cost is based on the motivation that the
cost of the harvest, extraction and chipping of forest biomass can be reduced once more efficient supply
chains are established or low-cost harvesting methods are applied in the case study area. On the other
hand, a higher cost for harvest is included based on the motivation that infield chipping requires less
machinery compared to typical extraction and roadside chipping operations but tends to have a higher
cost of operation. The decision to include a moderate and high-cost scenario for stumpage cost is based
on the growing interest in forest biomass. Increasing interest in biomass will add value to the material,
which allows for landowners to create additional revenue. Increasing interest in forest biomass also
justifies the reason for including a higher gate price scenario.

The effect of price and cost changes reflects on the maximum allowable transport cost and
distance according to Equations (7) and (8). All possible combinations between gate price, harvest, and
stumpage cost are tested in Equation (7). Only the positive values of TCmax are allowed to secure a
profitable supply chain. The remaining scenarios allow for the calculation of the maximum allowable
transport distance (TDmax) in Equation (8). The maximum allowable capacity for the average facility is
defined as the intersection between the average ATDUj of all facilities according to Equation (6) and
TDmax calculated in the remaining scenarios.

2.4.2. Biomass Availability

In the base case situation, the forest biomass quantities are calculated according to a previous
study [43], and an assumption based on harvested log volumes in the state of Queensland. The estimated
availability of the biomass already captures losses of biomass due to sustainable and technical restraints.
However, it is unlikely that the remaining biomass will all be harvested and transported, or solely
used for bioenergy purposes. Paper industries, horticulture or pellet exports will result in a reduction
in forest biomass that will not be available for the Australian energy market [52]. To consider that
less than 100% of the forest biomass will be converted to bioenergy in Queensland, several lower
biomass availability scenarios are established and compared with the base case where 100% availability
was used. The effect of reduced availabilities from 100% to 50% is tested on ATCUj and ATDUj with
decrements of 10%. The reduced availability is defined as parameter Qi in Equations (2) and (3) of
the transportation model. The sensitivity is only tested for the ten best performing facility locations
and compared with the results of the base case in model analysis. The ATCUj and ATDUj are only
calculated for capacities of 5, 10, 15 and 20 MW.
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2.4.3. Fuel Price

The distance factor in Equation (1) is established in correspondence with the average fuel price in
2019 for Queensland, Australia (1.42 AUD L−1) [48]. In order to evaluate the effect of fuel price on
the total cost of transport, the minimum and maximum fuel prices for 2019 are compared against the
average. The minimum fuel price for 2019 is 1.12 AUD L−1 which corresponds to an adjustment of
Equation (1) according to the What-IF analysis in Microsoft Excel [46] and can be found in Equation (9):

CT = 9150.77 +
(
147.45 ∗ li j

)
(9)

Similarly, a maximum fuel price of 1.73 AUD L−1 in 2019 results in Equation (10):

CT = 9150.77 +
(
214.33 ∗ li j

)
(10)

Both Equations (9) and (10) will be used to substitute cij in Equation (3) of the transportation model
for the calculation of ATCUj and ATDUj. The sensitivity is only tested for the ten best-performing
facilities and compared with the results of the base case in model analysis. The ATCUj and ATDUj are
calculated for capacities ranging between 5 and 100 MW.

3. Results

3.1. GIS Analysis: Strategic Facility Locations

The total harvestable area of forest in Queensland is estimated to be 13.6 M ha, including both
plantations and native forests. The total amount of forest biomass energy is estimated to be 732 MW.
The amount of energy is produced annually in plantations and native forests combined and includes
the production of pulp logs, sawmill residues and field residues. The total harvestable forest footprint
and total biomass energy are aggregated in an energy heatmap and used as inputs for LISA in the
suitability analysis. This results in 844 administrative area polygons with significantly high biomass
energy. The centroids of the 844 locations act as potential locations for bioenergy facilities. In testing
the proximity to the road network (200 m), only 131 locations are eligible. Three out of the 131 locations
are located on Bribie Island and were excluded in further analysis due to connectivity issues. There are
128 strategic facility locations for bioenergy purposes in the state of Queensland.

3.2. Model Analysis: Optimal Facility Location

Table 1 presents the mean and standard deviation (Std Dev) of TCj, ATCUj, TDj and ATDUj values
from 128 strategic locations over the different capacities. Potential demand levels from small capacity
(5 MW) to high capacity (100 MW) for each location are tested. At each capacity level, we can determine
what the average, minimum and maximum cost or distance per MW would be for transport if we were
to open a facility.

TCj and TDj values increase exponentially with increasing capacity. Normalizing the TCj and TDj
values by the capacity creates a linear trend and smaller values for interpretation.

Because each strategic location is evaluated separately, locations for possible facilities can be
ranked according to the ATCUj or ATDUj values. The location with the lowest ATDUj or ATCUj is
considered the most optimal location. From the results shown in Figure 2, we can identify which of
the 128 facility locations has the lowest ATCUj and ATDUj across all capacities (5–100 MW) based
on hierarchy ranking. The labels of the 10 best facilities are shown. The dots represent 128 strategic
locations, ranked by colour from lowest (green) to highest (red) ATCUj. In Figure 2a, the ATCUj
value is averaged across all capacities for each facility. In Figure 2b, the ATCUj of a 5-MW facility is
presented for each facility. Figure 2a indicates that the most optimal locations for energy conversion
are located in the southeast (green) and other locations (red) are not feasible. However, looking at one
particular small capacity (5 MW) in Figure 2b, it appears that some locations in the north can also be
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considered optimal in addition to the southeast. Location “476” is the best performing location with
the lowest ATCUj and ATDUj across the range of capacities (Figure 3). The extent of the network to
satisfy location “476” at a range of capacities is presented in Figure 3. As the most optimal location,
the network connections are minimal but grow with increasing capacity.

Table 1. Mean jth demand point (TCj), average transportation cost per unit of biomass (AUD MW−1)
for the jth demand point, (ATCUj), total transportation distance for the jth demand point (TDj), average
transportation distance per unit of biomass (km MW−1) for a given facility site (ATDUj) and SD values
of 128 strategic locations for different capacities in Queensland.

Capacity Level TCj (AUD) ATCUj (AUD MW−1) TDj (km) ATDUj (km MW−1)

(MW) Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

5 169,000 67,200 33,700 13,400 430 375 86 75
10 387,000 182,000 38,700 18,200 1140 1010 114 101
15 634,000 334,000 42,300 22,300 2000 1860 134 124
20 907,000 513,000 45,400 25,700 3020 2860 151 143
30 1,510,000 917,000 50,500 30,600 5380 5110 179 170
40 2,170,000 1,370,000 54,200 34,100 8000 7610 200 190
50 2,880,000 1,850,000 57,600 37,100 10,900 10,300 219 207
60 3,650,000 2,380,000 60,900 39,600 14,200 13,200 237 221
70 4,540,000 2,980,000 64,900 42,600 18,200 16,600 260 237
80 5,560,000 3,760,000 69,500 47,000 22,800 20,900 285 262
90 6,710,000 4,820,000 74,600 53,500 28,200 26,900 314 298

100 7,940,000 6,030,000 79,400 60,300 34,100 33,600 341 336
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3.3. Sensitivity Analysis

3.3.1. Gate Price, Harvest and Stumpage Cost

The maximum transport cost is calculated for the base case (Scenario 1) as shown in Table 2.
The base case scenario includes a stumpage cost of 0 AUD odt−1, a harvest cost of 48.25 AUD odt−1,
and a gate price of 64.80 AUD odt−1. The maximum transport cost is 16.55 AUD odt−1 or converted to
25,200 AUD MW−1. The maximum transportation distance is 89 km and is the return distance from the
facility to the forest.

Table 2. Estimated maximum transport cost (TCmax) and maximum allowable transport distance
(TDmax) values for a range of scenarios based on changes in gate price, stumpage and harvest costs.

Scenario
Stumpage

Cost
(AUD odt−1)

Harvest
Cost

(AUD odt−1)

Gate Price
(AUD odt−1)

TCmax
(AUD odt−1)

TCmax
(AUD MW−1)

TDmax
(km MW−1)

1 (base) 0.00 48.25 64.80 16.55 25,200 89
2 0.00 48.25 79.00 30.75 46,700 210
3 0.00 37.29 79.00 41.71 63,400 302
4 0.00 37.29 64.80 27.51 41,800 182
5 0.00 37.29 50.40 13.11 19,900 60
6 10.00 48.25 79.00 20.75 31,500 125
7 10.00 48.25 64.80 6.55 9960 4
8 10.00 37.29 79.00 31.71 48,200 218
9 10.00 37.29 64.80 17.51 26,600 97

10 28.27 37.29 79.00 13.44 20,400 63

Different combinations among gate price, harvest and stumpage cost are summarized in Table 2.
Only the positive values of TCmax in Equation (7) are allowed to secure a profitable supply chain.
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Negative TCmax values are removed from Table 2. The remaining scenarios allow for the calculation
of TDmax in Equation (8) and are presented in Table 2. We notice that only one scenario (10) with a
stumpage cost of 28.27 AUD odt−1 remains. This means that combinations between this stumpage cost
and other harvest costs and gate prices resulted in a negative value for TCmax. We also notice that none
of the high harvest costs (77.16 AUD odt−1) are presented in the table, which means that these costs
outweigh the price received for biomass and result in a loss in the supply chain.

In Figure 4, the maximum transport cost calculated in Table 2 for the base case scenario is compared
to the mean of ATCUj values (J = 128) from the foregoing analysis (Table 1). For further comparison, the
mean ATCUj of the ten (J = 10) best strategic locations (Figure 2) for each capacity is added to Figure 4.
From the graph, it appears that, based on the calculated average, the 10 best locations remain under
the maximum transport cost threshold (y = 25,200). Only at capacities above 90 MW does the curve
exceed TCmax. On the other hand, the mean of all strategic locations exceeds TCmax at every capacity.
This indicates that the average facility location in Queensland would not be profitable. However,
in Table 3, the number of locations with ATCUj under TCmax are calculated and more detail indicates
that, especially at lower capacities, a large set of locations can be feasible.
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Figure 4. Comparison between mean ATCUj, mean ATCUj of the ten best strategic locations and TCmax

of the base case scenario.

Table 3. Number of strategic locations (J) performing under TCmax of the base case scenario.

Capacity (MW) 5 10 15 20 30 40 50 60 70 80 90 100

J under TCmax 41 33 28 24 17 16 16 16 10 10 7 7

J = 128 32% 26% 22% 19% 13% 13% 13% 13% 8% 8% 5% 5%

The maximum allowable capacity for a facility can be defined as the intersection between the
average ATDUj of all strategic locations according to Equation (6) and TDmax calculated in the remaining
scenarios (Table 2). In Figure 5, the mean ATDUj of all strategic locations is compared to the TDmax of
the ten best scenarios. The dotted line y = 89 is the TDmax value of the base case scenario in Table 2.
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The point of intersection is at y = 89; x = 6, meaning that, based on the maximum return travel distance
of 89 km MW−1, we could supply the average location in Queensland with up to 6 MW of forest
biomass energy (CAPmax). With an increasing or decreasing gate price, stumpage or harvest cost, this
maximum allowable capacity changes. Different values for TDmax in Table 2 are presented in Figure 5
(TDmax = y) and responding CAPmax values are indicated. Notice that at a maximum transport distance
of 4 km (scenario 7), a negative capacity was retrieved and therefore this scenario cannot be sustained.
For scenario 5, we find a maximum capacity of 0 MW, which also indicates that there is not enough
supply within this distance cut-off to satisfy a facility. Table 4 presents the percentage of strategic
locations (j) that fall under the maximum allowable transport distance (TDmax) for each scenario and
the range of capacities. From the table, we can see that 99% of locations can be supplied with 5 MW
if we were able to transport biomass over a total distance of 302 km in scenario 3. This percentage
drops with increasing capacity and decreasing distance and becomes 0% when the maximum transport
distance is reduced to 4 km and capacities are over 5 MW. Despite this, 1% of the locations are able to
produce 5 MW of energy under a maximum transport distance of 4 km.Forests 2020, 11, x FOR PEER REVIEW 14 of 23 

 

 
Figure 5. Comparison between mean ATDUj and TDmax of different price-cost scenarios. 

Table 4. Percentage of strategic locations performing under the respective TDmax scenarios over a 
range of different capacities. 

TDmax (km MW−1) 302 218 210 182 125 97 89 63 60 4 
  J under TDmax 

C
ap

ac
ity

 (M
W

) 

5 99% 95% 91% 89% 75% 66% 63% 45% 45% 1% 
10 94% 88% 87% 81% 65% 55% 52% 39% 38% 0% 
15 93% 83% 80% 73% 59% 48% 44% 33% 31% 0% 
20 92% 77% 74% 67% 52% 44% 38% 31% 28% 0% 
30 88% 66% 63% 59% 48% 38% 35% 24% 22% 0% 
40 78% 60% 60% 58% 45% 35% 35% 18% 18% 0% 
50 74% 58% 58% 56% 43% 34% 28% 15% 15% 0% 
60 66% 58% 58% 53% 39% 27% 21% 14% 14% 0% 
70 62% 58% 58% 52% 36% 20% 16% 13% 13% 0% 
80 62% 55% 55% 52% 32% 17% 16% 11% 9% 0% 
90 62% 55% 53% 49% 30% 16% 16% 8% 8% 0% 

100 61% 53% 52% 45% 27% 16% 13% 8% 8% 0% 

3.3.2. Biomass Availability 

The effect of reduced availabilities from 100% to 50% is tested on the mean ATCUj and ATDUj 
of the 10 best strategic locations with a decrement of 10%. For the sake of simplicity, the mean ATCUj 
and ATDUj are only calculated for capacities of 5, 10, 15 and 20 MW and are presented in Figure 6. 
For example, the ATCUj of location “476” at 20 MW and 100% availability is 20,300 AUD MW−1 and 
increases to 21,200 AUD MW−1 at the same capacity with only 50% of the biomass available. For 
location “801” the ATDUj is 3.73 km MW−1 at 100% biomass availability and 5 MW capacity and 
increases to 5.99 km MW−1 at the same capacity with only 50% of the biomass available. 

Figure 5. Comparison between mean ATDUj and TDmax of different price-cost scenarios.

Table 4. Percentage of strategic locations performing under the respective TDmax scenarios over a range
of different capacities.

TDmax (km MW−1) 302 218 210 182 125 97 89 63 60 4

J under TDmax

Capacity (MW)

5 99% 95% 91% 89% 75% 66% 63% 45% 45% 1%
10 94% 88% 87% 81% 65% 55% 52% 39% 38% 0%
15 93% 83% 80% 73% 59% 48% 44% 33% 31% 0%
20 92% 77% 74% 67% 52% 44% 38% 31% 28% 0%
30 88% 66% 63% 59% 48% 38% 35% 24% 22% 0%
40 78% 60% 60% 58% 45% 35% 35% 18% 18% 0%
50 74% 58% 58% 56% 43% 34% 28% 15% 15% 0%
60 66% 58% 58% 53% 39% 27% 21% 14% 14% 0%
70 62% 58% 58% 52% 36% 20% 16% 13% 13% 0%
80 62% 55% 55% 52% 32% 17% 16% 11% 9% 0%
90 62% 55% 53% 49% 30% 16% 16% 8% 8% 0%

100 61% 53% 52% 45% 27% 16% 13% 8% 8% 0%
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3.3.2. Biomass Availability

The effect of reduced availabilities from 100% to 50% is tested on the mean ATCUj and ATDUj of
the 10 best strategic locations with a decrement of 10%. For the sake of simplicity, the mean ATCUj
and ATDUj are only calculated for capacities of 5, 10, 15 and 20 MW and are presented in Figure 6.
For example, the ATCUj of location “476” at 20 MW and 100% availability is 20,300 AUD MW−1

and increases to 21,200 AUD MW−1 at the same capacity with only 50% of the biomass available.
For location “801” the ATDUj is 3.73 km MW−1 at 100% biomass availability and 5 MW capacity and
increases to 5.99 km MW−1 at the same capacity with only 50% of the biomass available.Forests 2020, 11, x FOR PEER REVIEW 15 of 23 
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Figure 6. Sensitivity of mean ATCUj (solid line) and mean ATDUj (dotted line) of the ten best facilities
to reduced biomass availability.

From the foregoing analysis and according to Figure 2, location “476” is the overall best performing
location on different capacities (5–100 MW). However, according to Table 5, location “801” is the
most optimal at 100% biomass availability and low capacities (5–20 MW). With decreasing biomass
availability, however, longer distances will need to be covered to satisfy the potential demand of the
facility. At reduced biomass availability and increasing capacity, locations “125” and “476” become
more favourable (Table 5).

Table 5. Optimal locations at a range of capacities and reduced biomass availability.

Availability 5 MW 10 MW 15 MW 20 MW

100% 801 801 801 801
90% 801 801 801 125
80% 801 801 801 125
70% 801 801 801 476
60% 801 801 125 476
50% 801 801 476 476
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3.3.3. Fuel Price

The ATCUj of the ten best facilities is calculated accordingly for the low and high fuel scenario
(Equations (9) and (10)) and compared with the average fuel price in Figure 7. For example, the ATCUj
of location “476” at 20 MW and average fuel price is 20,300 AUD MW−1 and increases to 20,700 AUD
MW−1 with a high fuel price and drops to 19,800 AUD MW−1 with a low fuel price. At a low capacity
(5 MW), both the high and low fuel prices result in a 1% change in the ATCUj value. At a high capacity
(100 MW) this results in a 7% decrement of ATCUj for low fuel price and a 6% increment of ATCUj for
the high fuel price.Forests 2020, 11, x FOR PEER REVIEW 16 of 23 
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Figure 7. Sensitivity of mean ATCUj of ten best strategic locations to changes in fuel price.

4. Discussion

This research combines GIS methods with a transportation cost model to find the optimal location
of forest biomass-to-bioenergy facilities. In considering the development of a profitable bioenergy
facility that can sustainably produce bioenergy from forest biomass: (i) there has to be enough biomass
to supply the bioenergy facility, and (ii) the biomass has to be sourced within a sensible distance at
the lowest possible cost. The two-stage DSS helps to address this biomass logistics problem and this
research demonstrates the method in the large study region of Queensland, Australia. The spatial
component preceding the transportation cost model indicated that 732 MW of forest biomass is
available per year and identified 128 strategic locations to covert this biomass into energy products.
Similar quantities for biomass availability can be found in the Australian literature for the state of
Queensland [65–67] and are roughly converted to one million dry tonnes of forest biomass. Each of the
strategic locations served as inputs for the transportation cost model and further location optimization.
In the literature [19,20,27], GIS-based methods have been used numerous times to assess biomass and
to identify locations for biomass conversion, but seldom have they been applied to such a large-scale
extent. Since the transportation of biomass is an overwhelming contributor to biomass supply chain
costs [25], further refinement of strategic locations based on transport cost and distance provides a
more optimal solution to the facility location problem.
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By calculating the average transportation cost and distance of the strategic locations retrieved from
the GIS analysis, this research can identify the most optimal location for a forest biomass-to-bioenergy
facility if we were to establish one. A similar approach was applied to finding the optimal location
to convert forest biomass to biofuel by Zhang et al. [27]. The most optimal location for a facility
would be the facility with the lowest transport cost and distance at the required capacity. However,
understanding that one facility is necessary to capture the entire supply over large areas such as
Queensland is complex and a challenging task. Even though the rationale of the transportation cost
model is to minimize the cost of transport, our additional motivation is to maximize the capacity
within the study area. In the ideal scenario, the cost of supply is kept minimal and the biomass
that is produced within the forest is utilized to the greatest possible extent by the bioenergy facility.
The combination of GIS and a transportation cost model allows us to tackle this problem. The ATCUj
that is calculated for each facility at a range of capacities is low when either the cost of transport is
minimal, or the supplied capacity is great (AUD MW−1). Thus, the ATCUj value is an indicator of the
optimal facility location problem. For comparison, the study by Zhang et al. [27] found a total cost
value of USD 4.32 M for a facility using 635,000 tonnes (50% moisture) of forest biomass. The ATCUj
value from their result converts to 31,100 AUD MW−1 for the best facility. In our research, location
“476” was found to be the best performing across a range of capacities and has an ATCUj value of
22,300 AUD MW−1, which is located in the most biomass-dense area of the study region.

To understand the effect of price and cost changes in the biomass supply, the results of the
transportation cost model were compared to the maximum cost and distance of the biomass supply
chain. Values for gate price, harvest cost, and stumpage cost can vary significantly based on the type
of harvest system, forest type, type of forest biomass or tree species, amount of biomass, equipment or
even the deployment of biomass used in the area. The cost of harvest, stumpage and the gate price
of forest biomass are not included as integral parts of the transportation model; however, they are
incorporated as constraining elements to secure the profit of the forest biomass market. According
to different cost price scenarios in relation to sensitivity, the maximum allowable transport cost and
distance will vary and are independent of the capacity. This research estimated that the maximum
allowable transport cost is 25,200 AUD MW−1 and the maximum allowable transport distance is an
89 km MW return journey. We found one other research example in Australia that indicated a range
of costs between 48.32 AUD odt−1 and 63.25 AUD odt−1 for hardwood chips for delivering biomass
residues over a transport distance of 90 km [68]. When converted, the 89-km maximum allowable
transport distance in this research corresponds to a maximum transport cost of 16.55 AUD odt−1.
When we convert and add the cost of harvest (48.35 AUD odt−1) to the transport cost we receive
a comparable value of 64.80 AUD odt−1. The point of intersection between the 89-km maximum
allowable transport distance and the average transportation distance per megawatt according to the
transportation analysis is at a capacity of 6 MW. Thus, under the circumstance of the base case scenario,
the average facility in Queensland becomes less profitable beyond this capacity when keeping in mind
that this is based on the average of the best and worst performing locations. The introduction of a
maximum allowable transport costs creates a benchmark for the strategic facility locations from the
transportation cost model. When the benchmark cost or distance is exceeded, the strategic location can
be rejected as an optimal solution.

To examine the sensitivity of decisions to changes in biomass availability and the cost of fuel, the
transportation cost model was also executed by changing these parameters. The biomass availability
can suffer considerable losses due to alternative uses; hence, this research investigated 10% decrements
of biomass availability. By reducing the availability of biomass supply, the preference of location
shifts. With less biomass available, more biomass needs to be collected from additional forest locations.
This affects the result of the transportation cost model by increasing the cost due to increased transport
distances or reducing the supplied capacity. The optimal facility location is therefore characterized
by an increasing ATCUj value. On average, for a 5-MW facility, a reduction of 10% in the biomass
availability resulted in an ATCUj increase of 90 AUD MW−1. The cost of fuel can change significantly
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throughout the year. Cyclical changes in fuel price, sometimes up to 20%, are not uncommon and have
a significant impact on the cost of transport and the fleet. Changes in fuel prices do not interfere at a
capacity level of a facility or the supply of biomass to a facility. However, changes in fuel price will
affect the ATCUj value from the transportation cost model and simultaneously impact the maximum
allowable transportation distance. Changes in the ATCUj value up to 7% were recorded in this study
based on changes in fuel price. Similar to the results found in Zhang et al. [27], a change in fuel price
did not affect the optimal location, as opposed to changes in biomass availability.

There are several possible opportunities for future research to extend and enhance the developed
DSS. One of the key opportunities is to take the single-facility transportation problem to a multi-facility
optimization scenario, thereby focusing on utilizing as much of the forest biomass as possible throughout
the study area by selecting multiple optimal locations for the conversion of biomass. It is important
to consider that each potential facility can be supplied with biomass from within its service area at
the lowest possible cost without competition between these facilities. Such models can reinforce
the decision on the number of facilities and required capacity needed in the study area to maximize
the demand, while minimizing the cost. Often, there will be limits to a capacity of a facility, so it is
worth considering a minimum and maximum capacity level based on the technology and biomass
resource. When optimizing the supply chain, research should consider economic, environmental and
social aspects to come up with the best possible scenario. Depending on the geographical location,
interruptions of the forest biomass supply occur annually due to spring/breeding season, snow or fire
seasons. It is therefore recommended to improve the knowledge of biomass availability by simulating
the annual harvesting cycles and biomass storage solutions.

5. Conclusions

This paper demonstrated the use of a two-stage decision support system that finds the optimal
location of forest biomass-to-bioenergy facilities based on available biomass, transport distance, and
transport cost in the study area of Queensland. In stage 1, the method identified 128 strategic locations
using a GIS approach. In stage 2, the optimal location for forest biomass-to-bioenergy conversion was
based upon reduced transport costs. The influence of fuel price, biomass availability, and cost and
pricing of the biomass supply chain was evaluated through a series of sensitivity analyses.

From the case study, we can conclude that:

• Location “476” was identified to be the optimal location for bioenergy production from forest
biomass across a range of facility capacities.

• The ATCUj of the average facility in Queensland ranges from 33,700 AUD MW−1 at 5 MW capacity
to 79,400 AUD MW−1 at 100 MW with an ATDUj of 86 km MW−1 at 5 MW and 341 km MW−1 at
100 MW.

• The sensitivity analysis showed that fuel prices and biomass availability have an influence on the
transport cost. Biomass availability also influences the selection of the optimal facility location.
At the lowest capacity level and 100% biomass availability, location “801” was the optimal location;
with increasing capacity or reduced availability, location “476” was the optimal site.

• The sensitivity analysis also showed that changes in the biomass price and the costs of the supply
chain have an impact on the maximum allowable transport distance and cost. In the base case,
the maximum allowable transport distance for a facility in Queensland is 89 km MW−1 and the
maximum allowable transport cost is 25,200 AUD MW−1.

The use of a two-stage DSS for the selection of an optimal facility location has been demonstrated.
Additionally, the method evaluated every other possible location and created an average performance
scenario for the case area, which enables future planning, investigation and investment from a strategic
perspective. The single-facility transportation cost model can be extended to optimization methods
that allow for multiple facilities to coexist. The method can potentially be extended to other regions
and biomass scenarios.
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Appendix A

Due to the lack of case study examples in Australia, values for gate price, harvest, and stumpage
cost were collected from the literature and personal communications. All the values have been
converted to AUD odt−1 as this is the most used unit for biomass delivery costs. For the developed
DSS method, these unit costs are converted to AUD MW−1 to be comparable at a facility capacity (MW)
level, by using a conversion factor of 1520 odt MW−1.

• Harvest cost:

# 48.25 AUD odt−1: Base case or reference cost value. Calculated according to the
weighted average of total native forest biomass (356,376 odt) and plantation forest biomass
(756,468 odt) in the case study area of Queensland. The average harvest cost for plantation
biomass is estimated to be 38.37 AUD odt−1 according to the average of two case studies in
Australia. Case study one is a softwood plantation cut-to-length harvesting system in the
Green Triangle, Australia [69] with harvest, extraction and onsite chipping. Case study
two is an integrated harvest operation with harvest, extraction and onsite chipping in pine
plantations in Western Australia using the Fibreplus method [70]. The harvesting cost
of native forest biomass is estimated to be 69.23 AUD odt−1 for Queensland specifically,
according to a personal communication [71].

# 37.29 AUD odt−1: Low-cost case. Calculated according to the weighted average of total
native forest and plantation forest biomass in Queensland. The average harvest cost for
plantation biomass is estimated to be 22.25 AUD odt−1 according to the average of three
case studies in Australia. Case study one is a hardwood plantation cut-to-length harvesting
system in the Green Triangle, Australia [69] with harvest, extraction and chipping at the
mill. Case study two is a hardwood plantation whole-tree harvesting system in the Green
Triangle, Australia [69] with harvest, extraction and chipping at the mill. Case study three
is an integrated harvest operation with harvest, extraction and chipping at the mill in pine
plantations in Western Australia using the Fibreplus method [70]. The harvesting cost
of native forest biomass is estimated to be 69.23 AUD odt−1 for Queensland specifically,
according to a personal communication [71].

# 77.16 AUD odt−1: High-cost case. Calculated according to the weighted average of total
native forest and plantation forest biomass in Queensland. The average harvest cost for
plantation biomass is estimated to be 80.90 AUD odt−1 according to the average of two
case studies in Australia. Case study one is a softwood plantation cut-to-length harvesting
system in Victoria with harvest, extraction and roadside chipping (Bruks Chipper) [72].
Case study two is a softwood plantation cut-to-length harvesting system in Victoria with
harvest and in-field chipping (Bruks Chipper) [73]. The harvesting cost of native forest
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biomass is estimated to be 69.23 AUD odt−1 for Queensland specifically, according to a
personal communication [71].

• Stumpage cost:

# 0.00 AUD odt−1: Base case or reference cost value. There is currently no stumpage cost
paid to the landowner for forest biomass.

# 10.00 AUD odt−1: Moderate-cost case based on a trial in Western Australia where the
industry was asked what they would pay for biomass from the roadside [74].

# 28.27 AUD odt−1: High-cost case based on the average between the stumpage price for
pulp logs in Queensland for pulp and paper industry [75] and the stumpage price for
hardwood forest residues in Tasmania [76].

• Gate price:

# 64.80 AUD odt−1: Base case or reference price value. This value is based on international
references and personal communication [74,77]

# 50.40 AUD odt−1: Low-price case according to a review case in Australia [12]
# 79.00 AUD odt−1: High-price case according to a case example in the Green Triangle,

Australia [69].
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