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Abstract: This study investigates the use of three different quadrature schemes, as well
as an iterative quadrature methodology, to analyze vibrations in magneto-electro-thermo-
elastic nanobeams. Individual MATLAB programs for each method are developed with the
goal of minimizing errors in comparison to accurate findings, as well as determining the
execution time for each strategy. This study shows that the Discrete Singular-Convolution
Differential Quadrature Method with a Regularized Shannon Kernel (DSCDQM-RSK) and
specified parameters produces the best accurate and efficient results for this particular
situation. A subsequent parametric study is carried out to determine the effect of various
factors on the vibrated nanobeam, including boundary conditions, material types, linear
and nonlinear elastic foundation properties, nonlocal parameters, length-to-thickness ratios,
external electric and magnetic potentials, axial forces, and temperature variations. Im-
portant discoveries include insights into the relationship between fundamental frequency,
linear elastic foundation features, axial loads, external magnetic fields, temperature fluctua-
tions, and material types. According to this study, these findings could be critical in the
development of sophisticated nanostructures made from magneto-electro-thermo-elastic
materials for use in a variety of electromechanical applications. This would entail utilizing
nanobeams’ unique properties in applications such as sensors, resonators, and transducers
for nanoelectronics and biology.

Keywords: piezomagnetic composites; nonlocal elasticity; Timoshenko beam theory;
vibration analysis; nonlinear foundations; PDQM

1. Introduction
Magneto-electro-thermo-elastic (METE) composites, comprising piezoelectric and

piezomagnetic phases, exhibit remarkable energy conversion capabilities, transforming
electric, thermal, elastic, and magnetic energy [1,2]. Their versatility has led to widespread
adoption in various fields, including vibration control, actuation, sensing, medical devices,
health monitoring systems, and energy harvesting [3,4].

This section analyzes the available literature on the analysis of magneto-electro-elastic
systems. Wu et al. [5] investigated the static behavior of 3D, doubly curved, functionally
graded magneto-electro-elastic shells under combined mechanical, electrical, and magnetic
loads. Huang et al. [6] proposed analytical and semi-analytical solutions for anisotropic,
functionally graded magneto-electro-elastic beams under arbitrary stresses, based on sinu-
soidal series expansions. Chang [7] investigated the vibration characteristics of transversely
isotropic magneto-electro-elastic rectangular plates, considering various vibration condi-
tions (free, deterministic, and random) within fluid environments. Ansari et al. [8] devel-
oped a nonlocal, geometrically nonlinear beam model for magneto-electro-thermo-elastic
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nanobeams subjected to external electric voltage, magnetic potential, and temperature
changes. Finally, Ke et al. [9] analyzed the free vibration of embedded magneto-electro-
elastic cylindrical nanoshells using Love’s shell theory. These studies collectively provide a
foundation for understanding the diverse mechanical and vibrational behaviors of magneto-
electro-elastic materials across different structural configurations.

Prior research has examined the response of magneto-electro-elastic materials un-
der various loading conditions. Wu et al. [5] investigated the static behavior of three-
dimensional (3D), doubly curved, functionally graded magneto-electro-elastic shells sub-
jected to combined mechanical, electrical, and magnetic loads. Huang et al. [6] developed
analytical and semi-analytical solutions for anisotropic, functionally graded magneto-
electro-elastic beams under arbitrary loading. These studies provide a foundation for
understanding the complex interactions between mechanical, electrical, and magnetic
fields within these materials. Chang [7] studied the vibration characteristics of transversely
isotropic magneto-electro-elastic rectangular plates, considering free, deterministic, and ran-
dom vibrations in fluid environments. Furthermore, studies have explored the behavior
of magneto-electro-elastic nanostructures. Ansari et al. [8] developed a nonlocal, geomet-
rically nonlinear beam model to analyze the behavior of magneto-electro-thermo-elastic
nanobeams under various external stimuli. Ke et al. [9] investigated the free vibration
properties of embedded magneto-electro-elastic cylindrical nanoshells, considering size-
dependent effects.

The field has seen substantial growth, particularly in the investigation of magneto-
electro-thermo-elastic (METE) nanomaterials and nanostructures. Studies have focused
on materials such as BiFeO3, BiTiO3-CoFe2O4, NiFe2O4-PZT, and various nanowire and
nanobeam configurations [10,11]. The recent incorporation of PTZ-5H-COFe2O4 further
expands the potential applications of these materials.

The investigation of nanoscale phenomena frequently employs nonlocal elasticity
theory [12,13]. While experimental characterization at the nanoscale level presents sig-
nificant challenges, and molecular dynamics simulations incur high computational costs,
continuum models remain crucial for nanostructure research [14–16]. However, compelling
evidence suggests that the nonlocal effect, arising from the inherent small-length scales,
significantly influences the mechanical properties of nanostructures [15–17]. This neces-
sitates the incorporation of nonlocal considerations into traditional structural theories to
accurately capture the size-dependent behavior observed in these systems [18].

Numerous recent publications have focused on exploring the static and dynamic
characteristics of magneto-electro-thermo-Elastic (METE) nanobeams. These works intro-
duce exact and semi-analytical techniques for addressing linear free and forced vibrations,
as well as buckling phenomena in nanobeams [19–21]. Additionally, alternative numeri-
cal approaches such as finite element analysis [22], meshless methods [23], higher-order
B-spline finite strip modeling [24], and Rayleigh-Ritz methods [25] have been investigated
for tackling these issues. However, all these methodologies demand a significant num-
ber of grid points and substantial computational resources to achieve a satisfactory level
of precision.

The Polynomial-Based Differential Quadrature Method (PDQM) has been proven to be
able to produce correct results with fewer grid points [26–30], in contrast to many numerical
methods [31–33]. More reliable substitutes are provided by the Discrete Singular-Convolution
Differential Quadrature Method (DSCDQM) [34] and the Sinc Differential Quadrature Method
(SDQM) [35]. The selection of shape functions, such as the Regularized Shannon Kernel (RSK),
Delta Lagrange Kernel (DLK), and cardinal sine function, which enhance solution convergence
and stability, is crucial to the efficacy of these techniques [36–40].
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Using the Sinc Differential Quadrature Method (SDQM) and Discrete Singular-
Convolution Differential Quadrature Method (DSCDQM), this study examines the vibra-
tion properties of magneto-electro-thermo-elastic (METE) nanobeams sitting on nonlinear
elastic substrates. Although there are several numerical methods [31–33], the PDQM has
been proven to be able to provide precise results using fewer grid points [26–30]. Better
accuracy and stability are provided by the SDQM [35] and DSCDQM [34] than by the
conventional Polynomial-Based DQM. To improve the convergence and stability of the
numerical solutions, these techniques rely on the selection of suitable shape functions, such
as the Regularized Shannon Kernel (RSK), Delta Lagrange Kernel (DLK), and cardinal sine
function [36–40]. By creating innovative numerical algorithms and comparing them to
proven analytical and numerical results, this study pioneers the application of the SDQM
and DSCDQM to this particular situation.

The impact of various parameters on the natural frequencies and mode shapes of
the METE nanobeams are analyzed through a thorough parametric investigation. Axial
loads, external magnetic potentials, temperature fluctuations, boundary conditions, ma-
terial qualities, nonlocal parameters, axial loads, nonlinear and linear elastic foundations,
and aspect ratios are some of these variables. The structure of this paper is as follows: the
mathematical formulation is explained in depth in Section 2, the numerical methods are
described in Section 3, the results and discussion are presented in Sections 4 and 5, and the
main conclusions and future research areas are discussed in Section 6.

2. Formulation of the Problem
Consider a METE nanobeam of dimensions L × h subjected to various external stimuli.

The beam is exposed to an electric voltage, ϕ(x, z, t), a magnetic potential, ψ(x, z, t),
a temperature change, ∆T, and a mechanical potential, P0. Moreover, the beam is supported
by a nonlinear elastic foundation, which is defined by the stiffness coefficients K1, K2,
and K3, representing linear and nonlinear characteristics, respectively, as depicted in
Figure 1.

Figure 1. Schematic of METE nanobeam on nonlinear foundation.

Employing Eringen’s nonlocal elasticity theory, the governing equations for a ho-
mogeneous, nonlocal piezoelectric solid in the absence of body forces are presented as
follows [9]:

σij =
∫

V
α(|x′ − x|, τ)

[
Cijklεkl(x′)− ekijEk(x′)− λij∆T

]
dx′, (1)

Di =
∫

V
α(|x′ − x|, τ)

[
eiklεkl(x′)− ϵikEk(x′) + pi∆T

]
dx′, (2)
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σij,j = ρüi, Di,i = 0, (3)

εij =
1
2
(
ui,j + uj,i

)
, Ei = −ϕi, (4)

Additionally, the differential form of the integral constitutive relations is as follows [8,9]:

σij − (e0a)2 ×∇2σij = Cijklεkl − ekjE − λij∆T, (5)

Di − (e0a)2 ×∇2Di = eiklεkl + ϵikEk + pi∆T, (6)

Within this framework, D, E, C, e, ρ, ε, σ, p, and ∈ correspond to the electric displacement,
electric field, elastic constant, piezoelectric constant, mass density, strain, stress, electric
constant, pyroelectric constant, and dielectric constants, respectively. These parameters
exhibit variability contingent upon the specific material type. The function α(|x′ − x|, τ)

characterizes nonlocal attenuation and is embedded into the constitutive formulas at the
point of reference x. In this context, |x′ − x| represents the Euclidean distance. ∇2 denotes
the Laplace operator. (τ = e0a/L), where a is an internal characteristic length and e0 is a
nondimensional material constant denoting the scale coefficient that clarifies the size effect
on the behavior of structures at the nanoscale. Numerical simulations based on the lattice
dynamics [6, 19] or experimental techniques can be used to find the value e0.

The nonlocal constitutive Equations (5) and (6) can be roughly represented as follows,
as shown in Figure 1:

σxx − (e0a)2 × ∂2σxx

∂x2 − C11εxx + e31Ez + λ1∆T = 0 (7)

σxz − (e0a)2 × ∂2σxz

∂x2 − C44γxz + e15Ex = 0 (8)

Dx − (e0a)2 × ∂2Dx

∂x2 − e15γxz − ϵ11Ex = 0 (9)

Dz − (e0a)2 × ∂2Dz

∂x2 − e31εxx − ϵ33Ez − p1∆T = 0 (10)

where εxx = ∂w
∂x +

(
∂θ
∂x

)2
+ z ∂ψ

∂x , γxz =
∂θ
∂x + ψ.

The governing equations of motion are obtained using Hamilton’s principle, as out-
lined in the reference [31].

ks A44

[
∂2w
∂x2 +

∂θx

∂x

]
+ (NP + NE + NT + NM)

(
∂2w
∂x2 − (e0a)2 ∂4w

∂x4

)
− K1

[
w − (e0a)2 ∂2w

∂x2

]
+K2

[
∂2w
∂x2 − (e0a)2 ∂4w

∂x4

]
+ K3w3 − ks

[
E15

∂2ϕ

∂x2 + Q15
∂2ψ

∂x2

]
= I0

∂2

∂t2

[
w − (e0a)2 ∂2w

∂x2

]
(11)

D11
∂2θx

∂x2 − ks A44

(
∂w
∂x

+ θx

)
+ (E31 + ksE15)

∂ϕE

∂x
+ (Q31 + ksQ15)

∂ψH

∂x
=

I2
∂2

∂t2

[
θx − (e0a)2 ∂2θx

∂x2

]
(12)

E31
∂θx

∂x
+ E15

[
∂2w
∂x2 +

∂θx

∂x

]
+ X11

∂2ϕE

∂x2 + Y11
∂2ψH

∂x2 − X33ϕE − Y33ψH = 0 (13)

Q31
∂θx

∂x
+ Q15

[
∂2w
∂x2 +

∂θx

∂x

]
+ Y11

∂2ϕE

∂x2 + T11
∂2ψH

∂x2 − Y33ϕE − T33ψH = 0 (14)
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The boundary conditions are derived by assuming zero electric and magnetic potential at
the ends of the nanobeam, as outlined in the reference [35].

In the case of clamped (C) boundary conditions,

θ(0, t) = w(0, t) = ϕ(0, t) = ψ(0, t) = 0, θ( L, t) = w( L, t) = ϕ(L, t) = ψ(L, t) = 0 (15)

In the case of hinged (H) boundary conditions,

w(0, t) = ϕ(0, t) = ψ(0, t) = 0, w(L, t) = ϕ(L, t) = ψ(L, t) = 0 (16)

D11
∂θ(0, t)

∂x
+ E31(ϕ(0, t) + ψ(0, t))− ω2(e0a)2

[
I2

∂θ(0, t)
∂x

+ I0w(0, t)
]

−
(

N̄E + NT + NP + NM
)
(e0a)2 ∂2w(0, t)

∂x2 + (e0a)2
(

k1w(0, t)− k2
∂2w(0,t)

∂x2 +

k3w3(0, t)

)
= 0 (17)

D11
∂θ( L, t)

∂x
+ E31(ϕ( L, t) + ψ(L, t))− ω2(e0a)2

[
I2

∂θ( L, t)
∂x

+ I0w( L, t)
]
−(

NE + NT+

NP + NM

)
(e0a)2 ∂2w( L, t)

∂x2 + (e0a)2
(

k1w( L, t)− k2
∂2w( L, t)

∂x2 + k3w3( L, t)
)
= 0 (18)

where w, θx, ϕ, and ψ denote the transverse displacement, rotation, electric potential,
and magnetic potential, respectively. The parameter (e0a) is a scale coefficient that in-
corporates the influence of small-scale effects. The shear correction factor k is set to 5/6,
which is a commonly used value for macroscale beams [31–33].

NT = −λ̄1 h∆ T, NE = 2e31 V0, NP = P0, NM = 2q̄31 A0 (19)

Here, NE, NM, NT , and NP denote the normal forces caused by the external electrical
potential V0, the magnetic potential A0, the temperature variation ∆T, and the mechanical
potential P0, respectively. The coefficients λ̄1, ē31, and q̄31 are associated with thermal,
piezoelectric, and piezomagnetic properties, respectively [41].

The current approach, employing Equation (19), represents a simplified treatment of
the thermal environment, neglecting the complexities inherent in transient heat transfer
processes. Generalized thermoelasticity theories, such as Lord–Shulman (LS) or Green–
Lindsay (GL) models, offer a more realistic representation by incorporating time-dependent
heat conduction effects and relaxation times. These models account for the finite speed of
heat propagation, a phenomenon absent in the classical coupled thermoelasticity theory
implicitly used in Equation (19).

The limitations of Equation (19) are significant because it assumes instantaneous ther-
mal equilibrium, which is not accurate at the nanoscale, especially for transient thermal
loading. The use of a generalized thermoelasticity theory would lead to a more accurate
representation of the temperature field and its influence on the nanobeam’s vibrations. This
would involve modifying the governing Equations (11)–(14) to include the appropriate
energy equation from the chosen generalized thermoelasticity model (LS or GL). The result-
ing system of equations would be more complex and likely require more computationally
intensive numerical techniques to solve.

So, we will acknowledge the limitations of the current thermal model and propose
future work incorporating a generalized thermoelasticity theory. This could involve a
detailed discussion of the implications of using a more sophisticated thermal model, in-
cluding the expected changes in the natural frequencies and mode shapes of the nanobeam.
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While a complete re-analysis using a generalized thermoelasticity theory might be beyond
the scope of the current paper, outlining a plan for such future work would strengthen the
paper significantly and demonstrate a commitment to addressing the limitations identified
by the reviewer. Furthermore, a comparison of the results obtained with the simplified
model (Equation (19)) to those expected from a generalized thermoelasticity model would
provide valuable insights into the accuracy of the current approach.

Also, 

(A11, A44) =
(
C11, C44

)
h

D11 = C11 h3/12

(E15, Q15) = 2 (
e15,q15)

β sin
(

βh
2

)
,

(I0, I2) = ρ
(

h, h3/12
)

,

(E31, Q31) =
(
e31, q31

)[
−h cos

(
β h
2

)
+ 2

β sin
(

β h
2

)]
,

(X11, Y11, T11) =
(S11,a11,µ̄11)

2

[
h + sin(βh)

β

]
,

(X33, Y33, T33) =
(S̄33,D33,µ̄33)β2

2

[
h − sin(βh)

β

]
,

β = π/h

(20)

And, 

(
C11, C44

)
=

(
C11 −

C2
13

C33
, C44

)
,

(e31, e15) =
(

e31 − C13e33
C33

, e15

)
,(

q̄31, q15
)
=
(

q31 − C13q33
C33

, q15

)
,(

S33, S11
)
=

(
S33 −

e2
33

C33
, S11

)
,(

d33, d11

)
=
(

d33 +
q33e33

C33
, d11

)
,

(µ̄33, µ̄11) =

(
µ33 +

q2
33

C33
, µ11

)
,(

λ̄1, p3, β̄3
)
=
(

λ1 − C13λ3
C33

, p3 +
λ3e33
C33

, β3 +
β3q33
C33

)

(21)

In this context, C̄ij, eij, Sij, qij, dij, µ̄ij, and λ̄i represent constants related to elasticity,
piezoelectricity, dielectric properties, piezomagnetism, magneto-electricity, magnetism,
and thermal behavior.

The following dimensionless parameters are used to normalize the field variables:

ζ =
x
L

, w =
W
L

, η =
L
h

, µ =
e0a

L
, θx = Θ, φ =

ϕE

ϕ0
, ϕ0 =

√
A11

X33
, ψψ0 =

√
A11

T33
, A44 =

A44

A11
,

D11 =
D11

A11 h2 , I0 =
I0

I0
, I2 =

I2

I0 h2 , X̄11 =
X11ϕ2

0

A11 h2 , X̄33 =
X33ϕ2

0
A11

, E15 =
E15ϕ0

A11 h
,

E31 =
E31ϕ0

A11 h
Q15 =

Q15ψ0

A11 h
, Q31 =

Q31ψ0

A11 h
, NT = −λ1 h∆ T

A11
, N̄E =

2e31 V0

A11
, Np =

P0

A11
,

NM =
2q31 A0

A11
, τ =

t
L

√
I0

A11
, k1 =

K1 L4

π2 A11 h2 , k2 =
K2 L2

π2 A11 h2 , k3 =
K3 L2

π2 A11 h2 , (22)

To analyze the harmonic behavior of the system, we assume that

w(x, t) = Weiωt, θ(x, t) = Θeiωt, ψ(x, t) = Ψeiωt, ϕ(x, t) = Φeiωt (23)

Here, ω represents the natural frequency of the beam, and i denotes the imaginary
unit, defined as i =

√
−1.
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W, Θ, Ψ, and Φ represent the amplitudes of the transverse displacement w, rotation θ,
electric potential ϕ, and magnetic potential ψ, respectively.

The substitution of Equations (22) and (23) into Equations (11)–(14) transforms the
time-dependent problem into a static eigenvalue problem.

ks A44

[
∂2 W
∂ζ2 + η

∂Θ
∂ζ

]
− ks

(
E15

∂2Φ
∂ζ2 + Q15

∂2Ψ
∂ζ2

)
+
(
NE + NT + Np + Nm

)
(

∂2 W
∂ζ2 − µ2 ∂4 W

∂ζ4

)
− k1

(
W − µ2 ∂2 W

∂ζ2

)
+ k2

(
∂2 W
∂ζ2 − µ2 ∂4 W

∂ζ4

)
+ (24)

k3 W3 = −ω2I0

[
W − µ2 ∂2 W

∂ζ2

]
D11

∂2Θ
∂ζ2 − ks A44η

(
∂ W
∂ζ

+ ηΘ
)
+
(
E31 + ksE15

)
η

∂Φ
∂ζ

+
(
Q31 + ksQ15

)
η

∂Ψ
∂ζ

=

−ω2I2

[
Θ − µ2 ∂2Θ

∂ζ2

]
(25)

E31η
∂Θ
∂ζ

+ E15

[
∂2 W
∂ζ2 + η

∂Θ
∂ζ

]
+ X11

∂2Φ
∂ζ2 − X33η2Φ + Y11

∂2Ψ
∂ζ2 − Y33η2Ψ = 0 (26)

Q31η
∂Θ
∂ζ

+ Q15

[
∂2 W
∂ζ2 + η

∂Θ
∂ζ

]
+ Y11

∂2Φ
∂ζ2 − Y33η2Φ + T11

∂2Ψ
∂ζ2 − T33η2Ψ = 0 (27)

The substitution of the harmonic solutions (Equations (22) and (23)) into the boundary
conditions (Equations (15)–(18)) results in the following boundary conditions.

In the case of clamped boundary conditions,

Θ = W = Φ = Ψ = 0, ζ = 0, 1 (28)

In the case of hinged boundary conditions,

W = Φ = Ψ = 0, ζ = 0, 1 (29)

D11
∂Θ
∂ζ

+ E31η(Φ + Ψ)− ω2µ2
[

I2
∂Θ
∂ζ

+ I0η W
]
− η

(
NE + NT + NP + NM

)
µ2 ∂2W

∂ζ2 +

µ2
(

k1W − k2η
∂2 W
∂ζ2 + k3 W3

)
= 0 (30)

3. Method of Solution
The governing equations are solved using three distinct differential quadrature ap-

proaches along with an iterative quadrature method. These techniques discretize the
governing equations, transforming them into an eigenvalue problem.

3.1. Polynomial-Based Differential Quadrature Method (PDQM)

To approximate the unknown function v and its derivatives at specific discrete nodes,
the Lagrange interpolation polynomial acts as the shape function. This method expresses
the approximation as a weighted combination of the nodal values vi(i = 1 : N) [42].

v(xi) =
N

∑
j=1

∏N
k=1(xi − xk)(

xi − xj
)

∏N
j=1,j ̸=k

(
xj − xk

)v
(

xj
)
, (i = 1 : N), (31)

∂v
∂x

∣∣∣∣
x=xi

=
N

∑
j=1

C(1)
ij v

(
xj
)
,

∂2v
∂x2

∣∣∣∣
x=xi

=
N

∑
j=1

C(2)
ij v

(
xj
)
, (i = 1 : N) (32)
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Likewise, we can approximate ∂3v
∂x3 , ∂4v

∂x4 and determine C(3)
ij , C(4)

ij . The number of grid

points is denoted by N. For each variable, v ∈ {W, Θ, Ψ, Φ}, the weighting coefficients C(1)
ij

are obtained by differentiating the Lagrange interpolation polynomial (Equation (31)):

C(1)
ij =


1

(xi−xj)
∏N

k=1,k ̸=i,j
(xi−xk)

(xj−xk)
i ̸= j

−∑N
j=1,j ̸=i C(1)

ij i = j
(33)

Matrix multiplication is employed to compute the matrices C(2)
ij , C(3)

ij , and C(4)
ij as

follows: [
C(n)

ij

]
=
[
C(1)

ij

][
C(n−1)

ij

]
, (n = 2, 3, 4) (34)

3.2. Sinc Differential Quadrature Method (SDQM)

The function of cardinal sine is utilized as a shape function to approximate vi(i = 1 : N)

as follows:

Sj(xi, hx) =
sin
[
π
(
xi − xj

)
/hx

]
π
(
xi − xj

)
/hx

(35)

The step size, denoted by hx, is a positive value.
To approximate the unknown function v and its derivatives at specific discrete nodes,

the cardinal sine acts as the shape function. This method expresses the approximation as a
weighted combination of the nodal values vi(i = −N : N) [34].

v(xi) =
N

∑
j=−N

sin
[
π
(
xi − xj

)
/hx

]
π
(
xi − xj

)
/hx

v
(
xj
)
, (i = −N : N), hx > 0 (36)

∂v
∂x

∣∣∣∣
x=xi

=
N

∑
j=−N

C(1)
ij v

(
xj
)
,

∂2v
∂x2

∣∣∣∣
x=xi

=
N

∑
j=−N

C(2)
ij v

(
xj
)
, (i = −N : N), (37)

Likewise, we can approximate ∂3v
∂x3 , ∂4v

∂x4 and determine C(3)
ij , C(4)

ij

For each variable, v ∈ { W, Θ, Ψ, Φ}, the weighting coefficients C(1)
ij , C(2)

ij , C(3)
ij ,

and C(4)
ij are obtained by differentiating Equations (35) and (36):

C(1)
ij =

{
(−1)i−j

hX(i−j) , i ̸= j,

0 i = j
,

C(2)
ij =


2(−1)i−j+1

h2
X(i−j)2 , i ̸= j

− π2

3h2
X

i = j,

C(3)
ij =

{
(−1)i−j

h3
X(i−j)3

(
6 − π2(i − j)2), i ̸= j , (38)

C(4)
ij =


4(−1)i−j+1

h4
X(i−j)4

(
6 − π2(i − j)2), i ̸= j

π4

5h4
X

3.3. Discrete Singular-Convolution Differential Quadrature Method (DSCDQM)

As defined in the references [36–40], a singular convolution is given by

F(t) = (T × η)(t) =
∫ ∞

−∞
T(t − x)η(x)dx (39)

where the singular kernel is denoted by T(t − x).
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The DSC algorithm leverages various kernel functions to approximate the unknown
function v and its derivatives at discrete nodes, vi(i = −N : N), within a localized region
defined by a narrow bandwidth, (x − xM, x + xM) [36–40].

Two kernels of DSC will be employed as follows:
(a) The Delta Lagrange Kernel (DLK) serves as the shape function within the DSC

algorithm. This kernel enables the approximation of the unknown function v and its
derivatives through a weighted linear combination of nodal values, vi(i = −N : N):

v(xi) =
M

∑
j=−M

∏M
k=−M(xi − xk)(

xi − xj
)

∏M
j=−M,j ̸=k

(
xj − xk

)v
(
xj
)
, (i = −N : N), M ≥ 1 (40)

∂v
∂x

∣∣∣∣
X=xi

=
M

∑
j=−M

C(1)
ij v

(
xj
)
,

∂2v
∂x2

∣∣∣∣
x=xi

=
M

∑
j=−M

C(2)
ij v

(
xj
)
, (i = −N : N), (41)

Likewise, we can approximate ∂3v
∂x3 , ∂4v

∂x4 and determine C(3)
ij , C(4)

ij , where the effective
computational bandwidth is denoted by 2M + 1.

C(1)
ij , C(2)

ij , C(3)
ij , and C(4)

ij are obtained as

C(1)
ij =


1

(xi−xj)
∏M

k=−M,k ̸=i,j
(xi−xk)

(xj−xk)
, i ̸= j

−∑M
j=−M,j ̸=i C(1)

ij , i = j

C(2)
ij =


2

(
C(1)

ij C(1)
ii −

C(1)
ij

(xi−xj)

)
, i ̸= j

−∑M
j=−M,j ̸=i C(2)

ij , i = j

, (42)

C(3)
ij =


3

(
C(1)

ij C(2)
ii −

C(2)
ij

(xi−xj)

)
, i ̸= j

−∑M
j=−M,j ̸=i C(3)

ij , i = j

C(4)
ij =


4

(
C(1)

ij C(3)
ii −

C(3)
ij

(xi−xj)

)
, i ̸= j

−∑M
j=−M,j ̸=i C(4)

ij , i = j

(43)

The Regularized Shannon Kernel (RSK) is also utilized as a shape function to approxi-
mate v and its derivatives in terms of the nodal values vi(i = −N : N):

ψ(xi) =
M

∑
j=−M

〈
sin
[
π
(
xi − xj

)
/hx

]
π
(
xi − xj

)
/hx

e
−

 (xi−xj)
2

2σ2

〉
ψ
(
xj
)
,

(i = −N : N), σ = (r × hx) > 0 (44)

∂v
∂x

∣∣∣∣
X=xi

=
M

∑
j=−M

C(1)
ij v

(
xj
)
,

∂2v
∂x2

∣∣∣∣
x=xi

=
M

∑
j=−M

C(2)
ij v

(
xj
)
, (i = −N, N), (45)

Likewise, we can approximate ∂3v
∂x3 , ∂4v

∂x4 and determine C(3)
ij , C(4)

ij .
The parameters σ and r are the regularization parameter and computational parameter,

respectively. The weighting coefficients C(1)
ij , C(2)

ij , C(3)
ij , and C(4)

ij are obtained from the
formulas presented in the reference [43]:
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C(1)
ij =


(−1)i−j

hx(i−j) e
−hx

2
(

(i−j)2

2σ2

)
, i ̸= j

0 i = j

, C(2)
ij =


(

2(−1)i−j+1

hx2(i−j)2 + 1
σ2

)
e
−h2

x

(
(i−j)2

2σ2

)
, i ̸= j

− 1
σ2 − π2

3hx2 i = j

C(3)
ij =


c (−1)i−j

h3
x(i−j)3

(
π2

h3
x(i−j)

+ 6
h3

x(i−j)3 +
3

hx(i−j)σ2 +
3hx(i−j)

σ4

)
e
−hx

(
(i−j)2

2σ2

)
, i ̸= j

0 i = j

,

C(4)
ij =


(−1)i−j

(
4π2

hx4(i−j)2 +
4π2

hx2σ2 − 24
hx4(i−j)4 − 12

hx2(i−j)2σ2 −
4hx

2(i−j)2

σ6

)
e
−h2

x

(
(i−j)2

2σ2) , i ̸= j

3
σ4 +

2π2

hx2σ2 +
π4

5hx4 , i = j

(46)

By appropriately substituting equations involving weighting coefficients (46) into
Equations (24)–(27), the issue can be simplified into the subsequent nonlinear eigen-
value problem.

ks Ā44

[
N

∑
j=1

C(2)
ij Wj + η

N

∑
j=1

C(1)
ij Θj

]
− ks

(
Ē15

N

∑
j=1

C(2)
ij Φj + Q̄15

N

∑
j=1

C(2)
ij Ψj

)
+

(N̄E + N̄T + N̄M + N̄P)

(
N

∑
j=1

C(2)
ij Wj − µ2

N

∑
j=1

C(4)
ij Wj

)
− k1

(
N

∑
j=1

δijWj − µ2
N

∑
j=1

C(2)
ij Wj

)
+

k2

(
N

∑
j=1

C(2)
ij Wj − µ2

N

∑
j=1

C(4)
ij Wj

)
+ k3

N

∑
j=1

δijW3
j = − Ī0ω2

[
N

∑
j=1

δijWj − µ2
N

∑
j=1

C(2)
ij Wj

]
, (47)

D̄11

N

∑
j=1

C(2)
ij Θj − ks Ā44η

(
N

∑
j=1

C(1)
ij Wj + η

N

∑
j=1

δijΘj

)
+ (Q̄31 + ksQ̄15)η

N

∑
j=1

C(1)
ij Ψj + (Ē31 + ksĒ15)η

N

∑
j=1

C(1)
ij Φj = − Ī2ω2

[
N

∑
j=1

δijΘj − µ2
N

∑
j=1

C(2)
ij Θj

]
, (48)

Ē31η
N

∑
j=1

C(1)
ij Θj + Ē15

[
N

∑
j=1

C(2)
ij Wj + η

N

∑
j=1

C(1)
ij Θj

]
+ X̄11

N

∑
j=1

C(2)
ij Φj − X̄33η2

N

∑
j=1

δijΦj+

Ȳ11

N

∑
j=1

C(2)
ij Ψj − Ȳ33η2

N

∑
j=1

δijΨj = 0 (49)

Q̄31η
N

∑
j=1

C(1)
ij Θj + Q15

[
N

∑
j=1

C(2)
ij Wj + η

N

∑
j=1

C(1)
ij Θj

]
+ Y11

N

∑
j=1

C(2)
ij Φj − Y33η2

N

∑
j=1

δijΦj+

T11

N

∑
j=1

C(2)
ij Ψj − T33η2

N

∑
j=1

δijΨj = 0 (50)
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The boundary conditions (28–30) can be estimated using three different DQMs in a
similar manner.
(1) Clamped (C):

W1 = Θ1 = Φ1 = Ψ1 = 0, at ζ = 0 (51)

WN = ΘN = ΦN = ΨN = 0, at ζ = 1 (52)

(2) Hinged (H):

W1 = Φ1 = Ψ1 = 0,

D11

N

∑
j=1

C(1)
1j Θj + E31η

(
N

∑
j=1

δ1jΦj +
N

∑
j=1

δ1jΨj

)
− µ2ω2

[
I2

N

∑
j=1

C(1)
1j Θj + I0η

N

∑
j=1

δ1jWj

]
−

µ2

(
k1

N

∑
j=1

δ1jWj + k2η
N

∑
j=1

C(2)
1j Wj +

(
NT + NE + NP + NM

)
η

N

∑
j=1

C(2)
1j Wj

)
= 0, at ζ = 0 (53)

WN = ΦN = ΨN = 0,

D11

N

∑
j=1

C(1)
Nj Θj + E31η

(
N

∑
j=1

δNjΦj +
N

∑
j=1

δNjΨj

)
− µ2ω2

[
I2

N

∑
j=1

C(1)
Nj Θj + I0η

N

∑
j=1

δNjWj

]
−

µ2

(
k1

N

∑
j=1

δNjWj + k2η
N

∑
j=1

C(2)
Nj Wj +

(
NT + NE + NP + NM

)
η

N

∑
j=1

C(2)
Nj Wj

)
= 0, at ζ = N (54)

Next, by employing the iterative quadrature method [44], the linear eigenvalue problem
can be derived as follows:

The first step involves solving the linear system of Equations (45)–(48).

ksA44

[
N

∑
j=1

C(2)
ij Wj + η

N

∑
j=1

C(1)
ij Θj

]
− ks

(
E15

N

∑
j=1

C(2)
ij Φj + Q15

N

∑
j=1

C(2)
ij Ψj

)
+

(
NE + NT + NM + NP

)( N

∑
j=1

C(2)
ij Wj − µ2

N

∑
j=1

C(4)
ij Wj

)
−

k1

(
N

∑
j=1

δijWj − µ2
N

∑
j=1

C(2)
ij Wj

)
+ k2

(
N

∑
j=1

C(2)
ij Wj − µ2

N

∑
j=1

C(4)
ij Wj

)
+ k3

N

∑
j=1

δijWj =

− Ī0ω2

[
N

∑
j=1

δijWj − µ2
N

∑
j=1

C(2)
ij Wj

]
, (55)

D̄11

N

∑
j=1

C(2)
ij Θj − ks Ā44η

(
N

∑
j=1

C(1)
ij Wk+1,j + η

N

∑
j=1

δijΘj

)
+ (Q̄31 + ksQ̄5)η

N

∑
j=1

C(1)
ij Ψj+

(Ē31 + ksĒ15)η
N

∑
j=1

C(1)
ij Φj = − Ī2ω2

[
N

∑
j=1

δijΘj − µ2
N

∑
j=1

C(2)
ij Θj

]
, (56)

Ē31η
N

∑
j=1

C(1)
ij Θj + Ē15

[
N

∑
j=1

C(2)
ij Wk+1,j + η

N

∑
j=1

C(1)
ij Θj

]
+ X̄11

N

∑
j=1

C(2)
ij Φj−

X̄33η2
N

∑
j=1

δijΦj + Ȳ11

N

∑
j=1

C(2)
ij Ψj − Ȳ33η2

N

∑
j=1

δijΨj = 0, (57)
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Q̄31η
N

∑
j=1

C(1)
ij Θj + Q̄15

[
N

∑
j=1

C(2)
ij Wk+1,j + η

N

∑
j=1

C(1)
ij Θj

]
+ Ȳ11

N

∑
j=1

C(2)
ij Φj−

Ȳ33η2
N

∑
j=1

δijΦj + T̄11

N

∑
j=1

C(2)
ij Ψj − T̄33η2

N

∑
i=1

δijΨj = 0 (58)

Next, an iterative method is used to solve the nonlinear system until convergence
is achieved. ∣∣∣∣Wk+1

Wk

∣∣∣∣ < 1, where k = 0, 1, 2

ks Ā44

[
N

∑
j=1

C(2)
ij Wk+1,j + η

N

∑
j=1

C(1)
ij Θj

]
− ks

(
Ē15

N

∑
j=1

C(2)
ij Φj + Q̄5

N

∑
j=1

C(2)
ij Ψj

)
+

(N̄E + N̄T + N̄M + N̄P)

[
N

∑
j=1

C(2)
ij Wk+1,j − µ2

N

∑
j=1

C(4)
ij Wk+1,j

]
−

k1

(
N

∑
j=1

δijWk+1,j − µ2
N

∑
j=1

C(2)
ij Wk+1,j

)
+ k2

(
N

∑
j=1

C(2)
ij Wk+1,j − µ2

N

∑
j=1

C(4)
ij Wk+1,j

)

+k3

N

∑
j=1

δijW2
k+1,j = − Ī0ω2

[
N

∑
j=1

δijWk+1,j − µ2
N

∑
j=1

C(2)
ij Wk+1,j

]
, (59)

D̄11

N

∑
j=1

C(2)
ij Θj − ks Ā44η

(
N

∑
j=1

C(1)
ij Wk+1,j + η

N

∑
j=1

δijΘj

)
+ (Q̄31 + ksQ̄5)η

N

∑
j=1

C(1)
ij Ψj+

(Ē31 + ksĒ15)η
N

∑
j=1

C(1)
ij Φj = − Ī2ω2

[
N

∑
j=1

δijΘj − µ2
N

∑
j=1

C(2)
ij Θj

]
, (60)

Ē31η
N

∑
j=1

C(1)
ij Θj + Ē15

[
N

∑
j=1

C(2)
ij Wk+1,j + η

N

∑
j=1

C(1)
ij Θj

]
+ X̄11

N

∑
j=1

C(2)
ij Φj−

X̄33η2
N

∑
j=1

δijΦj + Ȳ11

N

∑
j=1

C(2)
ij Ψj = −Ȳ33η2

N

∑
j=1

δijΨj = 0, (61)

Q̄31η
N

∑
j=1

C(1)
ij Θj + Q̄15

[
N

∑
j=1

C(2)
ij Wk+1,j + η

N

∑
j=1

C(1)
ij Θj

]
+ Ȳ11

N

∑
j=1

C(2)
ij Φj−

Ȳ33η2
N

∑
j=1

δijΦj + T̄11

N

∑
j=1

C(2)
ij Ψj − T̄33η2

N

∑
i=1

δijΨj = 0 (62)

4. Numerical Results
The proposed differential quadrature methods exhibit enhanced convergence and effi-

ciency in analyzing the vibration of magneto-electro-thermo-elastic nanobeams. The bound-
ary conditions were incorporated into the governing Equations (47)–(50) and solved iter-
atively using Equations (55)–(62). The computational parameters for each method were
optimized to ensure accurate results with an error of at least 10−10. The natural frequencies
ω can be determined using the following equation:

ω = ΩL

√
I0

Ā11
(63)

where the natural frequency of the nanobeam is denoted by Ω .
For the present results, material parameters for the composite are listed in Table 1.
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Table 1. Key material properties of the investigated composites [45,46].

Material Parameters BiTiO3-COFe2O4 PTZ-5H-COFe2O4

Elastic parameters (GPa) C11 226 206
C12 125 126.25
C13 124 127.3
C44 44.2 34.3

Piezoelectric parameters(C/m2) e31 −2.2 −3.25
e33 9.3 11.65
e15 5.8 8.5

Dielectric parameters (C/Vm) × 10−9 ϵ33 5.64 7.555
ϵ33 6.35 6.5465

Piezomagnetic parameters (N/Am) q31 290.1 290.15
q33 349.9 349.9
q15 275 275

Magnetoelectric parameters (Ns/VC) × 10−12 d11 5.367 16.5
d33 2737.5 20.7

Magnetic parameters (Ns2/C2) × 10−6 µ11 −297 −297
µ33 83.5 83.5

Thermal module (N/m2K) × 105 λ1 4.74 5
λ3 4.53 4.85

Density (kg/m3) ρ 5550 6550

The PDQM utilized a non-uniform grid based on Gauss–Chebyshev–Lobatto points
for discretization [42].

xi =
1
2

[
1 − cos

(
i − 1
N − 1

π

)]
, (i = 1 : N) (64)

There were three to fifteen grid points, N. As seen in Table 2, the outcomes were
consistent with earlier analytical solutions [46,47] for 11 grid points.

Table 2. Normalized frequencies: PDQM vs. exact and numerical solutions (C-C METE nanobeam).
(L = 80 nm; h = 10 nm; ∆T = 0; V0 = 0; P0 = 0; A0 = 0; µ = 0; k1 = k2 = k3 = 0.)

Grid Size, N ω1 ω2 ω3 ω4 ω5

3 14.5445 145.484 165.349 — —
5 7.6348 30.1832 44.1502 147.015 161.182
7 7.6440 19.0072 32.8765 74.905 88.464
9 7.6460 18.6790 32.4585 50.130 64.8814

11 7.6460 18.6790 32.4772 48.095 64.0633
13 7.6460 18.6790 32.4765 48.006 64.1910

Exact results [46] 7.6473 18.6692 32.4618 —– —–
PDQM [47] 7.6267 18.6229 32.3964 —– —–

Computational time 0.15 s A non-uniform grid with more than 11 nodes

The Sinc–Discrete Singular-Convolution Differential Quadrature (Sinc-DQ) method
was employed in a regular grid with grid sizes ranging from 3 to 15. The numerical results
obtained using the Sinc-DQ method converged to the exact solutions [25] for grid sizes
greater than or equal to 9, as shown in Table 3. Additionally, the Sinc-DQ method exhibited
superior computational efficiency compared to the PDQM method.



Algorithms 2025, 18, 64 14 of 30

Table 3. Normalized frequencies: Sinc-DQ vs. exact and numerical solutions ((C-C) METE nanobeam).
(L = 80 nm; h = 10 nm; ∆T = 0; V0 = 0; P0 = 0; A0 = 0; µ = 0; k1 = k2 = k3 = 0.)

Grid Size, N ω1 ω2 ω3 ω4 ω5

3 19.512 40.542 75.254 —— ——–
5 16.3278 37.1149 68.3338 152.781 178.53
7 9.5236 25.457 40.2145 60.214 78.254
9 7.6469 18.6977 32.5948 48.1074 64.802

11 7.6469 18.6977 32.5948 48.1074 64.802

Exact results [46] 7.6473 18.6692 32.4618 —— ——
PDQM [47] 7.6267 18.6229 32.3964 —— ——

Computational time 0.12 s A uniform grid with more than 9 nodes

The Discrete Singular Convolution Differential Quadrature Method utilizing the Delta
Lagrange Kernel (DSCDQM-DLK) was implemented in a uniform grid with sizes ranging
from 3 to 11. The kernel’s bandwidth was adjusted between 3 and 9. As shown in Table 4,
the numerical results obtained through the DSCDQM-DLK method converged to the exact
solutions [47] when the grid sizes and bandwidths were 3 or greater. Tables 4 and 5 indicate
that the DSCDQM-DLK method demonstrated greater computational efficiency compared
to both the PDQM and the Sinc-DQ method.

Table 4. Fundamental frequency convergence: DSCDQM-DLK ((C-C) METE nanobeam). (L = 80 nm;
h = 10 nm; ∆T = 0; V0 = 0; P0 = 0; A0 = 0; µ = 0; k1 = k2 = k3 = 0.)

Fundamental Frequency

Bandwidth N 3 5 7 9 11

3 7.6469 7.6469 7.6469 7.6469 7.6469 7.6469
5 7.6469 7.6469 7.6469 7.6469 7.6469 7.6469
7 7.6469 7.6469 7.6469 7.6469 7.6469 7.6469
9 7.6469 7.6469 7.6469 7.6469 7.6469 7.6469

Computational time 0.09 s A uniform grid with more than 9 nodes

Table 5. Normalized frequencies: DSCDQM-DLK vs. exact and numerical solutions ((C-C) METE
nanobeam). (L = 80 nm; h = 10 nm; ∆T = 0; V0 = 0; P0 = 0; A0 = 0; µ = 0; k1 = k2 = k3 = 0.)

N 1 2 3 4 5

3 7.6469 18.6977 32.5948 48.1074 64.802
5 7.6469 18.6977 32.5948 48.1074 64.802
7 7.6469 18.6977 32.5948 48.1074 64.802
9 7.6469 18.6977 32.5948 48.1074 64.802

Exact results [46] 7.6473 18.6692 32.4618 — —
PDQM [47] 7.6267 18.6229 32.3964 — —

Computational time 0.09 s A uniform grid with more than 3 nodes

A uniform grid with three to nine nodes was used to develop the Discrete Singular
Convolution Differential Quadrature Method utilizing the Regularized Shannon Kernel
(DSCDQM-RSK). The kernel bandwidth (3–7) and σ (hx to 1.75 hx), where hx = 1/(N-1),
were varied. Table 6 explains the convergence to the exact solutions [46,47] for grid sizes,
bandwidths, and regularization parameters that exceeded specific thresholds. Table 7
highlights the superior computational efficiency among the methods compared.
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Table 6. Normalized fundamental frequency convergence (DSCDQM-RSK, (C-C) METE nanobeam).
(L = 80 nm; h = 10 nm; ∆T = 0; V0 = 0; P0 = 0; A0 = 0; µ = 0; k1 = k2 = k3 = 0.)

N 2M + 1 σ = 0.5 hx σ= hx σ = 1.25 hx σ = 1.5 hx σ = 1.75 hx

3 3 9.5336 8.7325 8.3112 7.9568 7.6469
5 9.5336 8.7325 8.3112 7.9568 7.6469
7 9.5336 8.7325 8.3112 7.9568 7.6469

5 3 9.5336 8.7325 8.3112 7.9568 7.6469
5 9.5336 8.7325 8.3112 7.9568 7.6469
7 9.5336 8.7325 8.3112 7.9568 7.6469

7 3 9.5336 8.7325 8.3112 7.9568 7.6469
5 9.5336 8.7325 8.3112 7.9568 7.6469
7 9.5336 8.7325 8.3112 7.9568 7.6469

9 3 9.5336 8.7325 8.3112 7.9568 7.6469
5 9.5336 8.7325 8.3112 7.9568 7.6469
7 9.5336 8.7325 8.3112 7.9568 7.6469

Table 7. Normalized frequencies of (C-C) METE nanobeam using DSCDQM-RSK. (L = 80 nm;
h = 10 nm; ∆T = 0; V0 = 0; P0 = 0; A0 = 0; µ = 0; k1 = k2 = k3 = 0.)

Grid Size, N ω1 ω2 ω3 ω4 ω5

3 7.6469 18.6977 32.5948 48.1074 64.802
5 7.6469 18.6977 32.5948 48.1074 64.802
7 7.6469 18.6977 32.5948 48.1074 64.802
9 7.6469 18.6977 32.5948 48.1074 64.802

Exact results [46] 7.6473 18.6692 32.4618 — —
PDQM [47] 7.6267 18.6229 32.3964 — —

Computational time 0.053 A uniform grid with more than 3 nodes

This research investigated the influence of various factors on the vibrational behavior
of a nanobeam. Using the DSCDQM-RSK method (grid size, 3; bandwidth, 7; σ = 1.75 hx),
a parametric study examined the effects of linear (and nonlinear) elastic foundation pa-
rameters, temperature, electric voltage, nonlocality, the aspect ratio, axial force, magnetic
potential, and different boundary conditions (clamped–clamped, clamped–simply sup-
ported, simply supported–simply supported) on natural frequencies and mode shapes.
The results (Tables 8–11) show that increased linear foundation parameters and magnetic
potential raised the fundamental frequency, while the nonlinear foundation parameter had
a negligible effect.

The fundamental frequency of the nanobeam was inversely related to the temperature
change, electric voltage, non-local parameter, and length-to-thickness ratio (Figures 2–6) but di-
rectly related to the axial force and magnetic potential (Figures 7–11). Figures 5, 6, 10 and 11
show the first three modes (transverse displacement and electric potential), revealing that in-
creasing linear (and nonlinear) elastic foundation parameters amplified both displacement
and electric potential amplitudes.

The nanobeam’s response was more strongly influenced by the axial force and elec-
tric and magnetic fields than by temperature variations. Comparisons between BiTiO3-
COFe2O4 and PTZ-5H-COFe2O4 show that the former consistently exhibited a higher
fundamental frequency, amplitude, and electric potential. The numerical results, accurate
and convergent with other methods, offer valuable design insights for creating customized
nanoelectronic and biotechnological smart nanostructures.
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Table 8. Axial force vs. normalized frequency ((C-C) METE nanobeam). (L = 60 nm; h = 10 nm;
∆T = 0; V0 = 0; A0 = 0; µ = 0.1.)

Axial Forces P0 = −1.5 P0 = −1 P0 = 0 P0 = 1

Frequencies ω1 ω2 ω1 ω2 ω1 ω2 ω1 ω2

Elastic Parameter
k3 = k2 k1

0 0 11.745 24.203 11.781 24.264 11.85 24.383 11.919 24.502
5 11.749 24.2055 11.784 24.266 11854 24.385 11.923 24.504
10 11.753 24.207 11.788 24.267 11.858 24.387 11.927 24.506
15 11.757 24.2091 11.792 24.269 11.862 24.389 11.931 24.507
25 11.765 24.213 11.8 24.273 11.869 24.392 11.938 24.511

0.025 0 11.752 24.2147 11.787 24.275 11.857 24.394 11.926 24.513
5 11.756 24.5165 11.791 24.277 11.861 24.396 11.93 24.515
10 11.76 24.2184 11.795 24.278 11.865 24.398 11.934 24.517
15 11.764 24.22 11.799 24.28 11.868 24.4 11.937 24.518
25 11.772 24.224 11.807 24.284 11.876 24.403 11.945 24.522

0.05 0 11.76 24.226 11.794 24.286 11.864 24.405 11.933 24.524
5 11.763 24.2276 11.798 24.288 11.867 24.407 11.936 24.526
10 11.767 24.229 11.802 24.289 11.871 24.409 11.94 24.527
15 11.771 24.231 11.806 24.291 11.875 24.411 11.944 24.529
25 11.778 24.235 11.813 24.295 11.883 24.414 11.952 24.533

0.1 0 11.772 24.248 11.807 24.308 11.877 24.427 11.946 24.546
5 11.776 24.25 11.811 24.31 11.881 24.429 11.95 24.547
10 11.78 24.252 11.815 24.312 11.884 24.431 11.953 24.549
15 11.784 24.253 11.819 24.313 11.888 24.433 11.957 24.551
25 11.792 24.257 11.627 24.317 11.896 24.436 11.965 24.555

0.15 0 11.786 24.27 11.821 24.33 11.89 24.449 11.959 24.567
5 11.79 24.272 11.825 24.332 11.894 24.451 11.963 24.569
10 11.793 24.274 11.828 24.334 11.898 24.453 11.966 24.571
15 11.797 24.276 11.832 24.335 11.902 24.454 11.97 24.573
25 11.81 24.279 11.84 24.339 11.909 24.458 11.978 24.576

Table 9. Magnetic potential vs. normalized frequency ((C-C) METE nanobeam). (L = 60 nm;
h = 10 nm; ∆T = 0; V0 = 0; P0 = 0; µ = 0.1).

Magnetic Potential A0 = −0.02 A0 = −0.01 A0 = 0 A0 = 0.01

Frequencies ω1 ω2 ω1 ω2 ω1 ω2 ω1 ω2

Elastic Parameter
k3 = k2 k1

0 0 11.599 23.953 11.726 24.169 11.85 24.383 11.973 24.595
5 11.603 23.955 11.73 24.171 11.854 24.385 11.977 24.597
10 11.607 23.957 11.733 24.173 11.858 24.387 11.981 24.598
15 11.611 23.959 11.737 24.175 11.862 24.389 11.985 24.60
25 11.619 23.963 11.745 24.179 11.869 24.392 11.992 24.604

0.025 0 11.606 23.965 11.732 24.181 11.857 24.394 11.98 24.606
5 11.61 23.967 11.736 24.182 11.861 24.396 11.984 24.607
10 11.614 23.968 11.74 24.184 11.865 24.398 11.987 24.609
15 11.618 23.97 11.744 24.186 11.868 24.4 11.991 24.611
25 11.626 23.974 11.752 24.19 11.876 24.403 11.999 24.615

0.05 0 11.613 23.976 11.739 24.192 11.864 24.405 11.986 24.616
5 11.617 23.978 11.743 24.193 11.867 24.407 11.99 24.618
10 11.621 23.98 11.747 24.195 11.871 24.409 11.994 24.62
15 11.625 23.981 11.751 24.197 11.875 24.411 11.998 24.622
25 11.632 23.985 11.758 24.201 11.883 24.414 12.005 24.625
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Table 9. Cont.

Magnetic Potential A0 = −0.02 A0 = −0.01 A0 = 0 A0 = 0.01

Frequencies ω1 ω2 ω1 ω2 ω1 ω2 ω1 ω2

Elastic Parameter
k3 = k2 k1

0.1 0 11.626 23.998 11.752 24.214 11.877 24.427 12 24.638
5 11.630 24.00 11.756 24.516 11.881 24.429 12.003 24.64
10 11.634 24.002 11.76 24.217 11.884 24.431 12.007 24.642
15 11.638 24.004 11.764 24.219 11.888 24.432 12.011 24.644
25 11.646 24.007 11.772 24.223 11.896 24.436 12.018 24.647

0.15 0 11.64 24.021 11.766 24.236 11.89 24.449 12.013 24.66
5 11.644 24.022 11.77 24.238 11.894 24.451 12.016 24.662
10 11.648 24.024 11.774 24.24 11.898 24.453 12.02 24.663
15 11.652 24.026 11.777 24.241 11.901 24.454 12.024 24.665
25 11.66 24.03 11.785 24.245 11.909 24.458 12.031 24.669

Table 10. Conditions of boundaries and nonlocal parameter vs. normalized frequency (METE
nanobeam). (L = 80 nm; h = 10 nm; ∆T = 0; V0 = 0; P0 = 0; A0 = 0.02; µ = 0; L/h = 8; k1 = 10;
k2 = 0.25; k3 = 0.15.)

Normalized Frequencies

B.C µ ω1 ω2 ω3 ω4 ω5

CH 0 5.8127 16.5508 30.5288 46.4423 63.1618
0.05 5.7455 15.8011 27.6732 39.4747 49.9575
0.1 5.5596 14.0742 22.4378 29.383 34.673

0.15 5.2935 12.2016 18.0756 22.5677 25.8567
0.2 4.9905 10.5937 14.9913 18.2813 20.6293
0.3 4.3971 8.3366 11.3117 13.4537 14.6772

CC 0 7.8228 18.9123 32.7410 48.2897 64.5063
0.05 7.7286 18.0251 29.6487 41.0333 51.045
0.1 7.4687 15.9906 24.0051 30.5441 35.4677

0.15 7.0987 13.8005 19.3378 23.4804 26.4795
0.2 6.6802 11.9355 16.0648 19.0330 21.0858
0.3 5.8704 9.3446 12.2038 13.922 14.8882

HH 0 4.0711 14.1202 28.1803 44.4842 61.727
0.05 4.0296 13.5050 25.2715 37.814 48.785
0.1 3.9141 12.0759 20.7633 28.1311 33.799

0.15 3.7468 10.506 16.7268 21.5699 25.1501
0.2 3.5532 9.1397 13.8537 17.4392 20.0658

Table 11. Comparing the L/t ratio, boundary conditions, and normalized frequencies for METE
nanobeams. (∆T = 0; V0 = 0; P0 = 0; A0 = 0.02; h = 2 nm; µ = 0; k1 = 10; k2 = 0.25; k3 = 0.15).

Normalized Frequencies

B.C L/h ω1 ω2 ω3 ω4 ω5

CH 6 65.3075 132.3290 193.2852 240.0726 274.7364
8 41.9400 87.6475 130.6966 166.538 193.0549

12 22.8307 48.2839 73.7153 96.2304 114.8452
16 15.396 32.2589 49.1744 65.2192 78.5352
20 11.8894 24.2939 37.0331 48.9753 59.8226
30 8.1887 16.0752 24.0178 31.6047 38.7174
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Table 11. Cont.

Normalized Frequencies

B.C L/h ω1 ω2 ω3 ω4 ω5

CC 6 51.369 120.3003 184.3095 234.5509 271.6168
8 32.9497 78.0707 122.6264 160.4316 189.2995

12 18.3886 42.4297 67.8774 91.1052 110.9483
16 12.6912 28.4750 44.9936 61.2217 75.2852
20 10.1075 21.495 33.8316 45.7028 56.9546
30 7.244 14.4196 22.0180 29.4070 36.6993

HH 6 39.045 107.2164 174.6817 228.4481 268.5102
8 25.4156 68.2893 114.1099 153.9207 185.1885

12 14.8655 36.8893 62.0062 85.8467 106.6789
16 10.7651 24.8817 41.0727 57.1300 71.8685
20 8.6841 19.0506 30.7592 42.589 53.8329
30 6.8041 13.008 20.1487 27.4042 34.5047

Figure 2. Impact of temperature and nonlocal parameter on fundamental frequency of hinged–hinged
(H-H) METE nanobeam for different materials. V0 = 0; P0 = 1.5; A0 = 0.02; h = 10 nm; L/h = 6;
k1 = 25; k2 = 0.05; k3 = 0.15.
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Figure 3. Impact of electric voltage and nonlocal parameter on fundamental frequency of (H-H)
METE nanobeam for different materials. ∆T = 0; P0 = 1.5; A0 = 0.02; h = 10 nm; L/h = 6; k1 = 25;
k2 = 0.05; k3 = 0.15.
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Figure 4. Impact of length-to-thickness ratio and nonlocal parameter on fundamental frequency of
(H-H) METE nanobeam for different materials. P0 = 2; ∆T = 100; V0 = −0.3; A0 = 0.02; h = 2 nm;
k1 = 25; k2 = 0.05; k3 = 0.15.
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Figure 5. Electrical potential distribution in (C-C) METE nanobeam for different materials. P0 = 0;
∆T = 100; V0 = −0.3; A0 = 0.05; h = 10 nm; L/h = 6; k1 = k2 = k3 = 0.
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Figure 6. Electrical potential distribution in (C-C) METE nanobeam for different materials. P0 = 0;
∆T = 100; V0 = −0.3; A0 = 0.05; h = 10 nm; L/h = 6; k1 = 25; k2 = 0.05; k3 = 0.15.
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Figure 7. Impact of magnetic potential and nonlocal parameter on fundamental frequency of (H-H)
METE nanobeam for different materials. ∆T = 100; P0 = 1.5; A0 = 0.02; h = 10 nm; L/h = 6;
k1 = 25; k2 = 0.05; k3 = 0.15.
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Figure 8. Impact of axial force and nonlocal parameter on fundamental frequency of (H-H) METE
nanobeam for different materials. ∆T = 100; V0 = −0.3; A0 = 0.03; h = 10 nm; L/h = 6; k1 = 25;
k2 = 0.05; k3 = 0.15.
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Figure 9. Impact of axial force and magnetic potential on fundamental frequency of (H-H) METE
nanobeam for different materials. ∆T = 100; V0 = −0.3; µ = 0.01; h = 10 nm; L/h = 6; k1 = 25;
k2 = 0.05; k3 = 0.15.
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Figure 10. Mode shapes of (H-H) METE nanobeam for different materials. P0 = 0; ∆T = 100;
V0 = −0.3; A0 = 0.05; h = 10 nm; L/h = 6; k1 = k2 = k3 = 0.
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Figure 11. Mode shapes of (H-H) METE nanobeam for different materials. P0 = 0; ∆T = 100;
V0 = −0.3; A0 = 0.05; h = 10 nm; L/h = 6; k1 = 25; k2 = 0.05; k3 = 0.15.



Algorithms 2025, 18, 64 28 of 30

5. Discussion
In this section, we introduce the potential advantages and limitations of Ritz methods

compared to the DQMs employed in this study: Ritz methods, such as those employing Ritz
power series interpolation, often involve simpler discretization procedures compared to
DQMs. They typically require fewer grid points, which can lead to reduced computational
cost, especially for problems with simple geometries. The use of analytical basis functions,
such as polynomials, can provide insights into the analytical behavior of the system and
facilitate the understanding of the underlying physics. However, Ritz methods can be
challenging to apply to problems with complex geometries or boundary conditions. The
convergence of the Ritz method can be sensitive to the choice of basis functions and the
number of terms included in the series. Implementing complex material properties, such
as those encountered in METE materials, within the Ritz framework can be more intricate
than in DQMs. DQMs are highly versatile and can be applied to problems with complex
geometries, boundary conditions, and material properties. DQMs can achieve high accuracy
with relatively few grid points, making them computationally efficient for many problems.
DQMs can be easily adapted to different types of differential equations and boundary
conditions. However, the accuracy and convergence of DQM solutions can be sensitive to
the choice of grid point distribution. In some cases, DQMs can exhibit numerical instability,
particularly for higher-order derivatives. While Ritz methods offer a simpler discretization
process, DQMs demonstrate greater versatility and adaptability for handling complex
problems encountered in the analysis of METE nanostructures. The choice of the most
suitable method depends on the specific characteristics of the problem under consideration,
including geometry, boundary conditions, material properties, and computational resources.
This brief comparison provides a broader perspective for future readers and encourages
the further exploration of alternative numerical techniques for analyzing the dynamics of
METE nanostructures.

6. Conclusions
This research provides a highly accurate numerical analysis (error < 10−10) of the

vibrational behavior of METE nanobeams, employing three distinct differential quadrature
methods (PDQM, Sinc-DQ, and DSCDQM-RSK) implemented via a custom MATLAB pro-
gram. A parametric study investigated how various factors influence nanobeam vibration,
revealing key insights into their behavior:

• The fundamental frequency increased with increasing axial forces, external magnetic
potential, and linear elastic foundation characteristics.

• On the other hand, the fundamental frequency decreased when the temperature and
the length-to-thickness ratio, nonlocal factors, and external electric voltage increased.

• Increased displacement and electrical potential amplitudes were associated with
higher linear (and nonlinear) elastic foundation parameters.

• BiTiO3-COFe2O4 outperformed PTZ-5H-COFe2O4, exhibiting higher fundamental
frequency and greater normalized amplitude and electrical potential.

The numerical methods presented accurately and efficiently analyze the dynamic
behavior of METE nanobeams. These results are significant for designing and optimizing
smart nanostructures with customized properties for nanoelectronics and biotechnology.
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