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Abstract: The Internet of things (IoT) has significantly impacted various sectors, including healthcare,
environmental monitoring, transportation, and commerce, by enhancing communication networks
through the integration of sensors, software, and hardware. This paper presents an accurate IoT
indoor localization system based on IoT devices and fingerprinting methods. We explore indoor
localization techniques using Bluetooth Low Energy (BLE) and a Radio Signal Strength Indicator
(RSSI) to address the limitations of GPS in indoor environments. The study evaluates the effectiveness
of iBeacon transmitters for indoor positioning, comparing the Weighted Centroid Localization (WCL)
and Positive Weighted Centroid Localization (PWCL) algorithms, along with fingerprinting methods
enhanced by outlier detection and mapping filters. Our methodology includes mapping a real envi-
ronment onto a coordinate axis, collecting training data from 47 sampling points, and implementing
four localization algorithms. The results show that the PWCL algorithm improves accuracy over
the WCL algorithm, and hybrid methods further reduce localization errors. The HYBRID-MAPPED
method achieves the highest accuracy, with an average error of 1.44 m.

Keywords: location; IoT; internal location; fingerprint algorithm

1. Introduction

The Internet of things is a promising technology that has already been shown to be
useful in sectors such as health, environmental monitoring, transportation systems, and in
other commercial applications. The internet, things, and the semantic viewpoint are the
three major components of IoT, all of which have significantly enhanced the communication
network. The Internet of things is a network of sensors, software, and hardware components
that uses shared storage and the internet to gather, store, and manage data. Smart towns
that want to utilize more public space may leverage the Internet of things in order to do
so. Hospitals, retail malls, libraries, transit systems, and other public institutions may all
benefit from using the Internet of things to proactively manage and improve services [1].

Indoor localization can be realized through various IoT technologies, including WiFi,
RFID, UWB, and BLE. Each of these technologies offers unique benefits and faces certain
limitations. BLE has emerged as a preferred choice for indoor positioning due to its
low energy consumption, relatively low deployment cost, and compatibility with most
modern devices, including smartphones. This advantage makes BLE highly suitable for
real-time localization applications, unlike UWB, which, although more accurate, requires
specialized hardware and higher costs [2,3]. Furthermore, BLE provides a favorable trade-
off between range and accuracy, outperforming WiFi in environments with significant
interference. Comparative studies such as MLTL, IDWPSOInLoc, and EDEEPRFID-IPS have
demonstrated BLE’s superior performance in terms of scalability and ease of deployment,
making it an efficient choice for various IoT applications [4–6].

To address the challenges of indoor localization, our research introduces two novel
contributions: the Positive Weighted Centroid Localization (PWCL) algorithm and the
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HYBRID-MAPPED method. These approaches are designed to enhance localization accu-
racy by prioritizing stronger signals and integrating multiple filtering techniques, respec-
tively. This study aims to provide robust solutions to problems surrounding real-world
applications by distinguishing our methods from existing studies.

We acknowledge that the original contribution of our work could be further empha-
sized. To address this, we have revised our approach to clearly highlight the development
of the PWCL algorithm and the HYBRID-MAPPED method, which provide significant
advancements over existing localization techniques.

In this study, we aim to enhance indoor localization accuracy by leveraging IoT devices,
specifically using Bluetooth Low Energy (BLE) combined with advanced fingerprinting
methods. The novel contribution of our work lies in the development of the Positive
Weighted Centroid Localization (PWCL) algorithm, which prioritizes stronger signals to
improve localization accuracy. Additionally, we propose the HYBRID-MAPPED method
that integrates multiple filtering techniques, including outlier detection and mapping filters,
to further reduce localization errors in challenging indoor environments. These methods
distinguish our work from existing studies in this domain.

Various technologies have been investigated for indoor positioning, including Blue-
tooth Low Energy (BLE) [1,7–10]. In addition to BLE-based methods, the SLAM (Simultane-
ous Localization and Mapping) approach has been widely used in robotics for simultaneous
mapping and localization, and it is highly relevant to indoor localization [11]. Furthermore,
while GPS/GNSS technologies are often limited in indoor environments, their integration
in hybrid localization systems provides valuable context for the development of more
comprehensive solutions [12].

Recent advancements in indoor localization have introduced unified frameworks that
integrate multiple localization techniques to improve accuracy and reliability. For example,
the work of Zhang et al. presents a unified framework using factor graphs to optimize
indoor localization performance by integrating various data sources [13]. Additionally,
Kumar et al. have explored the performance improvements achieved through cooperative
fingerprint-based localization, highlighting the importance of cooperation in enhancing
accuracy [14]. Our study builds upon these foundational works while introducing novel
methods to further advance the field.

As they pertain to smart retail complexes like hyperstores, the findings may be investi-
gated further. Imagine having a lengthy shopping list in your hand and entering a shopping
center with thousands of things to choose from, and you have to spend hours finishing
your list. The presence of an internal location system based on the Internet of things in
this instance may show the position of each of the items you desire on your smartphone.
Prioritizing the purchase of any goods will undoubtedly result in significant time savings.
As a result, based on its current and historical data, this store’s smart technology can design
a time-based shopping path for you and lead you. Internal positioning systems are also
essential for asset monitoring and inventory management applications. Visual–inertial
navigation systems have offered dependable methods for indoor and outdoor settings [15],
and these systems may substantially improve the efficiency of system responders. VINSs,
however, often depend on appropriate illumination and streams of information, while the
usage of cameras may create privacy issues [16] that limit their use. Internal positioning
systems based on conventional wireless communication technologies have also been in-
vestigated as a supplementary option. Environmental obstacles significantly affect radio
signals in interior settings, reducing the system’s accuracy [17].

The position of a GPS device is always restricted. When the weather is poor, GPS
signals cannot be received inside big buildings or in fully enclosed areas such as roads
and city tunnels. Unfortunately, the absence of a satellite signal may have a variety of
severe consequences in each of these situations. Imagine trying to locate people or objects
among structures destroyed during an earthquake or natural disaster, or in a large hospital,
showing patients the correct path to their desired location based on GPS. While GPS can
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easily locate people or objects in open spaces, it cannot send a signal and displays a large
vacuum in indoor environments [8].

Because wireless local area networks and Bluetooth Low Energy are so common
nowadays, the emphasis of this article is on how to use the Radio Signal Strength Indicator
that is accessible through wireless local area networks and Bluetooth Low Energy.

The location of transmitters is addressed first in this article, followed by point finding
using the fingerprint technique. A thorough examination of the algorithms used in com-
parable articles also aids in the development of a unique technique for internal filing by
combining various algorithms and applying different filters to the final output.

Because receiving satellite signals in big interior settings is constantly restricted, and
people expressly need a different system in these locations, the most essential objective of
this research is to identify things in these surroundings. Another aim of this study is to
improve the process accuracy in locating and presenting the position of items by taking
ambient noise into account.

In this article, we ask the following questions:
How can we locate indoors without the need for GPS using IoT? How can we maximize

productivity by locating with a minimum number of transmitters? How can we neutralize
the effect of environmental noise with existing algorithms and improve the accuracy and
speed of receiver spatial calculations?

To answer the above questions, we consider and test the following hypotheses:

1. It is possible to improve the accuracy and speed of algorithms in indoor environments
without the need for GPS signal by replacing Bluetooth-based transmitters instead of
Wi-Fi and displaying the location of objects connected to the network on a local map;

2. Using passable point mapping methods, unusable paths can be eliminated in location
searches to increase the accuracy and speed of the system response;

3. Based on data processing algorithms in fingerprint methods, noise effects can be
neutralized, and accuracy can be increased using the sampled and evolved data
of users.

2. Materials and Methods
2.1. Theoretical Foundations
2.1.1. Selection and Placement of Transmitters

Using new wireless standards such as IEEE 802.15.4, low-power Bluetooth, and radio-
frequency identification (RFID) helps to develop new positioning technologies in indoor
environments [7]. Table 1 represents a good comparison of the performance of these
three technologies.

Table 1. Comparison of three different hardware in internal routing.

WiFi RFID iBeacon

Coverage 50 m 10 m 50 m

Cost high Low A little high

Power Consumption high Low Low

Bandwidth 1.8 G 250 kb 1 M

Battery Life several Days 1–2 Years 1–2 Years

Positioning Accuracy 2 m–3 m 1 m–2 m 1 m–2 m
iBeacons (iBeacon Estimate location beacons), hardware used.

In this research, hardware called iBeacon will be used to receive the signal, which has
the ability to send RSSI signals up to 50 m, and these components can be used for up to
5 years without the need to replace the battery. iBeacon was developed in a collaboration be-
tween Apple and the Estimate team and is available to researchers for research projects [18].
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iBeacon technology has recently become very popular among researchers, used to position
objects and smart devices indoors [19].

In the research that has been conducted in [8], the same transmitters were used as the
generator of Bluetooth signal. (Currently, three of these transmitters have been purchased
and will be used during the investigation).

2.1.2. Methods for Placing iBeacons

In articles published by the manufacturer of this technology for internal routing,
it is easy to see that a large number of iBeacons are needed to cover relatively small
environments. One of the challenges for researchers in this field is to design an improved
architecture to use the minimum number of iBeacons for the maximum coverage of space
and measurement accuracy.

As mentioned earlier, one of the most important issues in research today is to examine
the best location for 3 iBeacons in a specific communication range [20]. In the research
conducted by Dr. Rezazadeh et al. in 2018, a main reference for this research, this is shown
to be an effective method for the proper placement of this technology [7]. Research in
Ref. [7] shows that a comparison between the random placement of iBeacons and the
placement of the equilateral triangle as a prototype reveals a significant improvement in
the latter, with a large error in the random state.

This simple experiment shows the need for optimal placement to achieve the highest
accuracy of local location estimation. In addition, other factors contribute to localiza-
tion error that must be considered. Localization error is a function of factors such as
the following:

M: Mapping error
A: Localization algorithm error
B: Type of nodes used by iBeacon
P: Location of iBeacons

Le = f (M, A, B, P) (1)

Spot Locating of Receivers

Today, there are various ways to estimate the location of objects in the network based
on receiving radio signals to finally perform indoor locating by improving the existing
methods with iBeacon transmitters, displaying the position of people on smart phones
based on received signals from iBeacon, and then guiding those people to their targets in
the best path, and in the most time-efficient manner, by using different filters. This is the
Internet of things.

2.1.3. Fingerprint Location

One of the most efficient location methods is the fingerprint method. Fingerprint-based
wireless indoor positioning is widely used in spatial services, because wireless signals
such as Bluetooth and Wi-Fi are used indoors. They are easily accessible [1]. One of the
advantages of this method is its simplicity compared to other methods in implementation.
Fingerprint-based internal positioning via Wi-Fi or Bluetooth signals has also become a
standard method for commercial applications [17]. The basis of this method is to collect a
lot of data from different environments such as a room or an entire building so that finally,
with the large amount of data collected in the core after implementing the local map, the
signals received from each object can be checked with previous data and the location of the
object can be displayed on the map.

Fingerprint technology is associated with a high level of accuracy and reliability.
Figure 1 provides an overview of the algorithms used in the fingerprint method [1].
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2.2. Method

Different methods have always been used for internal location without the use of
satellite signals or location via the internet. In this study, research is based on the en-
vironment and real tools. One of the most efficient location methods is the fingerprint
method, which is widely used in commercial applications [7,8,21]. In fact, the main pur-
pose and direction of this research is that first the space of a real environment is mapped
on a coordinate axis. The distance between the points of these coordinate axes in the
real environment is considered to be 40 cm, according to which the X coordinate axis
contains 18 points and the Y coordinate axis contains 30 points. After determining the
space by the optimal CiP method, the connection of the transmitters is conducted in
the form of an equilateral triangle. After preparing the test space, in the offline stage,
with a sampling application in 47 points, the operation of recording and sending train-
ing data to the server is performed. The reason for obtaining 47 points is that in the
space, a corridor and three passable rooms have been considered for research; if paths
are drawn according to the coordinate axis, 47 navigable points will be obtained. Af-
ter collecting the training data in another phase, the location operation is performed in
4 different ways with another application. In this phase, the complete map of the envi-
ronment is viewed on the application and by moving in the environment and sending the
target point to the server; the server is positioned in 4 ways in exchange for the received
signals and the error of the methods is simultaneously registered in another database.
Finally, after obtaining the most optimal method from the results of error checking, the best
method can be selected as the locating method in the application so that the user can see
their location by moving in the environment instantly.

To do this, four main phases are first defined as follows:

1. The first phase: offline section, to collect training data from the environment;
2. The second phase: online section, implementation of locating algorithms;
3. Third phase: online section, combination of second phase algorithms and debugging;
4. Fourth phase: calculation of measurement error.

2.2.1. The First Phase: The Collection of Training Data in the Offline Section

In this section, by collecting training data in 47 points of the environment and sending
it to the server, this data is stored in the database to be used in location by the finger-
print method.

2.2.1.1. Selection of the Testing Environment

In this research, As shown in Figure 2, part of a company’s workspace has been
used. All corridors and rooms of the experimental space are made of glass, which can
be considered as a positive point for noise interference in the environment, because the
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presence of walls made of brick, cement, and plaster can differentiate the received signals
and neutralize the effect of noise in different places.

Algorithms 2024, 17, x FOR PEER REVIEW 6 of 16 
 

considered as a positive point for noise interference in the environment, because the pres-
ence of walls made of brick, cement, and plaster can differentiate the received signals and 
neutralize the effect of noise in different places. 

 
Figure 2. User interface of application based on company’s workspace. 

In the next step, the space of the research environment is divided into grid layers 
with a distance of 40 cm from each other, as shown in Figure 3. In the environment, all 
points of the testing route are labeled for the sampling stage. 

 
Figure 3. Image on the left: Simulated grid layers, image on the right: the actual space of the envi-
ronment. 

2.2.1.2. Placement of Transmitters (iBeacons) by CiP Method 
In this tested space, As depicted in Figure 4, three iBeacons, joint products of Apple 

and Estimate, have been used and placed in three corners of the space in the shape of an 
equilateral triangle, which can be seen in the image below. 

Figure 2. User interface of application based on company’s workspace.

In the next step, the space of the research environment is divided into grid layers with
a distance of 40 cm from each other, as shown in Figure 3. In the environment, all points of
the testing route are labeled for the sampling stage.
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environment.

2.2.1.2. Placement of Transmitters (iBeacons) by CiP Method

In this tested space, As depicted in Figure 4, three iBeacons, joint products of Apple
and Estimate, have been used and placed in three corners of the space in the shape of an
equilateral triangle, which can be seen in the image below.
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2.2.1.3. Designing and Implementing Back-End for Receiving and Storing Data

In this section, through the Laravel framework with an Nginx web server, a system
has been designed and implemented on the Linux kernel to receive the sample of received
signals in the offline section and store them in a PostgreSQL-based database.

In this section, an Android application with Java language is designed and imple-
mented to direct the data received from the transmitters to the server for storage using the
following algorithm:

1. Start;
2. Obtain the coordinates of the desired point;
3. Receive 300 signals for each transmitter;
4. Send the data to the server;
5. The end.

The overall architecture of the application, as illustrated in Figure 5, includes both
offline and online phases for data collection and localization estimation.
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2.2.1.4. Sampling

In this section, after configuring the server, creating the back-end structure for data
storage, and implementing the sampling application, 47 points including the main corridor
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of space and 4 rooms are selected as the main sampling points to perform the operation of
training data storage. The user interface for the sampling phase, shown in Figure 6, allows
the selection of specific points in the environment to capture RSSI values for localization
purposes.
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2.2.2. The Second Phase: The Implementation of Locating Algorithms

In the second phase of the operation, by designing an application and upgrading
the back-end methods, internal location is performed in 4 different ways. In the first two
methods, location is conducted without the fingerprint method. The other two methods of
location are performed in conjunction with the fingerprint method, each of which benefits
from a combination of different algorithms. After implementing the location application,
the server is ready to implement various methods of location in the desired methods for
the target point.

2.2.2.1. Location with Weighted Centroid Localization (WCL) Algorithm

The first location method considered in this research is the WCL algorithm so that
it can be used as a benchmark for measuring other innovative methods of this research.
Therefore, location using this method is conducted without any change in the structure
presented for it in the research [10].

p(si) =
∑Nr

j=1(RSSij · bj(x, y))

∑Nr
j=1 RSSij

(2)

Equation (2)—Formula for calculating spatial coordinates by the WCL method.
According to this algorithm, the strength of the signals received from each transmitter

is multiplied by the transmitter’s X and Y coordinates, then added and subtracted. The
denominator of the fraction is the sum of the power of the signals. Finally the coordinates
of the point found are displayed on the map. To further illustrate the functionality of this
algorithm, we tested a sample of the received data.

2.2.2.2. Locating with Positive Weighted Centroid Localization (PWCL) Algorithm

In this section, by improving the WCL method and in fact compensating for the
weakness of this method, the tendency of the found points is towards stronger signals. The
received RSSIs are inherently negative numbers, and the larger these negative numbers
(they tend to zero), the stronger the signal. Therefore, in the WCL method, the final response
tends to the center of the triangle. But in the new PWCL method, the received signals are



Algorithms 2024, 17, 544 9 of 16

added to the signals before being included in the WCL formula, due to the fact that the
received signals fluctuate in the range of −40 to −100. The final response tends to lean
towards the strongest transmitter.

P(si) =
∑nr

j=1((RSSIij + 100).bj(x, y))

∑nr
j=1(RSSIij + 100)

(3)

Equation (3)—Formula for calculating spatial coordinates by the PWCL method.

2.2.2.3. Locating with Fingerprinting Algorithm by Applying Outlier Detection Filter

One of the main challenges of the fingerprint method is the presence of noise. Signals
are affected by environmental conditions such as human movement and obstacles that
prevent them from reaching the user. The detection of these signals requires filtering to
make the received data offline unreliable.

2.2.2.4. Locating with Fingerprinting Algorithm by Applying the Most Frequent Filter
Based on Subscription

According to the fingerprint algorithm in the online location section, the data received
in the online section is compared with all the data received in the offline section, and finally
the customer’s location is found. But an examination of the data received in the offline
section shows that in different places the power of the signals received from the transmitters
can be exactly the same.

2.2.2.5. Locating with the Fingerprinting Algorithm by Applying a Mapping Filter to
the Path

In this section, after determining the location point, and before sending the signal to
the customer, another filter is applied to the result to check the desired point for possibility
or in other words, confirmation of the route point. If the found point is not one of the
route points or not valid for people to pass in the environment, then according to a table
information application called Maps, the nearest equivalent to that point replaces the result
of previous filters and then is sent to the customer.

2.2.3. The Third Phase: Combining Algorithms, Locating and Checking for Errors

In this section, 4 final methods for locating through various implemented algorithms
are selected to obtain the final results of the work. These 4 methods are listed as follows:

1. Locating with WCL algorithm;
2. Locating with PWCL algorithm;
3. Locating with HYBRID;
4. Locating with HYBRID-MAPPED.

The first two methods use only the stated algorithms to find the target point, but for
the last two methods a combination of filters is selected.

2.2.3.1. HYBRID

In this method, the outlier detection filter is first applied to the training data. Then,
with more filters, the frequency of the end point is obtained. But if it is not found in this
shared filter, location is performed through the PWCL method.

2.2.3.2. HYBRID-MAPPED

In this method, in addition to applying all the filters of the previous method, the
mapping filter is also applied on the passable points on the final result.



Algorithms 2024, 17, 544 10 of 16

2.2.4. The Fourth Phase: Measurement of Locating Error

In the operational phase of user location, at each point the user sends the target point
and the signals received from the transmitters to the server; the output of each of the
4 methods of location is stored within a table called trace_logs with the measured error.

The measured error is actually the distance from the target point to the point found
by the algorithms, which is obtained by the Euclidean distance method on the Cartesian
coordinate axis:

(Xt, Yt) is the target point and (Xi, Yi) is the point found by the location algorithms.

R =

√
(Xt − Xp)2 + (Yt − Yp)2 (4)

Equation (4)—Euclidean distance measurement.
Then, considering that each unit of Cartesian coordinates is equal to 40 cm, the

Euclidean distance is multiplied by 0.4 to convert the error scale into meters. Finally, this
process is executed for each point in all 4 algorithms and stored in the table.

3. Results
3.1. WCL Location Results

As shown in Figure 7, The results of this algorithm, which is actually implemented
without any changes or improvements, are not very satisfactory and the error rate in some
places reaches more than 4 m.
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If we consider the location of each transmitter as three vertices of a triangle, the points
at which the lowest error rates are recorded are the points closest to the center of this
triangle. But many other errors have been observed. The average error in this method is
2.51 m. The error variance in this method is 0.92 and the standard deviation is 0.96.

3.2. PWCL Location Results

In this method, many attempts were made to shift the location towards stronger
signals. Figure 8 illustrates a complete improvement of the WCL algorithm.
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In this method, the closer the user is to a transmitter, the less error is observed; more
error is observed in the central points of the transmitter triangle. The average error in this
method is 1.84 m. The error variance in this method is 0.52 and the standard deviation
is 0.72.

3.3. HYBRID Location Results

In this method, the outlier detection filter is first applied to all data so that the data
containing noise is detected and removed from the database as an unreliable point. After
that, finding the maximum frequency in the common points of final location is performed
using the algorithm. The results of this method show that compared to the PWCL method,
there is an improvement in location accuracy. Figure 9 presents the bar graph of average
error (in meters) across 47 points using the HYBRID method, highlighting the improvement
in location accuracy compared to the PWCL method.
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The average error in this method is 1.82 m. The error variance in this method is 0.53
and the standard deviation is 0.73.
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3.4. HYBRID-MAPPED Location Results

Figure 10 illustrates Applying a mapping filter as the final filter had a significant effect
on the research results, so much so that the location error was reduced by more than 20%.
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The average error in this method is 1.44 m. The error variance in this method is 0.34
and the standard deviation is 0.58.

3.5. Comparison

As a conclusion of this research, the results shown in Figures 11 and 12 obtained from
four different methods are examined together and can be seen in the diagrams below.
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The improvement demonstrated by the methods used in this research can also be
applied in a global contex as shown in Figure 13.

This means that if you are walking on a street and the signals received from the satellite
are weakened for reasons such as weather changes, the user’s location will never change
due to inaccessible or passable points and the program will try to keep the user in the path
of the crossing to receive a stronger signal by estimating the user’s location.
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4. Discussion

The results of our study demonstrate significant advancements in indoor localization
accuracy using IoT devices and fingerprinting methods. By integrating Bluetooth Low
Energy (BLE) and a Radio Signal Strength Indicator (RSSI), we were able to address the
limitations of GPS in indoor environments effectively. Our findings corroborate previous
research on the potential of BLE for indoor positioning, highlighting the enhanced accuracy
achieved through our proposed algorithms.

4.1. Comparison with Previous Studies

Our study builds upon the foundational work of Dr. Rezazadeh [8], who explored
iBeacon placement for indoor positioning. By improving upon their methodology, par-
ticularly through the development and application of the Positive Weighted Centroid
Localization (PWCL) and HYBRID-MAPPED algorithms, we achieved a marked reduction
in localization errors [7,8,21,22]. The average error in our HYBRID-MAPPED method was
1.44 m, which is a significant improvement compared to traditional WCL methods that
showed an average error of 2.51 m. This aligns with findings from similar studies that
emphasize the importance of algorithmic enhancements and optimal hardware placement
for reducing localization errors.

Our HYBRID-MAPPED method demonstrates superior performance when compared
to traditional approaches such as the standard Weighted Centroid Localization (WCL)
and the recently proposed unified frameworks based on factor graphs [13]. Specifically,
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our method achieves an average localization error of 1.44 m, a significant improvement
over the WCL method with an average error of 2.51 m. Additionally, the integration
of cooperative techniques as explored by Kumar et al. [14] has shown promise in fur-
ther enhancing accuracy, but our approach refines these results by incorporating addi-
tional filtering mechanisms to address environmental noise and signal variations. These
findings highlight the robustness and applicability of our proposed methods in various
indoor environments.

4.2. Interpretation of Results

The success of the PWCL and HYBRID-MAPPED algorithms can be attributed to
several factors. Firstly, the use of PWCL allowed for a stronger emphasis on signals closer
to the transmitters, effectively minimizing the influence of weaker signals and thus reducing
error. Secondly, the incorporation of advanced filtering techniques, such as outlier detection
and mapping filters, proved crucial in mitigating the impact of environmental noise and
ensuring more reliable signal processing.

Our results also highlight the importance of the physical environment in which the
localization takes place. The experimental setup, which included glass corridors and
rooms, provided a challenging yet realistic scenario for testing our methods. The pos-
itive outcome in such an environment underscores the robustness of our approach in
real-world applications.

4.3. Implications and Broader Context

The implications of this study are significant for various sectors relying on precise
indoor localization. In healthcare, for example, accurate patient and asset tracking within
hospitals can enhance operational efficiency and patient care. Similarly, in large retail envi-
ronments, improved localization can facilitate smart shopping systems, guiding customers
efficiently and enhancing their shopping experience.

The reduction in localization error achieved through our methods also has broader
implications for the development of smart cities. Accurate indoor localization systems
can support various applications, from efficient space utilization in public buildings to
enhanced navigation systems in complex environments such as airports and universities.

4.4. Future Research Directions

While our study has made considerable progress, there are several areas for future
research. One potential direction is the integration of mobile phone motion sensors to
further refine the localization process. These sensors can provide additional data to predict
user movement, thereby increasing the accuracy of location estimates.

Moreover, continuous improvement of the training data through user interaction can
enhance the system’s performance over time. By incorporating user-generated data into
the training process, the system can adapt to changing environments and maintain high
accuracy levels.

Future research could also explore the scalability of our approach in larger and more
diverse environments. Testing the algorithms in different types of buildings, such as
industrial facilities and multi-story complexes, would provide valuable insights into the
versatility and limitations of our methods.

In conclusion, this study presents a significant step forward in the field of indoor
localization using IoT and advanced fingerprinting methods. The improved accuracy
and robustness of our proposed algorithms offer promising potential for a wide range of
applications, setting the stage for further advancements in this critical area of research.

5. Conclusions

Given the urgent need for user-located applications in indoor environments, especially
very large and nested environments such as department stores, hospitals, and universities,
researchers are now increasingly studying indoor location without the need to use satellite
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signals. Reviewing the results obtained by other researchers showed that the existence
of high error in different algorithms has created the need to reduce this error by further
investigation using creative methods, and by providing an operational example in the real
environment. As shown in this study, the use of combined methods could obtain better
results; in the final result in the HYBRID-MAPPED method, the error rate was reduced by
about 18% compared to the samples performed in the world.

One way that can reduce the location error in indoor environments in the fingerprint
method is to improve the training data over time using the system. This means that users
who are in the environment can add the results obtained from the algorithms in the online
section to the training data to increase the amount of training data. Applying the most
frequent filter based on subscription can provide users with more reliable results. It is
also recommended to use mobile phone motion sensors to improve the location of indoor
environments in order to predict the user’s movement and increase the accuracy of location.
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