
Academic Editor: Binhai Zhu

Received: 29 October 2024

Revised: 23 December 2024

Accepted: 27 December 2024

Published: 3 January 2025

Citation: Aguilar-González, A.;

Medina Santiago, A. Ego-Motion

Estimation for Autonomous Vehicles

Based on Genetic Algorithms and

CUDA Parallel Processing. Algorithms

2025, 18, 19. https://doi.org/10.3390/

a18010019

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

algorithms

Article

Ego-Motion Estimation for Autonomous Vehicles Based on
Genetic Algorithms and CUDA Parallel Processing
Abiel Aguilar-González * and Alejandro Medina Santiago *

Computer Science Department, Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE),
San Andrés Cholula 72840, Mexico
* Correspondence: abiel@inaoep.mx (A.A.-G.); amedina@inaoep.mx (A.M.S.)

Abstract: Estimating ego-motion in autonomous vehicles is critical for tasks such as lo-
calization, navigation, obstacle avoidance, and so on. While traditional methods often
rely on direct pose estimation or AI-based approaches, these can be computationally inten-
sive, especially for small, incremental movements typically observed between consecutive
frames. In this work, we propose a brute-force-based ego-motion estimation algorithm
that takes advantage of the constraints of autonomous vehicles, which are assumed to
have only three degrees of freedom (x, y, and yaw). Our approach is based on a genetic
algorithm to efficiently explore potential vehicle movements. By generating an initial seed
of random motion candidates and iteratively mutating and selecting the best-performing
individuals, we minimize the cost function that measures image similarity between frames.
Furthermore, we implement the algorithm using CUDA to exploit parallel processing,
significantly improving computational speed. Experimental results demonstrate that our
approach achieves accurate ego-motion estimation with high efficiency, making it suitable
for real-time autonomous vehicle applications.

Keywords: ego-motion estimation; autonomous vehicles; genetic algorithms

1. Introduction
Estimating ego-motion in autonomous vehicles is critical for tasks such as localization,

navigation, and obstacle avoidance [1–4]. Traditional pose estimation methods often rely
on direct calculation techniques, which can be computationally expensive due to the need
to process large volumes of data and the complexity of calculating incremental movements
between consecutive frames. For example, these methods require an exhaustive search for
all possible states in high-dimensional spaces, leading to high computational costs, even
in environments with limited degrees of freedom (x, y, and yaw) [5,6]. In such scenarios,
achieving both accuracy and efficiency becomes a challenge.

Recent advances in artificial intelligence (AI) have led to the development of deep
learning-based methods that improve the accuracy of pose estimation. However, these
methods often rely on large-scale training datasets, which can be difficult to obtain, par-
ticularly in dynamic environments where vehicles must adapt to unknown and evolving
obstacles [7,8]. But, AI-based methods may struggle to perform reliably without prior
training under specific conditions, which poses a challenge in real-time autonomous vehi-
cle systems where environments change rapidly. In contrast, our approach mitigates the
reliance on large datasets by leveraging genetic algorithms, which can work effectively
even with limited or no prior training data.

To address these limitations, in this work, we propose a brute-force-based approach
that uses genetic algorithms to explore possible vehicle movements. By generating an

Algorithms 2025, 18, 19 https://doi.org/10.3390/a18010019

https://doi.org/10.3390/a18010019
https://doi.org/10.3390/a18010019
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-4941-9967
https://orcid.org/0000-0003-4468-9850
https://doi.org/10.3390/a18010019
https://www.mdpi.com/article/10.3390/a18010019?type=check_update&version=2


Algorithms 2025, 18, 19 2 of 22

initial population of random motion candidates, we iteratively evaluated and selected
the best-performing individuals based on image similarity between frames. This method
not only improves accuracy but also enhances computational efficiency through parallel
processing with CUDA [9,10]. Our application domain is for an autonomous vehicle
scenario. Thus, our algorithm is specifically designed for this case, that is, it takes advantage
of the constraints of autonomous vehicles, which are assumed to have only three degrees of
freedom (x, y, and yaw). Our primary contribution lies in the efficient integration of genetic
algorithms and CUDA to achieve real-time performance while maintaining high accuracy.
Experimental results demonstrate that our approach effectively estimates ego-motion with
significant improvements over traditional approaches.

1.1. Genetic Algorithms

Genetic algorithms (GAs) are optimization techniques inspired by the principles of
natural selection and genetics. They are particularly effective in solving complex optimiza-
tion problems, especially when traditional methods struggle with high-dimensional search
spaces. GAs simulate the process of evolution by iteratively improving a population of
candidate solutions through selection, crossover, and mutation [11,12].

In the context of ego-motion estimation, GAs explore multiple possible movements of
the vehicle in an iterative manner. The process begins with an initial population of random
motion candidates, each representing a potential ego-motion trajectory. These candidates
are evaluated based on a fitness function, which, in this case, measures image similarity
between consecutive frames. The best-performing candidates are selected and, through
crossover and mutation, new offspring are generated, allowing the algorithm to explore
the solution space while preserving high-quality solutions [13,14].

The parallel nature of GAs makes them particularly well suited for implementation on
platforms like CUDA. By evaluating multiple candidate solutions simultaneously, CUDA
significantly accelerates the optimization process. This parallelism not only enhances
the efficiency of the algorithm but also enables real-time performance in autonomous
navigation systems.

1.2. CUDA for Parallel Processing

CUDA (Compute Unified Device Architecture) is a parallel computing platform and
application programming interface (API) developed by NVIDIA, which enables the use
of graphics processing units (GPUs) for general-purpose computation. Using the mas-
sive parallelism inherent in modern GPUs, CUDA allows for the acceleration of complex
tasks, significantly reducing the computational time required for large-scale optimization
problems [15,16].

In the context of ego-motion estimation, CUDA is employed to parallelize the evalua-
tion of multiple candidate solutions simultaneously. This parallelism accelerates the opti-
mization process of genetic algorithms, enabling real-time performance even for demanding
applications in autonomous navigation systems. By distributing the computational work-
load across thousands of threads, CUDA makes it possible to handle high-dimensional
problems efficiently, providing the necessary speed and scalability for real-time systems.
The key contributions of integrating CUDA into our genetic algorithm-based solution can
be summarized as follows.

• Parallelized Evaluation: CUDA facilitates the simultaneous evaluation of image
similarity for multiple motion candidates, significantly reducing the computational
time required for each iteration of the genetic algorithm [17,18].



Algorithms 2025, 18, 19 3 of 22

• Optimization of Memory Hierarchies: The ability to manage memory hierarchies and
streamline data transfers between the host (CPU) and device (GPU) minimizes latency,
ensuring efficient utilization of computational resources.

• Real-Time Capabilities: By addressing computational bottlenecks traditionally associ-
ated with large candidate populations, our method ensures rapid iterations, making it
suitable for real-time applications.

• Relevance to Autonomous Vehicles: The integration of CUDA enables immediate and
precise decision making, which is critical to safe navigation in autonomous vehicle
scenarios with strict real-time constraints.

• Novel Combination of Precision and Efficiency: The proposed approach effectively
combines high accuracy in the estimation of ego-motion with unprecedented compu-
tational efficiency. This dual achievement addresses the challenges of speed and accu-
racy, making our method particularly suitable for deployment in resource-constrained
environments common in autonomous systems.

2. Related Works
Multiple studies have explored both feature-based and CNN-based approaches for

ego-motion estimation in autonomous systems. Researchers have investigated feature
extraction techniques, such as SIFT, SURF, and ORB, along with their variants, to capture
essential motion information from visual data. Additionally, recent works have emphasized
the use of deep learning architectures, particularly Convolutional Neural Networks (CNNs),
to enhance accuracy and robustness in ego-motion estimation. These efforts have advanced
the state of the art by improving feature representation, improving network architecture
design, and optimizing computational strategies for real-time applications.

2.1. State of the Art for Ego-Motion Estimation

The current state-of-the-art in ego-motion estimation has presented significant ad-
vancements, particularly through the use of deep learning techniques. Approaches based
on Convolutional Neural Networks (CNNs) have shown promising results in accurately
estimating the motion of vehicles in multiple environments. For example, [19] proposed a
novel CNN architecture designed to capture spatial and temporal features from consecutive
image frames, achieving notable improvements in the accuracy of motion estimation. This
model demonstrates the effectiveness of using deep learning to address the complexities
associated with real-world scenarios.

However, traditional methods such as visual odometry have been widely employed
to estimate ego-motion. These methods typically rely on feature extraction techniques such
as SIFT [20] and ORB [21], which provide robust performance in detecting and matching
keypoints across frames. However, they can suffer from limitations under challenging
conditions, such as low texture or significant motion blur. Despite their strengths, reliance
on feature matching can result in inaccuracies, particularly when the environment lacks
distinctive features.

Recent studies have also explored the integration of IMU (Inertial Measurement
Unit) data with visual input to enhance ego-motion estimation. For example, ref. [22]
demonstrated that the combination of IMU data with visual odometry results in improved
accuracy and robustness. This hybrid approach capitalizes on the strengths of both sen-
sors, compensating for the weaknesses of visual-only methods in fast-moving or visually
sparse environments. Similarly, recent advances in automotive radar-based systems have
demonstrated their potential for robust and accurate estimation of ego-motion [23–25].
Furthermore, event-based methods such as those discussed by [26] highlight innovative



Algorithms 2025, 18, 19 4 of 22

approaches to optical flow and ego-motion estimation, pushing the boundaries of exist-
ing technologies.

2.2. Real-Time Ego-Motion Estimation

In the domain of estimation of ego-motion, GAs offer a compelling solution to explore
potential vehicle movements within a limited set of degrees of freedom. Each candidate
solution represents a possible motion trajectory, and the fitness of each candidate is assessed
on the basis of its ability to minimize the difference between image frames. For example,
ref. [27] illustrated how GAs can optimize path planning in robotics, demonstrating their
adaptability to dynamic environments.

In [28], the authors proposed a new stereo visual odometry system for automotive
applications that integrates advanced monocular techniques. The results indicate that
adapting these techniques to a stereo context can significantly improve the accuracy and
robustness of the system, validated through the results obtained on the KITTI dataset.
The authors in [29] proposed an introspective vision for SLAM (IV-SLAM) that addresses
the issue of assuming a uniform distribution of errors in feature extraction and matching.
Experimental results demonstrate that IV-SLAM can accurately predict error sources in
input images and significantly reduce tracking errors compared with previous algorithms.

In [30], a network architecture that processes 3D point clouds in an end-to-end manner
was presented without the need for predefined corresponding pairs of points. Experiments
on the KITTI Vision Benchmark Suite have shown that the performance is comparable
to other works, even by employing significantly fewer parameters. Finally, in [10], an
estimation of ego-motion was formulated based on a lookup table approach and a new
feature matching algorithm. The results indicate that this methodology not only reduces
the complexity of the algorithm but also provides higher estimation accuracy, achieving
significant processing speed improvements compared with previous approaches.

3. The Proposed Algorithm
In this section, we present our approach for estimating ego-motion in autonomous

vehicle scenarios using a brute-force method. The algorithm is designed to handle three
degrees of freedom: x, y, and a single rotational angle. We assume that the vehicle does not
move along the z-axis or rotates about two of its axes, allowing for efficient computation
of ego-motion.

3.1. Parameter Selection Criteria

In our proposed ego-motion estimation approach, the selection of parameters plays a
crucial role in ensuring both computational efficiency and high estimation accuracy. One
of the key considerations when choosing parameters is the compatibility with the GPU
architecture, which is optimized for processing data in powers of two. This approach
maximizes the parallel processing capabilities of modern GPUs, ensuring efficient memory
management and fast execution of kernel functions.

We specifically recommend selecting parameters such as the number of candidates or
the resolution of image patches in powers of two, such as 32, 64, or 128. This choice stems
from the fact that GPU architectures handle memory and data processing more efficiently
when data structures are aligned to power-of-two sizes. When parameters are selected in
powers of two, memory access becomes more optimized, improving memory coalescing
and reducing fragmentation. This, in turn, improves the overall performance of the genetic
algorithm running on the GPU.

For example, when defining the number of population candidates in the genetic
algorithm, selecting values such as 32 or 64 ensures that memory operations are streamlined.



Algorithms 2025, 18, 19 5 of 22

This alignment improves kernel execution by facilitating better load balance, reducing
memory latency, and minimizing the overhead caused by non-aligned memory accesses.
Additionally, selecting powers of two helps to optimize the memory hierarchy, particularly
with shared memory on GPUs. This optimization ensures that the algorithm can make
efficient use of GPU resources, thus reducing the time required for each iteration.

By adhering to these power-of-two values for parameter selection, we achieve both
higher processing speeds and more efficient utilization of the available resources, en-
abling real-time performance for ego-motion estimation in autonomous vehicle systems.
These choices align with industry best practices for high-performance parallel computing
on GPUs.

3.2. Overview of the Algorithm

In Figure 1, an overview of our algorithm is shown, it consists of the following
key steps:

1. Seed Initialization: Randomly generate n candidate movements.
2. Ego-motion Application: Apply ego-motion transformations to the second image and

compare it with the first image.
3. Selection and Mutation: Retain the top n/2 best candidate movements based on a cost

function, and generate n/2 new candidates by slightly mutating the retained movements.
4. Iterative Optimization: Repeat the process until a predetermined threshold is reached

in the cost function.

For additional details, in Figure 2, a complete flowchart for the proposed algorithm
is shown.

Figure 1. Block diagram of the proposed algorithm.

3.3. Input Lookup Table (LUT)

In this work, we use the KITTI dataset [31], a widely recognized benchmark in the field
of autonomous vehicles. The dataset consists of 10 sequences that provide publicly available
ground truth for evaluation. Initially, a set of candidate seeds Mk is randomly generated.
Each seed represents a potential movement characterized by small displacements in the x
and y directions, as well as a rotation angle defined as follows:

Mk = {(dxk, dyk, θk)} for k = 1, 2, . . . , N (1)

where dxk and dyk represent the displacements in the x and y axes, respectively, and θk

denotes the rotation angle.



Algorithms 2025, 18, 19 6 of 22

START

Generate Initial Candidates (perturbations)

Apply Ego-motion to I2 and calculate MSE

Select Candidates with Lowest MSE

Crossover and Mutation

Evaluate Cost (MSE comparison with threshold)

MSE < Threshold?

END

yes

no

Figure 2. Flow chart of the proposed algorithm.

To ensure that the movements are representative of the actual dynamics observed
in the KITTI sequences, we propose a strategy for selecting a subset of movements. This
involves analyzing ground-truth data to extract key movements that capture the range
of potential maneuvers a vehicle may experience in multiple scenarios. We can define a
representative movement set R as

R = {Mj ∈ Mk |movement is statistically significant} (2)

where Mj are the selected representative movements.
To select a representative set of ego-motion movements from the ground truth data,

we propose an approach based on clustering as follows:

1. Clustering: Cluster the ego-motion data based on movement characteristics (we
proposed direction and speed.

2. Representative Selection: From each cluster, select a representative movement that
captures the key features of that cluster. For more details please see Algorithm 1.



Algorithms 2025, 18, 19 7 of 22

Algorithm 1: Representative Selection of Movements from Ground Truth
1: Input: Ground truth ego-motion data GT, number of clusters K
2: Output: Representative movement set R
3: Extract direction and velocity from GT
4: θ ← ComputeDirection(GT)
5: v← ComputeVelocity(GT)
6: Perform clustering on (θ, v) into K clusters
7: Clusters← ClusterEgoMotion((θ, v), K)
8: Initialize R← ∅
9: for each cluster Ck ∈ Clusters do

10: Select a representative movement Mj from cluster Ck

11: Add Mj to R
12: end for
13: return R

Note: For practical purposes, it is recommended to use values of K in the form of
2α to ensure efficient utilization of GPU resources. For more details see Section 3.1.

In order to calculate the direction and velocity of ego-motion from the ground
truth data, we analyze the position and orientation information associated with ego-
motion at different time frames. Given the positions in two consecutive time frames,
P(t) = (x(t), y(t)) and P(t + ∆t) = (x(t + ∆t), y(t + ∆t)), we can compute the direction
and velocity as follows: The direction θ of the ego-motion can be determined using the
change in position over time, calculated as

θ = tan−1
(

y(t + ∆t)− y(t)
x(t + ∆t)− x(t)

)
(3)

This angle θ represents the direction of motion relative to the x-axis.
The velocity v of the ego-motion is computed based on the displacement over a

specified time interval. The displacement D is given by

D =
√
(x(t + ∆t)− x(t))2 + (y(t + ∆t)− y(t))2 (4)

Then, the velocity can be calculated as follows

v =
D
∆t

(5)

where ∆t = t2 − t1, tn are the timestamps in the KITTI dataset.
Once representative movements are established, we construct a lookup table (LUT)

that encodes the relationships between these movements and their corresponding outcomes.
The LUT is defined as follows:

LUT(Mj) = {(x′, y′, θ′)} for each Mj ∈ R (6)

where (x′, y′, θ′) are the new states that result from applying the movements Mj.

3.4. Seed Initialization

Given the lookup table (LUT), we generate 2α random variants of the data from the
LUT. Each variant is created by applying small random perturbations to the states (x′, y′, θ′)

defined in the LUT.
The perturbation can be expressed as

(xvariant, yvariant, θvariant) = (x′ + ∆x, y′ + ∆y, θ′ + ∆θ) (7)



Algorithms 2025, 18, 19 8 of 22

where (∆x, ∆y, ∆θ) are small random perturbations.
We can represent the generation of these variants in pseudocode as shown in Algorithm 2.

Algorithm 2: Generate Random Variants from LUT
1: Input: Lookup table LUT(Mj), number of variants N = 2α

2: Output: Set of generated variants Variants
3: Initialize Variants← ∅
4: for each movement Mj ∈ R do
5: for each variant index i = 1 to N do
6: ∆x ← RandomPerturbation()
7: ∆y← RandomPerturbation()
8: ∆θ ← RandomPerturbation()
9: (xvariant, yvariant, θvariant)← (x′ + ∆x, y′ + ∆y, θ′ + ∆θ)

10: Add (xvariant, yvariant, θvariant) to Variants
11: end for
12: end for
13: return Variants(Mk)

Random perturbations can be generated using a CUDA kernel to enable parallel computa-
tion (for more details, refer to the cuRAND library documentation provided by NVIDIA [32]),
where each thread can handle the perturbation for different movements simultaneously.

3.5. Ego-Motion Application

For each candidate movement Mk, we apply the ego-motion transformation to the
second image I2 to generate a transformed image I2,k:

I2,k = Ego-motion(I2, Mk) (8)

The transformation of ego-motion can be expressed as follows: given a movement Mk

defined by displacements (∆x, ∆y) and a rotation angle ∆θ, the transformation for a pixel
coordinate (x, y) in the image I2 can be represented as follows:

x′ = x · cos(∆θ)− y · sin(∆θ) + ∆x

y′ = x · sin(∆θ) + y · cos(∆θ) + ∆y
(9)

This defines how each pixel of the image I2 is transformed based on the movement
parameters. The transformed image is then compared with the first image I1 using a cost
function defined in terms of the differences in pixel intensity to evaluate the quality of the
candidate movement.

The main goal of this step is to assess how well a transformed image I2,k (obtained
through a candidate movement Mk) aligns with the reference image I1. This alignment is
quantified through a cost function that measures the dissimilarity between the two images.
For that purpose, we adopt the Mean Squared Error (MSE), which is a widely used measure
that computes the average squared differences between pixel intensities of the two images.
It is defined as follows:

MSE(I1, I2,k) =
1
N

W

∑
i=1

H

∑
j=1

(I1(i, j)− I2,k(i, j))2 (10)

where W and H are the width and height of the images, respectively, and N = W · H. For
more details please see Algorithm 3.



Algorithms 2025, 18, 19 9 of 22

Algorithm 3: Ego-Motion Transformation and Similarity Evaluation
1: Input: Images I1, I2, movement Mk = (∆x, ∆y, ∆θ)

2: Output: Transformed image I2,k, MSE value
3: Initialize I2,k ← empty image of the same size as I2

4: Initialize MSE← 0
5: Initialize N ←W · H
6: for each pixel (x, y) in I2 do
7: Compute the transformed coordinates:

x′ = x · cos(∆θ)− y · sin(∆θ) + ∆x

y′ = x · sin(∆θ) + y · cos(∆θ) + ∆y

8: if x′ and y′ are within image bounds then
9: Assign the pixel value: I2,k(x′, y′) = I2(x, y)

10: end if
11: end for
12: for each pixel (i, j) in I1 do
13: Compute the squared difference:

squared_difference = (I1(i, j)− I2,k(i, j))2

14: Update MSE:
15: MSE← MSE + squared_difference
16: end for
17: MSE← MSE

N
18: return I2,k, MSE

Parallel Ego-motion Application: Given the computational demands of evaluating
multiple candidate movements, we leverage CUDA to implement the ego-motion appli-
cation in parallel. This allows for the simultaneous processing of numerous image pairs,
significantly accelerating the process.

3.6. Selection and Mutation
3.6.1. Selection Mechanism

To select the most promising candidate movements for mutation and crossover, we
evaluate their performance based on previously computed mean square error (MSE) val-
ues. The selection process involves choosing movements that exhibit lower MSE values,
indicating that they are more effective in transforming the images to match the reference.

Let Mk be the set of candidate movements, and let MSEk represent the MSE associated
with each movement Mk. We can define a selection criterion as follows:

Select(Mk) if MSEk < T (11)

where T is a predefined threshold for acceptable performance. Movements that meet this
criterion will be retained for mutation and crossover operations.

3.6.2. Mutation Mechanism

To maintain genetic diversity and explore new potential solutions, we apply a mutation
process to the retained seeds. This involves making small, random adjustments to the
parameters of the selected movements. The mutation can be defined as follows:



Algorithms 2025, 18, 19 10 of 22

Mmutated
k = Mk + ∆M (12)

where ∆M represents a random perturbation of the candidate seed parameters, ensuring
that the new movement remains within a reasonable range around the original movement.

3.6.3. Crossover Operation

In addition to mutation, we implement a crossover operation to combine the charac-
teristics of two parent movements to create offspring. This can be performed by averaging
the parameters of the selected seeds:

Moffspring
k =

1
2
(Mi + Mj) (13)

where Mi and Mj are two selected parent movements. The offspring inherit traits from
both parents, which can lead to better candidate movements. For more details about this
whole step please see Algorithm 4.

Algorithm 4: Selection, Mutation, and Crossover of Candidate Movements
1: Input: Candidate movements Mk, MSE values MSEk, threshold T
2: Output: New population of movements Mnew

3: Initialize Mnew ← ∅
4: for each movement Mk in Mk do
5: if MSEk < T then
6: Add Mk to the retained movements
7: end if
8: end for
9: for each pair of retained movements Mi, Mj do

10: Generate offspring movement:

Moffspring
k =

1
2
(Mi + Mj)

11: Add Moffspring
k to Mnew

12: end for
13: for each movement Mk in the retained movements do
14: Generate random perturbation ∆M
15: Mutate movement:

Mmutated
k = Mk + ∆M

16: Add Mmutated
k to Mnew

17: end for
18: return Mnew

Parallel Selection and Mutation To optimize the selection, mutation, and crossover
steps of the algorithm, we can use the parallel processing capabilities of CUDA. By imple-
menting the selection mechanism in parallel, each thread can independently evaluate the
MSE of candidate movements against the threshold T. This approach allows for simul-
taneous processing of multiple movements, significantly reducing the time required for
selection. Similarly, the mutation process can be parallelized, where each thread generates
a random perturbation ∆M and applies it to a different retained movement. This ensures
that multiple mutations occur simultaneously, further accelerating the overall computa-



Algorithms 2025, 18, 19 11 of 22

tion. Furthermore, the crossover operation can also benefit from parallelization; pairs of
movements can be selected and averaged in parallel across different threads, producing
offspring movements rapidly. Using CUDA, we enhance the efficiency of these critical
steps in the algorithm, allowing the exploration of a larger search space and facilitating
quicker iterations within the optimization process.

3.7. Iterative Optimization

The iterative optimization process is crucial for refining the candidate movements and
achieving an accurate estimation of the vehicle’s ego-motion. The above steps are repeated
iteratively until the cost function converges to a predefined threshold th or a maximum
number of iterations MAXiter is reached.

Terminate if cost(I1, I2,k) < th or if iterations ≥ MAXiter (14)

This ensures that the optimization process does not continue indefinitely and allows
for a controlled exploration of the search space. The iterative nature of the algorithm allows
for continual refinement of the candidate movements, as adjustments are made based on
the results of the cost function evaluations.

Although individual steps of seed initialization, ego-motion application, and muta-
tion can be executed in parallel, the overall iteration process remains sequential due to
dependencies on the results of the previous iterations. Specifically, the frequency of the
GPU will limit the rate at which these steps can be executed. As such, careful consideration
is given to the number of iterations to balance computational efficiency with the quality of
the ego-motion estimation.

The general algorithm can be summarized as shown in Algorithm 5.

Algorithm 5: Iterative Optimization for Ego-Motion Estimation
1: Input: Initial candidate movements M, predefined threshold th, maximum

iterations MAXiter

2: Initialize iteration count iter ← 0
3: while true do
4: Seed Initialization: Randomly generate n candidate movements.
5: Ego-motion Application: Apply ego-motion transformations to the second

image
and compare it with the first image.

6: Selection and Mutation: Retain the top n/2 best candidate movements based
on a
cost function, and generate n/2 new candidates by slightly mutating the
retained movements.

7: Calculate cost cost(I1, I2,k)

8: if cost(I1, I2,k) < th or iter ≥ MAXiter then
9: Terminate the optimization process

10: end if
11: Increment iter ← iter + 1
12: end while
13: return Best candidate movement

3.8. Computational Complexity Analysis

The computational complexity of the proposed ego-motion estimation algorithm is
primarily influenced by the genetic algorithm (GA) optimization process, which iteratively



Algorithms 2025, 18, 19 12 of 22

evaluates multiple candidate solutions. In order to provide a clear understanding of the
algorithm’s performance, we analyze its complexity in terms of the number of motion
candidates (N) and the number of iterations (T) required for convergence.

• Genetic Algorithm Iterations: The genetic algorithm begins with an initial population
of N candidate solutions, where each candidate represents a potential ego-motion
trajectory. In each iteration, the algorithm evaluates the fitness of each candidate based
on image similarity between consecutive frames. The evaluation of each candidate
involves calculating the similarity function, which is computationally intensive and
requires the processing of image patches. Given that each candidate is evaluated in
parallel using CUDA, the time complexity to evaluate each candidate is O(1) with
respect to the number of candidates, due to parallelism.
The total complexity for one iteration of the genetic algorithm is O(N), where N is the
number of candidates. The algorithm iterates T times to arrive at an optimal solution,
where T represents the number of iterations required for convergence. Therefore, the
overall time complexity of the genetic algorithm is O(N · T).

• CUDA Optimization: Parallel execution on the GPU significantly reduces computa-
tional time by allowing the simultaneous evaluation of all candidates. CUDA’s parallel
processing capabilities enable the algorithm to handle large populations efficiently.
The GPU handles N evaluations simultaneously, with minimal overhead. As a result,
the computational bottleneck is mainly determined by the memory bandwidth and
the efficiency of the kernel functions.
The complexity of memory management and data transfer between the CPU and GPU
also contributes to overall performance. By optimizing the memory hierarchy and
ensuring that data is transferred efficiently between the CPU and GPU, the algorithm
minimizes latency and maximizes throughput.

• Memory Usage: The memory complexity is dominated by the storage of candidate
solutions and image patches. Each candidate requires storage for its motion parame-
ters and the associated image patch, leading to a memory requirement of O(N). In
addition, intermediate results and image data must be stored during the evaluation
process. However, by utilizing memory optimization techniques, such as memory
pooling and shared memory on the GPU, we can minimize memory overhead and
ensure that the algorithm operates efficiently even with large populations.

In summary, the proposed algorithm has an overall time complexity of O(N · T) and
memory complexity of O(N), where N is the number of candidates and T is the number
of iterations. Through efficient parallel processing with CUDA, the algorithm is able to
achieve real-time performance in autonomous vehicle systems while maintaining high
accuracy in ego-motion estimation.

4. Results
For all experiments, we tested our algorithm on an MSI Raider GE76 12U laptop

equipped with an Intel Core i7-12700H CPU and a GTX 3080 laptop GPU with 7424 CUDA
cores and a maximum of 1024 threads per block (see Table 1). All experiments were
performed in MATLAB 2022a, utilizing CUDA 8.1 as the GPU processing library. The
dataset used was KITTI [31], a well-known benchmark for visual odometry challenge. This
dataset was created using a stereo camera mounted on a vehicle navigating through urban
environments. The images have a resolution of 1241× 376 pixels with a frame rate of 10 fps.
For evaluation, KITTI provides 11 training sequences (00–10) with public ground truth
data, while an additional 11 sequences (11–21) lack public ground truth and are reserved
for evaluation purposes.



Algorithms 2025, 18, 19 13 of 22

First, we evaluated cross-validation across the training sequences by constructing the
lookup table (LUT Section 3.3) using all sequences from the training dataset, excluding
the sequence under evaluation (see Table 2). This approach enables the assessment of the
generalization of the model in different driving scenarios. Given the provided LUTs and
their associated ground truth values, we have access to 21,732 elements in Mk (Equation (1)).
We chose a LUT length of 100, capturing the 100 most representative movements, which
yielded approximately 97% accuracy while achieving an ego-motion estimation of 81 frames
per second.

Figure 3 presents qualitative results corresponding to the data outlined in Table 2,
illustrating the algorithm’s capacity to adapt to multiple conditions in different driving en-
vironments. These cross-validation findings suggest that our approach effectively balances
speed and accuracy, a balance that is particularly advantageous for real-time applications
in dynamic environments, such as autonomous driving. Moreover, by focusing on the most
significant movements within the LUT, our approach ensures robust ego-motion estimation
without requiring extensive computational resources, making it suitable for embedded
implementations in autonomous vehicle scenarios.

Table 1. Thread configuration for the GPU implementation.

Variable Value

Input data size (independent) [x, y]
Output data size (independent) [x, y]

Threads per block (independent) * T
Blocks size (dependent) [floor(

√
T), floor(

√
T), 1]

Grid size (dependent) [floor(x/
√

T), floor(y/
√

T), 1]
* This value depends on the GPU device; the most typical value is T = 1024.

Table 2. Quantitative results for the KITTI dataset. Training sequences 00–10.

KITTI Sequence Accuracy

00 96.77%
01 95.67%
02 98.23%
03 97.56%
04 96.75%
05 98.01%
06 96.24%
07 97.34%
08 97.21%
09 96.76%
10 98.11%

In addition, we conducted a comparative performance analysis with previous work
in the current literature. For these comparisons, performance metrics from previously
published manuscripts were referenced. For our algorithm, we submit the results of the
test sequences (11–21) to the KITTI benchmark suite and then compare the results obtained
with previous work.

Quantitative comparisons are presented in Table 3. Our algorithm demonstrates higher
performance compared with traditional methods like [33,34], outperforming both accuracy
and processing speed. This advantage lies in the fact that many conventional approaches
rely on binary feature description and matching techniques, which tend to be sensitive
to image quality degradation. In contrast, the genetic processes proposed in this work
enhance robustness against such degradations, leading to improved overall performance.



Algorithms 2025, 18, 19 14 of 22

Compared with [35–38], our algorithm achieves a good trade-off between accuracy
and processing speed. Specifically, we outperform [36] by achieving an increase in accuracy
of 5% and an improvement of 8% over [37]. In terms of processing speed, we achieve a
remarkable speed of 91 fps, which is three times faster than [36]. However, ref. [37] exceeds
our method with a processing speed advantage of 67 fps.

(a) 01

(b) 03



Algorithms 2025, 18, 19 15 of 22

(c) 08

(d) 10

Figure 3. The algorithm’s performance was evaluated on the KITTI dataset’s training sequences,
with results demonstrating consistently high accuracy across multiple test cases, closely matching
the ground truth. These outcomes confirm that the model effectively captures vehicle motion and
spatial consistency within diverse urban and suburban environments featured in KITTI. The blue
line represents the ground truth, while the green line shows the estimated ego-motion using the
proposed algorithm.

Although [38] reports a 2% higher accuracy than our approach, it does so at the cost
of processing speed. Their reported figure of 333.3 fps does not account for the intensive
operations involved in image reading, feature extraction, and feature tracking, which
are critical components in the visual odometry framework. Similarly, recent AI-based



Algorithms 2025, 18, 19 16 of 22

methods, such as [29,39,40], achieve high accuracy levels but face significant limitations
in processing speed. For example, ref. [40] reports an impressive accuracy of 98.3% but
only 3 fps using a high-performance Nvidia Tesla V100 GPU, which makes it unsuitable
for real-time applications. Furthermore, refs. [29,39] achieve accuracies of 99.89% and
98.83%, respectively, but both operate at only 10 fps. In particular, ref. [39] relies solely on
a CPU, which limits its computational efficiency in dynamic scenarios. In contrast, our
proposed algorithm delivers a robust balance between accuracy (97.71%) and processing
speed (91.78 fps) on a GPU platform, demonstrating its suitability for real-time performance
in autonomous navigation tasks.

In Figure 4, we present qualitative results for sequences 11–14 from the KITTI dataset.
The results obtained by applying our proposed algorithm were submitted to the KITTI eval-
uation platform. In all cases, qualitative results demonstrate that high precision is possible,
underscoring the effectiveness of the proposed algorithm in multiple urban environments.

Table 3. Quantitative results for the proposed algorithm compared with previous works. In most
cases, our algorithm outperforms previous works in terms of accuracy and processing speed.

Algorithm Accuracy/Speed/Hardware

Geiger et al. (2011) [33] 83.71%/16.39 fps/CPU (i7-4720HQ)
Ciarfuglia et al. (2014) [34] 85.56%/9.09 fps/CPU (i7-4720HQ)
Costante et al. (2016) [36] 91.04%/3.27 fps/CPU (i7-4720HQ)
Costante et al. (2016) [36] 91.04%/20.83 fps/GPU (Tesla K40)
Mohanty et al. (2016) [35] 94.50%/111.11 fps/Intel Xeon @4 + GPU (GTX 970)

Weber et al. (2017) [37] 88.53%/158.73 fps/GPU (GTX 970)
Pillai and Leonard (2017) [38] 99.72%/333.3 fps /CPU (i7-3920XM)

Aguilar et al. (2019) [10] 96.07%/86.34 fps/GPU (GTX 970M)
Chen et al. (2021) [39] 99.89%/10.00 fps/GPU (N/A)
Yoon et al. (2021) [40] 98.3%/3.00 fps/GPU (Nvidia Tesla V100 GP)

Rabiee et al. (2020) [29] 98.83%/10.00 fps/GPU (Unknown)
This work 97.71%/91.78 fps/GPU (GTX 3080 Laptop)

To further evaluate the robustness of the proposed algorithm, we applied it to a
benchmark dataset consisting of indoor video sequences. This dataset, contains 130 different
video sequences, each recording various movements recorded at six degrees of freedom
(DOF). This indoor dataset offers a diverse set of movement scenarios, providing valuable
insight into the performance of the algorithm under different conditions compared with
the KITTI dataset.

The results obtained from the indoor dataset, shown in Figure 5, demonstrate that
the proposed method maintains high precision in both qualitative and quantitative terms.
Despite the challenging indoor environment, where visual characteristics differ signifi-
cantly from those in urban outdoor settings (as seen in the KITTI dataset), the algorithm
consistently achieved strong performance across all test cases. For more details on the
indoor benchmark dataset, including its creation and the full set of sequences used in this
work, we refer the reader to the dataset webpage [41].

Concerning real-world disturbances, including motion blur, occlusions, and noisy
sensor data, such factors are often present in dynamic environments where autonomous
vehicles operate. In this scenario, our algorithm employs genetic algorithms, which are
inherently adaptive and capable of selecting the best candidate solutions based on fitness
criteria, such as image similarity between consecutive frames. This process allows the
algorithm to effectively handle minor disturbances in the input data, as it can evolve
potential movements even when certain frames are noisy or partially occluded. Moreover,



Algorithms 2025, 18, 19 17 of 22

the ability to refine and combine candidate solutions iteratively contributes to resilience in
the face of such challenges.

(a) 11

(b) 12



Algorithms 2025, 18, 19 18 of 22

(c) 13

(d) 14

Figure 4. The performance of the algorithm, sequences 11 to 14 from the KITTI dataset, without
ground truth data. The results were obtained from the KITTI evaluation platform, where our
algorithm was submitted for evaluation. These evaluations demonstrated that the proposed algorithm
maintains a high level of precision across all tested scenarios.



Algorithms 2025, 18, 19 19 of 22

Figure 5. Performance for the pose estimation step under the proposed dataset. Sequence 48, which
consists of an x, y, and yaw camera movement, is used to validate the performance under loop
trajectories. By using the proposed algorithm, an accuracy of around 97.4% can be reached.

Additionally, we tested the algorithm on the KITTI dataset, which, while not specifi-
cally designed to simulate extreme motion blur or occlusions, presents a diverse range of
urban and suburban driving scenarios. These conditions include varying lighting, partial
occlusions, and sensor noise. The algorithm performed consistently with high accuracy (up
to 97.4%), demonstrating its effectiveness in real-world conditions where such disturbances
are common. The robustness observed in these tests suggests that the approach can handle
moderate motion blur and occlusions, as well as noisy sensor data, which are typical
challenges for ego-motion estimation systems in autonomous vehicles. Although further
testing with more severe conditions is always beneficial, the performance on the KITTI
dataset suggests that our method is already well equipped to manage common sensor
imperfections encountered in autonomous driving scenarios.

Finally, in terms of energy consumption, we acknowledge that energy efficiency is a
significant consideration in the design of autonomous vehicle systems, particularly when
high-performance algorithms are deployed in embedded platforms. CUDA implementa-
tion, leveraging the parallel processing power of GPUs, is inherently more energy efficient
than traditional CPU-based computations for large-scale optimization tasks. By reducing
the processing time required to evaluate multiple candidate solutions in real time, our
algorithm minimizes the overall energy consumption. However, it is important to note that
exact energy consumption depends on factors such as the GPU model used, the complexity
of the task, and the size of the input data. For instance, our experiments using the GTX 3080
laptop GPU yield high processing speeds with relatively lower energy overhead compared
with traditional methods that rely on sequential CPU processing.

For safety implications, real-time processing failures in autonomous vehicles can
have significant consequences, including potential accidents or system malfunctions. To
mitigate these risks, our algorithm is designed with multiple layers of redundancy and
error handling. The iterative approach of the genetic algorithm ensures that candidate
solutions are continuously evaluated and refined, making it more resilient to occasional
computational errors or sensor anomalies. Furthermore, the use of CUDA for parallel
processing enables the rapid completion of tasks, which is crucial to minimizing latency
and avoiding processing bottlenecks that could lead to delays in decision-making.

Although the proposed algorithm has been tested with the KITTI dataset under typical
driving conditions, real-world safety assurance would require additional testing in more
critical scenarios, including extreme environmental conditions or hardware malfunctions.
In future work, we plan to investigate fault-tolerant mechanisms and safety features such
as sensor fusion and redundancy to improve the robustness of the system in real-time
autonomous navigation.



Algorithms 2025, 18, 19 20 of 22

5. Extension to Six Degrees of Freedom
Although this work focuses on the estimation of ego-motion using three degrees

of freedom (x, y, and yaw), extending the proposed method to six degrees of freedom
(x, y, z, roll, pitch, and yaw) will be explored in future work. The extension to six DoF
involves additional challenges, primarily due to the increased complexity in capturing and
accurately predicting the vertical movements (z) and rotational motions (roll and pitch) of
the vehicle. To address these challenges, the integration of more sophisticated optimization
techniques, such as multi-objective genetic algorithms, will be considered to handle the
increased dimensionality effectively.

Furthermore, the use of advanced sensor fusion approaches, incorporating LiDAR
or IMU data alongside visual information, could be explored to improve the robustness
and accuracy of ego-motion estimation in three-dimensional spaces. Using the strengths
of these additional sensors, the proposed method could achieve more precise and reliable
results for the full six degrees of freedom in diverse environments, including urban and
off-road scenarios.

In general, extending the method to six degrees of freedom will be a significant step towards
improving the generalization and applicability of the algorithm for real-world autonomous
vehicle navigation tasks, particularly in more complex and dynamic environments.

6. Conclusions
In this work, we presented a novel brute-force-based ego-motion estimation algorithm

suitable for autonomous vehicles. Taking advantage of the unique constraints of such
systems, which operate with only three degrees of freedom (x, y, and yaw), our approach
effectively leverages these limitations to streamline the estimation process. Using a genetic
algorithm, we systematically explored potential vehicle movements, enabling efficient
generation and refinement of motion candidates. This iterative process not only minimizes
the cost function measuring image similarity between consecutive frames but also enhances
the robustness of our method against environmental variations.

The implementation of our algorithm using CUDA for parallel processing demon-
strated significant improvements in computational speed, making it suitable for real-time
applications. Experimental results demonstrate that our approach achieves high accuracy
in ego-motion estimation while maintaining high efficiency for the dynamic demands of
autonomous navigation.

In addition, our experimental results highlight the importance of integrating advanced
computational techniques with domain-specific constraints to enhance the performance of
ego-motion estimation in practical scenarios. The successful application of our algorithm
to the KITTI dataset guarantees its potential for real-world deployment, allowing for future
research in optimizing visual odometry and related tasks in autonomous systems.

Author Contributions: Conceptualization, Investigation: A.A.-G. Validation and Writing—Original
Draft: A.M.S. All authors have read and agreed to the submitted version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The datasets used in research are publicly available at: https://
www.cvlibs.net/datasets/kitti/eval_odometry.php accessed 1 January 2025. The MATLAB source
code that support the findings of this study are available from the corresponding author upon
reasonable request.

Acknowledgments: Acknowledgements to INAOE for supporting the development of this postdoc-
toral research under the supervision of Alejandro Medina Santiago (Researcher for Mexico); this work
will strengthen Project 882 of Conahcyt.

https://www.cvlibs.net/datasets/kitti/eval_odometry.php
https://www.cvlibs.net/datasets/kitti/eval_odometry.php


Algorithms 2025, 18, 19 21 of 22

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Park, H.S.; Hwang, J.J.; Niu, Y.; Shi, J. Egocentric future localization. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4697–4705.
2. Olson, C.F.; Matthies, L.H.; Schoppers, M.; Maimone, M.W. Rover navigation using stereo ego-motion. Robot. Auton. Syst. 2003,

43, 215–229. [CrossRef]
3. Wang, N.; Zhang, B.; Chi, H.; Wang, H.; McLoone, S.; Liu, H. DUEL: Depth visUal Ego-motion Learning for autonomous robot

obstacle avoidance. Int. J. Robot. Res. 2024, 43, 305–329. [CrossRef]
4. Khan, N.H.; Adnan, A. Ego-motion estimation concepts, algorithms and challenges: an overview. Multimed. Tools Appl. 2017,

76, 16581–16603. [CrossRef]
5. Gao, Y.; Tian, F.; Li, J.; Fang, Z.; Al-Rubaye, S.; Song, W.; Yan, Y. Joint optimization of depth and ego-motion for intelligent

autonomous vehicles. IEEE Trans. Intell. Transp. Syst. 2022, 24, 7390–7403. [CrossRef]
6. Arif, U.; Razzaq, W.; Akram, A.; Muhammad, W. Self-Driving Car Control Using Visual Ego-Motion Estimation. In Proceedings

of the 2019 15th International Conference on Emerging Technologies (ICET), Peshawar, Pakistan, 2–3 December 2019; pp. 1–4.
7. Bian, J.; Li, Z.; Wang, N.; Zhan, H.; Shen, C.; Cheng, M.M.; Reid, I. Unsupervised scale-consistent depth and ego-motion learning

from monocular video. Adv. Neural Inf. Process. Syst. 2019, 32. [CrossRef]
8. Gao, R.; Xiao, X.; Xing, W.; Li, C.; Liu, L. Unsupervised learning of monocular depth and ego-motion in outdoor/indoor

environments. IEEE Internet Things J. 2022, 9, 16247–16258. [CrossRef]
9. Ouerghi, S.; Boutteau, R.; Savatier, X.; Tlili, F. CUDA accelerated visual egomotion estimation for robotic navigation. In

Proceedings of the 12th International Conference on Computer Vision Theory and Applications, Porto, Portugal, 27 February–1
March 2017; SCITEPRESS-Science and Technology Publications: 2017; pp. 107–114.

10. Aguilar-González, A.; Arias-Estrada, M.; Berry, F.; de Jesús Osuna-Coutiño, J. The fastest visual ego-motion algorithm in the west.
Microprocess. Microsyst. 2019, 67, 103–116. [CrossRef]

11. Forrest, S. Genetic algorithms. ACM Comput. Surv. (CSUR) 1996, 28, 77–80. [CrossRef]
12. Lambora, A.; Gupta, K.; Chopra, K. Genetic algorithm-A literature review. In Proceedings of the 2019 international conference on

machine learning, big data, cloud and parallel computing (COMITCon), Faridabad, India, 14–16 February 2019; pp. 380–384.
13. Martínez, J.L.; González, J.; Morales, J.; Mandow, A.; García-Cerezo, A.J. Mobile robot motion estimation by 2D scan matching

with genetic and iterative closest point algorithms. J. Field Robot. 2006, 23, 21–34. [CrossRef]
14. Villaverde, I.; Echegoyen, Z.; Graña, M. Neuro-evolutive system for ego-motion estimation with a 3D camera. In Proceedings of

the Advances in Neuro-Information Processing: 15th International Conference, ICONIP 2008, Auckland, New Zealand, 25–28
November 2008; Revised Selected Papers, Part I 15; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1021–1028.

15. Farber, R. CUDA Application Design and Development; Elsevier: Amsterdam, The Netherlands, 2011.
16. Garland, M.; Le Grand, S.; Nickolls, J.; Anderson, J.; Hardwick, J.; Morton, S.; Phillips, E.; Zhang, Y.; Volkov, V. Parallel computing

experiences with CUDA. IEEE Micro 2008, 28, 13–27. [CrossRef]
17. Ouerghi, S.; Tlili, F. CUDA accelerated visual relative motion estimation. In Proceedings of the 2016 International Symposium on

Signal, Image, Video and Communications (ISIVC), Tunis, Tunisia, 21–23 November 2016; pp. 302–307.
18. Gómez-Luna, J.; Endt, H.; Stechele, W.; González-Linares, J.M.; Benavides, J.I.; Guil, N. Egomotion compensation and moving

objects detection algorithm on GPU. In Applications, Tools and Techniques on the Road to Exascale Computing; IOS Press: Amsterdam,
The Netherlands, 2012; pp. 183–190.

19. Muñoz, B.; Troni, G. Learning the Ego-Motion of an Underwater Imaging Sonar: A Comparative Experimental Evaluation of
Novel CNN and RCNN Approaches. IEEE Robot. Autom. Lett. 2024, 9, 2072–2079. [CrossRef]

20. Lowe, G. Sift-the scale invariant feature transform. Int. J 2004, 2, 2.
21. Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the 2011

International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–2571.
22. Wu, H.; Gao, Y.; Li, S. Odometry Estimation Utilizing 6-DOF Force Sensors and IMU for Legged Robot. In Proceedings of the

2020 Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020; pp. 6901–6905.
23. Yuan, S.; Fioranelli, F.; Yarovoy, A. 3drudat: 3d robust unambiguous doppler beam sharpening using adaptive threshold for

forward-looking region. IEEE Trans. Radar Syst. 2024, 2, 138–153. [CrossRef]
24. Yuan, S.; Wang, D.; Fioranelli, F.; Yarovoy, A. Improved accuracy for 3D ego-motion estimation using automotive FMCW MIMO

radar. In Proceedings of the 2024 IEEE Radar Conference (RadarConf24), Denver, CO, USA, 6–10 May 2024; pp. 1–6.
25. De Araujo, P.R.M.; Noureldin, A.; Givigi, S. Towards Land Vehicle Ego-Velocity Estimation using Deep Learning and Automotive

Radars. IEEE Trans. Radar Syst. 2024, 2, 460–470. [CrossRef]
26. Shiba, S.; Klose, Y.; Aoki, Y.; Gallego, G. Secrets of event-based optical flow, depth and ego-motion estimation by contrast

maximization. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 7742–7759. [CrossRef]

http://doi.org/10.1016/S0921-8890(03)00004-6
http://dx.doi.org/10.1177/02783649231210325
http://dx.doi.org/10.1007/s11042-016-3939-4
http://dx.doi.org/10.1109/TITS.2022.3159275
http://dx.doi.org/10.48550/arXiv.1908.10553
http://dx.doi.org/10.1109/JIOT.2022.3151629
http://dx.doi.org/10.1016/j.micpro.2019.03.005
http://dx.doi.org/10.1145/234313.234350
http://dx.doi.org/10.1002/rob.20104
http://dx.doi.org/10.1109/MM.2008.57
http://dx.doi.org/10.1109/LRA.2024.3352357
http://dx.doi.org/10.1109/TRS.2024.3353202
http://dx.doi.org/10.1109/TRS.2024.3392439
http://dx.doi.org/10.1109/TPAMI.2024.3396116


Algorithms 2025, 18, 19 22 of 22

27. Tu, J.; Yang, S.X. Genetic algorithm based path planning for a mobile robot. In Proceedings of the 2003 IEEE International
Conference on Robotics and Automation (Cat. No. 03CH37422), Taipei, Taiwan, 14–19 September 2003; Volume 1, pp. 1221–1226.

28. Persson, M.; Piccini, T.; Felsberg, M.; Mester, R. Robust stereo visual odometry from monocular techniques. In Proceedings of the
2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, Korea, 28 June–1 July 2015; pp. 686–691.

29. Rabiee, S.; Biswas, J. IV-SLAM: Introspective vision for simultaneous localization and mapping. In Proceedings of the Conference
on Robot Learning, PMLR, 2021; Held in virtual on 16-18 November 2020 pp. 1100–1109.

30. Adis, P.; Horst, N.; Wien, M. D3DLO: Deep 3D LiDAR Odometry. In Proceedings of the 2021 IEEE International Conference on
Image Processing (ICIP), Anchorage, AK, USA, 19–22 September 2021; pp. 3128–3132.

31. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The kitti dataset. Int. J. Robot. Res. 2013, 32, 1231–1237.
[CrossRef]

32. Corporation, N. cuRAND—CUDA Random Number Generation Library. 2024. Available online: https://docs.nvidia.com/
cuda/curand/index.html (accessed on 20 October 2024).

33. Geiger, A.; Ziegler, J.; Stiller, C. Stereoscan: Dense 3d reconstruction in real-time. In Proceedings of the Intelligent Vehicles
Symposium (IV), Baden-Baden, Germany, 5–9 June 2011; pp. 963–968.

34. Ciarfuglia, T.A.; Costante, G.; Valigi, P.; Ricci, E. Evaluation of non-geometric methods for visual odometry. Robot. Auton. Syst.
2014, 62, 1717–1730. [CrossRef]

35. Mohanty, V.; Agrawal, S.; Datta, S.; Ghosh, A.; Sharma, V.D.; Chakravarty, D. DeepVO: A deep learning approach for monocular
visual odometry. arXiv 2016, arXiv:1611.06069.

36. Costante, G.; Mancini, M.; Valigi, P.; Ciarfuglia, T.A. Exploring representation learning with CNNs for frame-to-frame ego-motion
estimation. IEEE Robot. Autom. Lett. 2016, 1, 18–25. [CrossRef]

37. Weber, M.; Rist, C.; Zöllner, J.M. Learning temporal features with CNNs for monocular visual ego motion estimation. In
Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan,
16–19 October 2017; pp. 1–6.

38. Pillai, S.; Leonard, J.J. Towards visual ego-motion learning in robots. arXiv 2017, arXiv:1705.10279.
39. Chen, X.; Li, S.; Mersch, B.; Wiesmann, L.; Gall, J.; Behley, J.; Stachniss, C. Moving object segmentation in 3D LiDAR data: A

learning-based approach exploiting sequential data. IEEE Robot. Autom. Lett. 2021, 6, 6529–6536. [CrossRef]
40. Yoon, D.J.; Zhang, H.; Gridseth, M.; Thomas, H.; Barfoot, T.D. Unsupervised learning of lidar features for use ina probabilistic

trajectory estimator. IEEE Robot. Autom. Lett. 2021, 6, 2130–2138. [CrossRef]
41. INAOE/DREAM Benchmark Dataset. Available online: https://dream.ispr-ip.fr/ispr-benchmark-dataset/#page-content

(accessed on 17 December 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1177/0278364913491297
https://docs.nvidia.com/cuda/curand/index.html
https://docs.nvidia.com/cuda/curand/index.html
http://dx.doi.org/10.1016/j.robot.2014.08.001
http://dx.doi.org/10.1109/LRA.2015.2505717
http://dx.doi.org/10.1109/LRA.2021.3093567
http://dx.doi.org/10.1109/LRA.2021.3060407
https://dream.ispr-ip.fr/ispr-benchmark-dataset/#page-content

	Introduction
	Genetic Algorithms
	CUDA for Parallel Processing

	Related Works
	State of the Art for Ego-Motion Estimation
	Real-Time Ego-Motion Estimation

	The Proposed Algorithm
	Parameter Selection Criteria
	Overview of the Algorithm
	Input Lookup Table (LUT)
	Seed Initialization
	Ego-Motion Application
	Selection and Mutation
	Selection Mechanism
	Mutation Mechanism
	Crossover Operation

	Iterative Optimization
	Computational Complexity Analysis

	Results
	Extension to Six Degrees of Freedom
	Conclusions
	References

