
����������
�������

Citation: Agarwal, M.; Aggarwal, V.;

Ghosh, A.; Tiwari, N. Reinforcement

Learning for Mean-Field Game.

Algorithms 2022, 15, 73. https://

doi.org/10.3390/a15030073

Academic Editor: Frank Werner

Received: 6 January 2022

Accepted: 19 February 2022

Published: 22 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Reinforcement Learning for Mean-Field Game

Mridul Agarwal 1,*, Vaneet Aggarwal 1,2,*, Arnob Ghosh 3 and Nilay Tiwari 4

1 School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
2 School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA
3 Department of Electrical and Computer Engineering, Ohio State University, Columbus, OH 43210, USA;

arnob008@gmail.com
4 Department of Electrical Engineering, I.I.T. Kanpur, Kanpur 208016, UP, India; nilay47@gmail.com
* Correspondence: agarw180@purdue.edu (M.A.); vaneet@purdue.edu (V.A.)

Abstract: Stochastic games provide a framework for interactions among multiple agents and enable
a myriad of applications. In these games, agents decide on actions simultaneously. After taking an
action, the state of every agent updates to the next state, and each agent receives a reward. However,
finding an equilibrium (if exists) in this game is often difficult when the number of agents becomes
large. This paper focuses on finding a mean-field equilibrium (MFE) in an action-coupled stochastic
game setting in an episodic framework. It is assumed that an agent can approximate the impact
of the other agents’ by the empirical distribution of the mean of the actions. All agents know the
action distribution and employ lower-myopic best response dynamics to choose the optimal oblivious
strategy. This paper proposes a posterior sampling-based approach for reinforcement learning in the
mean-field game, where each agent samples a transition probability from the previous transitions.
We show that the policy and action distributions converge to the optimal oblivious strategy and the
limiting distribution, respectively, which constitute an MFE.

Keywords: reinforcement learning; mean-field game; equilibrium

1. Introduction
1.1. Motivation

We live in a world where multiple agents interact repeatedly in a common environment.
For example, multiple robots interact to achieve a specific goal. Multi-agent reinforcement
learning (MARL) refers to the problem of learning and planning in a sequential decision-
making system with unknown underlying system dynamics. The agents need to learn
the system dynamics by trying different actions and observing rewards received over
time. Learning in a MARL is fundamentally different from the traditional single-agent
reinforcement learning (RL) problem since agents not only interact with the environment
but also with each other. Thus, an agent, when trying to learn the underlying system
dynamics, has to consider the action taken by the other agents. Changes in the policy (or
actions) of any agent affect the others and vice versa.

One natural learning algorithm is to extend existing RL algorithms to the MARL by
assuming that the other agents’ actions are independent. However, studies show that
a smart agent which learns the joint actions of the others performs better as compared
to the agent that does not learn the joint action of other agents [1,2]. For any agent, the
actions of other agents become a part of the state. This results in the state space increases
exponentially as the number of agents increases. When the agents are strategic, i.e., they
only want to take actions that maximize their utility (or value), Nash equilibrium is often
employed as the equilibrium concept. The existing equilibrium solving approaches work
for some restricted games when there exists an adversarial equilibrium or coordination
equilibrium [3]. Also, these approaches can handle a handful of agents because of the
exponential increase in the state space. The computational complexity of finding Nash
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Equilibrium at every stage game prevents applications of these approaches in games where
the number of agents is large [4].

In this paper, we consider MARL as an environment where a large number of agents co-
exist. Similar to [5], we utilize a mean-field approach where we assume that the Q-function
of an agent is affected by the mean actions of the others. Mean-field game drastically
reduces the complexity, since an agent only needs to consider the empirical distribution
of the actions played by other agents. Such mean-field games exist in several domains.
For example, the mean-field game is observed in a cyber-security game where a large
number of agents such as terminal nodes or servers make individual decisions about their
security [6,7]. However, the ultimate security depends on the decisions made by other
agents as well. For example, consider a network of computers, where there are a large
number of agents and each agent manages a computer. If an agent invests heavily in
building firewalls, its computer can still be breached if other agents’ computers are not
secure. In the security game, each agent invests a certain amount to attain a security level.
However, the investment level depends on the investment made by the other agents. If the
number of agents is large, the game can be modeled as the mean-field game as the average
investment made per agent impacts the decision of an agent.

Another example of a mean-field game is the demand response price in the smart
grid [8,9]. The utility company sets a price based on the average demand per household.
Hence, if at a certain time the average demand is high, the utility company may increase
the price. The agent now might want to reduce its own consumption to decrease its costs
resulting from the increased price. Mean-field equilibrium is the equilibrium concept in the
mean-field game.

1.2. Contribution

We seek to obtain a model-based RL algorithm to find the mean-field equilibrium in
an episodic-set up. To the best of our knowledge, this is the first work on an episodic RL
algorithm for mean-field equilibrium. We consider an oblivious strategy [10,11], where each
agent takes an action based only on its state. Thus, even though the transition probability
and reward depend on the empirical distribution of the agents’ actions and states, an agent
only seeks policy based on its own state. Hence, an agent does not need to track the policy
state of the other agents.

In our algorithm, we maintain a history of the samples and sample an MDP that fits
the history with high confidence at the start of the episode. The policy is then computed
with this MDP. The agents then play the computed policy and collect samples over the
steps of the episode. We show that such an algorithm converges to equilibrium.

1.3. Related Literature

Unlike the standard literature on the mean-field equilibrium on stochastic games [10,12,13],
we consider that the transition probabilities are unknown to the agents. Instead, each agent
learns the underlying transition probability matrix using a readily implementable posterior
sampling approach [14,15]. All agents employ the best response dynamics to choose the
best response strategy which maximizes the (discounted) payoff for the remaining episode
length. We show the asymptotic convergence of the policy and the action distribution
to the optimal oblivious strategy and the limiting action distribution respectively. We
estimate the value function using backward induction and show that the value function
estimates converge to the optimal value function of the true distribution. We also use
the compactness of state and action space to show that the converged point constitutes a
mean-field equilibrium (MFE).

Ref. [5] considers a variant of the Mean-field game where the state is the same across
the agents. Unlike [5], we consider a generalized version of the game where the state can
be different for different agents. Further, we do not consider a game where adversarial
equilibrium or coordinated equilibrium is required to be present. We also do not need to
track the action and the realized Q-value of other agents as was the case in [5].
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Recently, the authors of [16] studied a policy-gradient based approach to achieve mean-
field equilibrium. The authors of [17,18] considered variants of Q-learning to achieve Nash
equilibrium. Actor-critic based algorithms have been analyzed in [19]. The authors of [20]
consider a deep neural network-based algorithm for mean-field games. In contrast, this
paper considers a posterior sampling-based approach. As noted in [21], model-based ap-
proaches converge faster than the model-free approaches in general. Thus, understanding
of theoretical properties of the model-based approaches is an important problem. Further,
all these papers require huge storage space as the policy depends on the actions of the other
agents whereas in our setting we provide a policy that is oblivious of the states and actions
of other agents.

The authors of [22,23] compute mean-field equilibrium for a setting where the evo-
lution of the state of an agent does not depend on the action or states of the other agents.
However, in our setting, we consider a generic setting where the both reward and the next
state of an agent depend on the actions as well as the states of the other agents. Thus,
though the mean-field game converges to the potential game in the above papers, in our
setting, the game does not converge to the potential game. Hence, finding an equilib-
rium strategy is more challenging in our setting. The key contribution of the paper is a
Posterior-sampling based algorithm that is used by each agent in a multi-agent setting,
which is shown to converge to a mean-field equilibrium. The proposed algorithm does
not assume the knowledge of transition probabilities and learns them using a posterior
sampling approach. Further, our algorithm is computationally efficient as the policy only
depends on the current state of an agent, i.e., it is oblivious of the states and actions of
other agents.

2. Background
2.1. Multi-Player Stochastic Game

An n-player stochastic game is formalized by the system dynamics tuple M∗ =
{S ,A, P, r, τ, ρ, γ}. The agents are indexed by the set [n] = {1, 2, · · · , n}. The state of
the ith agent at time t is given by si,t ∈ S , where S is the state space set. A(s) is de-
fined as the set of the feasible actions any agent can take in state s. A is the action space
set defined as

⋃
s∈S A(s). We also assume that both S and A are finite sets. Since fi-

nite sets are also compact, the assumption allows us to use results from previous works
of [10]. Since we have n agents in our system, the combined state space of the system
becomes S×n = S × S × · · · × S , and the combined action space of the system becomes
A×n = A×A× · · · × A. Let st = s ∈ S×n be a vector of length n, and the ith element of s
denotes the states of the ith agent at time t. Similarly, let at = a ∈ A×n be a vector of length
n, and the ith element of s denotes the action taken by the ith agent at time t.

If the agents play joint action at = a ∈ A×n the next state of the system st+1 = s′ ∈
S×n follows the probability distribution P(st+1 = s′|st = s, at = a). Along with the state
updates, ith agent also receives a reward ri,t = Ri(st, at, st+1) ∈ [0, 1]. We further assume
that the reward function Ri(·) independent of the agent i, and each player is trying to
optimize for the same reward. Hence, we can drop the subscript i in the reward function
Ri. However, since each agent can be in different state, or play different action, their
individual rewards will be different and we still use the subscript i to differentiate between
the instantaneous reward of the ith agent. The constant γ ∈ [0, 1) is the discount factor, and
ρ is the initial state distribution such that s0 ∼ ρ.

We consider an episodic framework where the length of the time horizon or the length
of episodes is τ. State space set S , action space set A, τ are known and need not be learned
by the agent. We consider that the game is played in episodes k = 0, 1, 2, · · · . In each
episode, the game is played in discrete steps, j ∈ [τ] = {0, 1, · · · , τ − 1}. The episodes
begin at times tk = kτ, k = 0, 1, 2, · · · . At each time t, the state of the agent i is given
by si,t, the agent selects an action ai,t, agent observes a scalar reward ri,t and the state
transitions to the state st+1. Let Hi,t = (si,1, ai,1, ri,1, · · · , si,t−1, ai,t−1, ri,t−1, si,t) denote the
history available to the agent i till time t.
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2.2. Mean-Field Game

In a game with a large number of players, we might expect that the distribution of
agents over the action space carries more meaning than the actions themselves. It is intuitive
that a single agent has a negligible effect on the game as the number of agents increases.
The effect of other agents on a single agent’s payoff is only via the action distribution of the
population. This intuition is formalized in the mean-field game. We now formally define the
mean-field game and equilibrium concepts.

First, we define few notations. Let α−i,t(a) : A → [0, 1] be the fraction of the agents
(excluding agent i) that take action a ∈ A at time t. Mathematically, we have

α−i,t(a) =
1

n− 1 ∑
m∈[n]\{i}

1(am,t = a), (1)

where 1(aj,t = a) is the indicator function that the agent j takes action a at time t. Since we
assume an episodic framework, α−i,t(a) can be different at each time index in an episode
and also across the episodes. The episodic nature of the problem will be used later (in (9))
to define convergence to a value that depends only the time index in the episode. Further,
since each agent selects exactly one action from A, we have

α−i,t(a) ≥ 0 ∀ a ∈ A, and ∑
a∈A

α−i,t(a) = 1

Similar to distribution of agents over actions, we define f−i,t : S → [0, 1] as the
distribution of agents (excluding agent i) over the state space S .

f−i,t(a) =
1

n− 1 ∑
m∈[n]\{i}

1(sm,t = s), (2)

In a mean-field game, every agent i ∈ [n] assumes that its next state si,t+1 is randomly
distributed according to the transition probability distribution Pi conditioned on agent’s
current state si,t, the action taken ai,t and other agents’ distribution over actions α−i,t. Also,
the reward is function of the agents current state and action and the next state.

si,t+1 ∼ Pi(·|si,t, ai,t, α−i,t) (3)

ri,t = φ(si,t, ai,t, α−i,t, si,t+1) (4)

Thus the agent does not need to concern itself with the actions of the other agents, as
the population action distribution α−i,t becomes a part of the environment. This updated
environment dynamics can now be used in decision-making. Note that the distribution of
the population action α−i,t could be explicitly taken into account for deciding an action as
well. Note that the reward may also depend on f the state distribution of other agents. The
analysis would have been similar.

Example 1. We now provide an example drawn from a real-life application that simulates our
setting. Suppose we consider the scenario of malware spreading. The state Xi,t = 0 means that an
agent is vaccinated and can not infect at t. On the other hand, Xi,t can vary between 0 and 1 with n
quantization levels. The action space of an agent is ai,t = {0, 1}. If ai,t = 0 then the agent does not
take any action. If ai,t = 1, agent i takes action in order to protect itself. In order to simplify the
model, we consider the following state evolution model

Xi,t+1 =

{
min{Xi,t + ωi,tα−i,t(0), 1} if ai,t = 0
0 if ai,t = 1
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Note that if all the other agents have taken action 1 i.e. they protect themselves, then an agent
has less chance to be infected. Thus, the state is smaller when the fraction of agents taking action 0
(i.e., α−i,t(0)) is smaller. ωi,t is a noise who has its value in {1/n, 2/n, . . . , 1}.

The reward function for agent i is defined as follows ri,t = −Xi,tα−i,t(1)− λai,t. The reward
function increases if the number of agents who have protected themselves is higher. λ is the cost that
depends on the action. This example explains the necessity to compute the mean-field equilibrium.

Note that in general action of an agent should depend on the action distribution of
other agents. However, Proposition 1 from [10] says that under equilibrium, an oblivious
strategy performs as well as a strategy that considers other agents’ actions. Thus, the
strategy does not need to explicitly consider the value of α−i,t.

Definition 1. An agent i ∈ [n] is said to follow an oblivious deterministic strategy πi when the
agent selects an action considering only time index j in an episode and current state si,j.

πi : S × [τ]→ A (5)

ai,j = πi(si,j, j) (6)

For the rest of the paper, we will focus on oblivious deterministic strategy for all agents.

2.3. Value Function, Q Function and Policy

We now define a value function for an agent i ∈ [n] for oblivious policy πi at lth time
step in an episode as:

Vi,πi ,l(s|α−i,l) = EPi ,πi

[
τ−1

∑
j=l

γj−lri,t|si,l = s

]
(7)

= EPi ,πi

[
τ−1

∑
j=l

γj−lφ(si,j, ai,j, si,j+1)|si,l = s

]
. (8)

The expectation in Equation (8) is taken over the actions taken from time step l and the
states visited after time step l in an episode. We will consider the rest of the definitions from
some ith agent’s perspective, i ∈ [n], so subscripts i and −i will be dropped for brevity.

We note that the action space and state space are finite and hence the set of strategies
available to the players is also finite. The player adopts the lower myopic best response
dynamics to choose the policy. A lower myopic policy selects an action with the lowest
index among the actions that maximize the value function. As time proceeds, the strategies
and the action distribution converge to the asymptotic equilibrium [10].

Let α∗j ∈ [0, 1]|A| be the limiting population action distribution for jth time index in
episode k. We note that due to the episodic framework, the limiting action distribution
depends on the index in an episode. Then, from the definition of limit, for every ε > 0
there exist a Kε < ∞ such that for all k > Kε, we have

||αkτ+j − α∗j ||2 < ε (9)

where ||.||2 denotes the `2 norm.
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The value function defined in Equation (8) satisfies the Bellman-property for finite
horizon MDPs, given by

Vπ,l(s|α∗l ) = EPi ,πi

[
τ−1

∑
j=l

γj−lri,j|si,l = s

]
(10)

= ∑
s′∈S

Pi(s′|s, a, α∗l )ri,l + EPi ,πi

[
τ−1

∑
j=l+1

γj−lri,j = s′
]

(11)

= r̄l + γ ∑
s′∈S

P(s′|s, a, α∗l )Vπ,l+1(s′|α∗l+1) (12)

where r̄l = ∑s′∈S P(s′|s, a, α∗l )rl , and a = π(s, l).
Similarly, we also define the Q-function as:

Qπ,l(s, a|α∗l ) = r̄l + γ ∑
s′∈S

P(s′|s, a, α∗l )Vπ,l+1(s′|α∗l+1) (13)

We further consider the agents are strategic and hence care only about individual
rewards. The goal of each agent is to find an optimal oblivious policy π∗, such that,

Vπ∗ ,l(s|α∗l ) ≥ Vπ,l(s|α∗l ) ∀s ∈ S , ∀l ∈ [τ]. (14)

Let α∗ = [α∗0 , · · · , α∗τ−1] ∈ [0, 1]τ×|A|, then we can define the optimal oblivious strategy:

Definition 2. The set P(α) is the set of the optimal oblivious strategies which are chosen from the
Q-function generated by α. In other words, for a given α, a policy π̄ ∈ P(α) if and only if

π̄(s, l) ∈ arg max
a

Qπ̄,l(s, a|αl)∀s ∈ S l ∈ [τ] (15)

Here, the policy π̄(s, l) is used at lth time index in an episode so that the Q-value
Qπ,l(s) is maximized for all states s ∈ S . Note that π̄(s, l) does not depend on the distribution
α∗ explicitly. Hence, it is an oblivious strategy where each agent takes its decision based on its own
observed state only. Since the reward function is bounded and γ < 1, the set P(α) is always
non-empty. However, finding the optimal action is challenging for an oblivious strategy
profile. We denote the initial population state distribution denoted by f0. We note that
as αt evolves, the population state distribution ft also evolves. After convergence, for a
time index j in any episodes, the population state distribution will converge to the limiting
population state distribution f ∗j , or

|| fkτ+j − f ∗j ||2 → 0. (16)

2.4. Stationary Mean-Field Equilibrium

Throughout this paper, we seek to compute a mean-field equilibrium and action
strategy. Thus, the action was taken by an agent only depends on its state independent
of its episode. Further, such an action profile should converge to a stationary action
distribution and state distribution. We now formally define a mean-field equilibrium.

Definition 3 ([24]). We say that Mean-Field Equilibrium (MFE) is achieved by an oblivious
strategy π̄(·), if the strategy for the players, population action, and the state distribution is such that:

• Each player i optimizes its expected discounted payoff assuming that population action distri-
bution α is fixed; i.e., it satisfies (15).

• For strategy π̄ of any player i, the fixed population action distribution α satisfies

αj(a) =
1
n ∑

s
1π̄(s′ ,j)=a p(s′|s, a, αj−1) ∀ j ∈ [τ] (17)
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We define the above as α ∈ D̂(π̄, f )
• For α and π̄, the state distribution f satisfies

f (s′j) = ∑
s

f (s)p(s′|s, π(s), αj−1) ∀ j ∈ [τ] (18)

which we denote as f ∈ D(π̄, α).

Specifically, if we fix α and each agent takes action π̄ which belongs to P(α), then
the action distribution should return to α as it is invariant under the transition probability.
Further, if we fix α and each agent takes action π̄, the state distribution should give back f .

Since the players are learning an oblivious strategy, no agent observes the states or
actions of the other agents. Also, an agent does not know the probability transition matrix, and
reward function and will try to estimate it from the past observations as described in the
next section.

3. Proposed Algorithm

In this section, we propose an algorithm, which will be shown to converge to the
mean-field equilibrium (MFE) in the following section. For each agent i, the algorithm
begins with a prior distribution g over the stochastic game with state-space set S and action
space set A and time horizon τ. The prior distribution g for modeling state transition
probability distribution is typically taken to be Dirichlet distribution [14,15].

The game is played episodes k = 0, 1, 2, · · · . The length of each episode is given by
τ. In each episode, the game is played in discrete steps, j = 0, 1, · · · , τ − 1. The episodes
begin at times tk = kτ, k = 0, 1, 2, · · · . At each time t = kτ + j, the state of the agent is given
by st, it selects an action at, and observes a scalar reward rt then transitions to the state st+1.
Let Ht = (s1, a1, r1, . . . st, at−1, rt−1) denote the history of the agent till time t.

The proposed algorithm is described in Algorithm 1. At the beginning of each episode,
the MDP,Mk is sampled from the posterior distribution conditioned on the history Htk in
Line 4. We note that the sampling of MDP only relates to the sampling of the transition
probability P and the reward distribution since the rest of the parameters are known. We
note that the algorithm doesn’t perform explicit exploration like an ε-greedy algorithm.
Instead, the algorithm samples a new MDPMk for episode k in Line 4. The Algorithm can
generate a new trajectory from the new policy [14,15] solved for the sampled MDPMk. We
assume that after some samples, αk has converged. The proposed algorithm converges as
the induced transition probability and reward function converge after αk converge.

Algorithm 1 Proposed Algorithm for Mean-Field Game with Best Response Learning Dynamics.

1: Input: Prior distribution g, time horizon τ, γ
2: Initialize H0 = φ.
3: for episodes k = 0, 1, 2, · · · do
4: SampleMk ∼ g(·|Hkτ) .
5: Obtain optimal Q forMk from Algorithm 2
6: for time steps j = 0, . . . , τ − 1 do
7: Play aj = arg maxa Qj(sj, a).
8: Observe reward rj, action of the agent aj, and next state sj+1.
9: Append action taken aj, reward obtained rj, and state update sj+1 to history

Hkτ+j+1 = Hkτ+j ∪ {aj, rj, sj+1}.

10: end for
11: end for

We use Backwards Induction algorithm [25] described in Algorithm 2 to obtain the
Q-value function for the current sampled MDP (Line 5, Algorithm 1). Backward induction
in Algorithm 2 starts from the end of the episode and calculates the potential maximum
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rewards for each state and action (Line 5). The algorithm then goes back in the episode
(Line 8), to calculate the maximum possible cumulative rewards for each state and action
in Line 11. After all the time indices in an episode are covered, the algorithm returns the
calculated optimal Q-values. We obtain the policy πk from the calculated Q-values and
the policy is not altered in an episode. Recall for a given α, a policy π ∈ P(α) if and
only if πk(s, j) ∈ arg maxa Qπk ,j(s, a|αj) for all s ∈ S and j = 0, 1, . . . , τ − 1. Let αk be the
population action distribution in episode k, then the algorithm aims to choose a policy
πk ∈ P(αk). In order to choose the policy πk from the set P(αk), we use lower myopic
learning dynamics, where at each episode we choose the strategy which is the smallest
action index in the set P(αk).

Algorithm 2 Backwards Induction Algorithm.

1: Input:M = {S ,A, P, r, τ, γ} . Sampled MDP from Algorithm 1
2: Initialize Ql(s, a) = 0 ∀ s ∈ S , a ∈ A, l ∈ [τ].
3: for state s ∈ S do
4: for state a ∈ A do
5: Update Q-value function for last action

Qτ−1(s, a) = ∑
s′∈S

P(s′|s, a)r(s, a, s′)

6: end for
7: end for
8: for time steps l = τ − 2, · · · , 0 do
9: for state s ∈ S do

10: for state a ∈ A do
11: Update Q-value function

Ql(s, a) = ∑
s′∈S

P(s′|s, a)×(
r(s, a, s′) + γ arg max

a
Ql+1(s′, a)

)
(19)

12: end for
13: end for
14: end for
15: Return: Ql(s, a) ∀ l, s, a

We note that Mk is used in the algorithm instead of M∗ where M∗, the true dis-
tribution, is not known. In order to obtain an estimate, each agent samples a transition
probability matrix according to the posterior distribution. Each agent follows the strat-
egy πk according to the Q-values over the episode. Based on the action decision by each
agent, we update the value function and the Q-function based on the obtained reward
functions which depend on the value of αk. The detailed algorithm steps can be seen in
Algorithm 1. We note that, as the algorithm converges, the value of α converges, and thus
all the transition probabilities and value functions depend on the limiting distribution.

4. Convergence Result

In this section, we’ll show that if the oblivious strategy is chosen according to the
proposed algorithm, then the oblivious strategy π and the limiting population action distri-
bution α constitutes a Mean-Field Equilibrium (MFE). More formally, we have obtained the
following–

Theorem 1. The optimal oblivious strategy obtained from Algorithm 1 and the limiting action
distribution constitute a mean-field equilibrium and the value function obtained from the algorithm
converges to the optimal value function of the true distribution.
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The rest of the section proves this result. We first note that the lower-myopic best
response strategy leads to a convergence of the action strategy following the results in [10]
for finite action space and state space. We note that there might be multiple actions that can
maximize the state-action value function. This may lead to choosing different actions at
different iterations for the same state. To avoid the oscillations between the best actions
and hence keep the policy stable, we choose a lower-myopic strategy. This lower-myopic
strategy avoids conflicts when the agents have a non-unique strategy that maximizes the
value function. Further, any way of resolving the multiple optima could be used, including
upper-myopic giving the same result. Having shown that α converges, we now proceed to
show that the converged point of the algorithm results in an MFE.

We first show the conditions needed for a policy π, a population state f , and action
distribution α to constitute an MFE (Section 4.1). Then, we show that the conditions
for the policy to be MFE given in Section 4.1 are met for any optimal oblivious strategy
(Section 4.2). Thus, the key property that is required to show the desired result is that
the proposed algorithm leads to an optimal oblivious strategy. In order to show that, we
show that the value function of the sampled distribution converges to the true distribution
(Section 4.3). The result in Section 4.3 shows that the value function iterates eventually
converge to the value function with knowledge of the true underlying distribution of
the transition probabilityM∗, thus proving that the proposed algorithm converges to an
optimal oblivious strategy which constitutes a mean-field equilibrium thus proving the
theorem.

4.1. Conditions for a Strategy to Be a MFE

In this section, we will describe the conditions for an oblivious strategy π to be a MFE.
Recall that, in Section 2.2, we defined two maps P(α) and D(π, α). For a given action
coupled stochastic game, the map P(α) for a given population action distribution α gives
the set of the optimal oblivious strategies. Further, the map D(π, α) for a given population
action distribution α and oblivious strategy π gives the set of invariant population state
distribution f .

We define the map D̂(π, f ) which gives the induced population action distribution
α induced from the oblivious strategy π and the population state distribution f . The
following lemma gives the conditions that the stochastic game constitutes a mean-field
equilibrium. These conditions have been provided in [11], and the reader is referred to [11]
for further details and proof of this result.

Lemma 1 (Definition 7 [11]). An action coupled stochastic game with the strategy π, population
state distribution f and population action distribution α constitute a mean-field equilibrium if
π ∈ P(α), f ∈ D(π, α) and α ∈ D̂(π, f ).

4.2. Conditions of Lemma 1 Are Met for Any Optimal Oblivious Strategy

In this section, we show that the conditions of Lemma 1 are met for any optimal
oblivious strategy. In the mean-field equilibrium, each agent plays according to the strategy
π ∈ P(α). If the average population action distribution is α, and each agent takes an
oblivious strategy, hence, we must have the evolution of the state space such that the
oblivious strategy on those states leads to an average action distribution of α. Since
we assume a large number of agents, including agent i’s own state will not change the
population state distribution. So, we let the average population state distribution be f j at
time index j as,

f j(s) =
1
n ∑

m∈[n]
1sm,j=s (20)
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where sm,j is the state of the agent m at time index j. Similarly, we also include agent i’s
action as well in the population action distribution α. Then, we have,

E[ f j(s)] = E

 1
n ∑

m∈[n]
1sm,j=s

 (21)

=
1
n ∑

m∈[n]
E
[
1sm,j=s

]
(22)

=
1
n ∑

m∈[n]
P
(
{sm,j = s}

)
(23)

=
1
n ∑

m∈[n]
∑

s′∈S
P
(
{sm,j−1 = s}

)
P
(
s|s′, π(s′), αj−1

)
(24)

= ∑
s′∈S

 1
n ∑

m∈[n]
P
(
{sm,j−1 = s}

)P
(
s|s′, π(s′), αj−1

)
(25)

= ∑
s′∈S

E
[

f j−1(s′)
]
P
(
s|s′, π(s′), αj−1

)
(26)

where P({sm,j = s}) is probability of agent m being in state s at time index j. Here,
Equation (24) follows from the transition probability matrix. Recursively replacing f j−1 in
Equation (26) using Equation (21) for all j ∈ [τ] gives the required result of f ∈ D(π, α).

The above statement also implies that α must satisfy

αj(a) = ∑
π−1(a,j)

f j(s) (27)

where π−1(a, j) represents the set of states s for which a ∈ π(s, j). This is equivalent to
saying that if all the agents follow the optimal oblivious strategy π ∈ P(α), then the
population state distribution f and the population action distribution α satisfy f ∈ D(π, α)
and α ∈ D̂(π, f ).

4.3. Sampling Does Not Lead to a Gap for Expected Value Function

In the last subsection, we proved that there exists an optimal oblivious strategy. We
will show that the policies generated by Algorithm 2, πk, for the sampled system dynamics
Mk in episode k by Algorithm 1 converges to the optimal oblivious policy π̄. To show
the convergence of the policy πk to π̄, we will show that the value function of the optimal
oblivious policy πk converges to the optimal value function of the true system dynamics.

We will first describe the lemmas that are used to prove the required result. We start
by stating the Azuma-Hoeffding Lemma for obtaining confidence intervals.

Lemma 2 (Azuma-Hoeffding Lemma [15]). If Yn is a zero-mean martingale with almost surely
bounded increments, |Yi − Yi−1| ≤ C, then for any δ ≥ 0 with probability at least 1− δ, Yn ≤
C
√

2n log(1/δ).

We also utilize the following result of [15] on any σ-measurable function g.

Lemma 3. If f is the distribution ofM∗ then, for any σ(Htk )-measurable function g,

E[g(M∗)|Htk ] = E[g(Mk)|Htk ]. (28)

At the start of every episode, each agent samples system dynamics from the posterior
distribution given Htk . The following result bounds the difference between the optimal
value function learned by the true distributionM∗ function using the optimal policy π∗
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which is unknown, and the optimal value function achieved by the sampled distribution
Mk from the policy πk.

Lemma 4. Let VMk
πk ,j (s|αj)) be the optimal value function for an oblivious policy πk(s, j) =

arg max
a

QMk
πk ,j(s, a|αl) for the sampled system dynamics Mk chosen form Algorithm 1. Then

VMk
πk ,j (s|αj)) converges to the optimal value function, Vπ∗ ,j(s|αj), of the true system dynamicsM∗

i.e., for all states s ∈ S as k→ ∞ with probability at least 1− δ,

VMk
πk ,j (s|αj))−Vπ∗ ,j(s|αj)→ 0 (29)

Proof. We note that since the optimal value function is a σ(Htk )-measurable, we can use
Lemma 3 to bound the difference of the optimal value functions of the sampled distribution
at episode k and the true distribution to show that for all states s ∈ S ,

E
[
Vπ∗ ,j(s|αj)−VMk

πk ,j (s|αj))
]
= 0 (30)

Note that the length of all episodes is given by τ and the support of the reward is [0, 1].
Therefore for all states s ∈ S , we have Vπ∗ ,0(s|α0)−VMk

πk ,0(s|α0)) ∈ [−τ, τ]. Note that this
condition is similar to bounded increments in Azuma-Hoeffding Lemma (Lemma 2).

Since Vπ∗ ,0(s|α0)−VMk
πk ,0(s|α0) ∈ [−τ, τ] is a zero mean martingale with respect to the

filtration {Htk : k = 1, .., m}, and satisfies the assumptions of Azuma-Hoeffding Lemma,
we obtain the result as in the statement of the Lemma. Also, for all states s ∈ S , we
have, Vπ∗ ,0(s|α0) − VMk

πk ,0(s|α0)) ∈ [−τ, τ]. So, the difference is a zero-mean martingale
and has the bounded increments property. Applying the Azuma-Hoeffding Lemma to the
martingale, we have the following result,

m

∑
k=1

(
Vπ∗ ,0(s|α0)−VMk

πk ,0(s|α0)
)
≤ τ

√
2m log(1/δ) (31)

For total time T of the algorithm, we have m = T/τ. Thus, we obtain,

m

∑
k=1

(
Vπ∗ ,0(s|α0)−VMk

πk ,0(s|α0)
)
≤ τ

√
2

T
τ

log(1/δ) (32)

=
√

2Tτ log(1/δ) (33)

Thus, for all θ > 1/2, as T → ∞, we have

∑
dT/τe
k=1

(
Vπ∗ ,0(s|α0)−VMk

πk ,0(s|α)0

)
Tθ

→ 0 (34)

Substituting θ = 1, the above expression says that τ times the average difference in an
episode which converges to zero as total time T → ∞, which gives us the convergence of
the optimal value functions of the two distributions. Thus, we have

Vπ∗ ,0(s|α0)−VMk
πk ,0(s|α0)→ 0 as k→ ∞ (35)

5. Conclusions

We consider an action-coupled stochastic game consisting of a large number of agents
where the transition probabilities are unknown to the agents. We utilize the concept of
mean-field equilibrium where each agent’s reward and the transition probability are only
impacted through the mean distribution of the actions of the other agents. When the
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number of agents grows large, the mean-field equilibrium becomes equivalent to the Nash
equilibrium. We propose a posterior sampling-based approach where each agent draws a
sample using an updated posterior distribution and selects an optimal oblivious strategy
accordingly. We show that the proposed algorithm converges to the mean-field equilibrium
without knowing the transition probabilities apriori.

This paper shows asymptotic convergence to the mean-field equilibrium while finding
the convergence rate is an interesting future direction. Further, the convergence rate in the
number of users to the mean-field limit (akin to [26], while for the mean-field game rather
than mean-field control) is an important direction.
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