Microfluidic Integration of Magnetically Functionalized Microwires for Flow Cytometry Protein Quantification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microfluidic Device
2.2. Magnetic Field Landscape
2.3. Pumping System
2.4. Bead Functionalization
2.5. ICAM-1 Standard Immunoassay
2.6. Flow Cytometry Fluorescence Quantification
2.7. Microfluidic Assay and Fluidic Protocol
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Noble, J.E.; Bailey, M.J. Quantitation of protein. Methods Enzym. 2009, 463, 73–95. [Google Scholar]
- Bantscheff, M.; Schirle, M.; Sweetman, G.; Rick, J.; Kuster, B. Quantitative mass spectrometry in proteomics: A critical review. Anal. Bioanal. Chem. 2007, 389, 1017–1031. [Google Scholar] [CrossRef] [PubMed]
- Crowther, J. The ELISA Guidebook; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Lazar, I.M.; Gulakowski, N.S.; Lazar, A.C. Protein and Proteome Measurements with Microfluidic Chips. Anal. Chem. 2020, 92, 169–182. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, J.B.; Hanson, R.L.; Almughamsi, H.M.; Pang, C.; Fish, T.R.; Woolley, A.T. Microfluidics: Innovations in Materials and Their Fabrication and Functionalization. Anal. Chem. 2020, 92, 150–168. [Google Scholar] [CrossRef] [PubMed]
- Shakeri, A.; Jarad, N.A.; Khan, S.; Didar, T.F. Bio-functionalization of microfluidic platforms made of thermoplastic materials: A review. Anal. Chim. Acta 2022, 1209, 339283. [Google Scholar] [CrossRef] [PubMed]
- Shakeri, A.; Khan, S.; Didar, T.F. Conventional and emerging strategies for the fabrication and functionalization of PDMS-based microfluidic devices. Lab Chip 2021, 21, 3053–3075. [Google Scholar] [CrossRef]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef]
- Scott, S.M.; Ali, Z. Fabrication Methods for Microfluidic Devices: An Overview. Micromachines 2021, 12, 319. [Google Scholar] [CrossRef]
- Clime, L.; Hoa, X.D.; Corneau, N.; Morton, K.J.; Luebbert, C.; Mounier, M.; Brassard, D.; Geissler, M.; Bidawid, S.; Farber, J.; et al. Microfluidic filtration and extraction of pathogens from food samples by hydrodynamic focusing and inertial lateral migration. Biomed. Microdevices 2015, 17, 17. [Google Scholar] [CrossRef]
- Geissler, M.; Brassard, D.; Clime, L.; Pilar, A.V.; Malic, L.; Daoud, J.; Barrère, V.; Luebbert, C.; Blais, B.W.; Corneau, N.; et al. Centrifugal microfluidic lab-on-a-chip system with automated sample lysis, DNA amplification and microarray hybridization for identification of enterohemorrhagic Escherichia coli culture isolates. Analyst 2020, 145, 6831–6845. [Google Scholar] [CrossRef]
- Malic, L.; Brassard, D.; Da Fonte, D.; Nassif, C.; Mounier, M.; Ponton, A.; Geissler, M.; Shiu, M.; Morton, K.J.; Veres, T. Automated sample-to-answer centrifugal microfluidic system for rapid molecular diagnostics of SARS-CoV-2. Lab Chip 2022, 22, 3157–3171. [Google Scholar] [CrossRef] [PubMed]
- Niculescu, A.-G.; Chircov, C.; Bîrcă, A.C.; Grumezescu, A.M. Fabrication and Applications of Microfluidic Devices: A Review. Int. Mol. J. Sci. 2021, 22, 2011. [Google Scholar] [CrossRef] [PubMed]
- Cai, G.; Yang, Z.; Chen, Y.C.; Huang, Y.; Liang, L.; Feng, S.; Zhao, J. Magnetic Bead Manipulation in Microfluidic Chips for Biological Application. Cyborg Bionic Syst. 2023, 4, 23. [Google Scholar] [CrossRef] [PubMed]
- Comanescu, C. Recent Advances in Surface Functionalization of Magnetic Nanoparticles. Coatings 2023, 13, 1772. [Google Scholar] [CrossRef]
- Kokalj, T.; Perez-Ruiz, E.; Lammertyn, J. Building bio-assays with magnetic particles on a digital microfluidic platform. New Biotechnol. 2015, 32, 485–503. [Google Scholar] [CrossRef]
- Seale, B.; Lam, C.; Rackus, D.G.; Chamberlain, M.D.; Liu, C.; Wheeler, A.R. Digital Microfluidics for Immunoprecipitation. Anal. Chem. 2016, 88, 10223–10230. [Google Scholar] [CrossRef]
- Malic, L.; Zhang, X.; Brassard, D.; Clime, L.; Daoud, J.; Luebbert, C.; Barrere, V.; Boutin, A.; Bidawid, S.; Farber, J.; et al. Polymer-based microfluidic chip for rapid and efficient immunomagnetic capture and release of Listeria monocytogenes. Lab Chip 2015, 15, 3994–4007. [Google Scholar] [CrossRef]
- Kanies, O.S.; Kremer, K.R.; Mason, B.M.; Dudley, M.G.; Hlavay, J.M.; Miller, C.T.; Spero, R.C.; Fisher, J.K. A modular microfluidic device that uses magnetically actuatable microposts for enhanced magnetic bead-based workflows. Lab Chip 2023, 23, 330–340. [Google Scholar] [CrossRef]
- Ramadan, Q.; Gijs, M.A.M. Microfluidic applications of functionalized magnetic particles for environmental analysis: Focus on waterborne pathogen detection. Microfluid. Nanofluid 2012, 13, 529–542. [Google Scholar] [CrossRef]
- Akhtar, A.S.; Soares, R.R.; Pinto, I.F.; Russom, A. A portable and low-cost centrifugal microfluidic platform for multiplexed colorimetric detection of protein biomarkers. Anal. Chim. Acta 2023, 1245, 340823. [Google Scholar] [CrossRef]
- Bechstein, D.J.; Lee, J.R.; Ooi, C.C.; Gani, A.W.; Kim, K.; Wilson, R.J.; Wang, S.X. High performance wash-free magnetic bioassays through microfluidically enhanced particle specificity. Sci. Rep. 2015, 5, 11693. [Google Scholar] [CrossRef] [PubMed]
- Bui, T.M.; Wiesolek, H.L.; Sumagin, R. ICAM-1: A master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J. Leukoc. Biol. 2020, 108, 787–799. [Google Scholar] [CrossRef] [PubMed]
- Chiriac, H.; Lupu, N.; Stoian, G.; Ababei, G.; Corodeanu, S.; Óvári, T.A. Ultrathin Nanocrystalline Magnetic Wires. Chrystals 2017, 4, 48. [Google Scholar] [CrossRef]
- Fonnum, G.; Johansson, C.; Molteberg, A.; Mørup, S.; Aksnes, E. Characterisation of Dynabeads® by magnetization measurements and Mössbauer spectroscopy. J. Magn. Magn. Mater. 2005, 293, 41–47. [Google Scholar] [CrossRef]
- Clime, L.; Veres, T. Dimensionality effects on the magnetisation processes in arrays of superparamagnetic nanoparticles. Int. J. Nanotechnol. 2010, 7, 58–68. [Google Scholar] [CrossRef]
- Gunawan, O.; Virgus, Y.; Tai, K.F. A parallel dipole line system. Appl. Phys. Lett. 2015, 106, 062407. [Google Scholar] [CrossRef]
- Wang, L.; Gaigalas, A.K. Development of Multicolor Flow Cytometry Calibration Standards: Assignment of Equivalent Reference Fluorophores (ERF) Unit. J. Res. Natl. Inst. Stan. 2011, 16, 671–683. [Google Scholar] [CrossRef]
- SciDavis—Scientific Data Analysis and Visualization. 2024. SciDavis Software. Version 2.7. Available online: https://sourceforge.net/projects/scidavis/ (accessed on 12 September 2024).
- Herman, R.A.; Scherer, P.N.; Shan, G. Evaluation of logistic and polynomial models for fitting sandwich-ELISA calibration curves. J. Immunol. Methods 2008, 339, 245–258. [Google Scholar] [CrossRef]
- Bevigton, P.R.; Robinson, D.K. Data Reduction and Error Analysis for the Physical Sciences; McGraw-Hill Higher Education; McGraw-Hill: New York, NY, USA, 2003. [Google Scholar]
- López-Gallego, F.; Guisán, J.M.; Betancor, L. Glutaraldehyde-Mediated Protein Immobilization, in Immobilization of Enzymes and Cells, 3rd ed.; Guisan, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2013; pp. 33–41. [Google Scholar]
- Geissler, M.; Ponton, A.; Nassif, C.; Malic, L.; Turcotte, K.; Lukic, L.; Morton, K.J.; Veres, T. Use of Polymer Micropillar Arrays as Templates for Solid-Phase Immunoassays. ACS Appl. Polym. Mater. 2022, 4, 5287–5297. [Google Scholar] [CrossRef]
- Betancor, L.; López-Gallego, F.; Hidalgo, A.; Alonso-Morales, N.; Mateo, G.D.; Fernández-Lafuente, R.; Guisán, J.M. Different mechanisms of protein immobilization on glutaraldehyde activated supports: Effect of support activation and immobilization conditions. Enzym. Microb. Technol. 2006, 39, 877–882. [Google Scholar] [CrossRef]
- Gao, S.; Guisán, J.M.; Rocha-Martin, J. Oriented immobilization of antibodies onto sensing platforms—A critical review. Anal. Chim. Acta 2022, 1189, 338907. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, B.; Le Xuan, H.; Völzke, J.L.; Weller, M.G. An efficient method for the oriented immobilization of antibodies. Methods Protoc. 2019, 2, 35. [Google Scholar] [CrossRef]
- Molloy, M.P.; Brzezinski, E.E.; Hang, J.; McDowell, M.T.; VanBogelen, R.A. Overcoming technical variation and biological variation in quantitative proteomics. Proteomics 2003, 3, 1912–1919. [Google Scholar] [CrossRef] [PubMed]
# | Step | Description | Time (min) |
---|---|---|---|
1 | Initial filling | The syringe is manually filled with wash buffer after disconnecting it from the distribution valve. Then, the syringe is reconnected and the pump set to infuse wash buffer until it exits through each of the output outlets of the microfluidic device. | 5 |
2 | Air priming | of air on each fluidic line. | 3 |
3 | Magnetic functionalization | magnetic beads functionalized against ICAM-1 are introduced manually in each microfluidic channel. After this operation is complete, the chip is installed and secured in the magnetic field applicator. | 3 |
4 | Wash #1 | of wash buffer per channel | 10 |
5 | Sample incubation | per channel) | 30 |
6 | Wash #2 | of wash buffer per channel | 10 |
7 | Detection antibody | per channel) | 30 |
8 | Wash #3 | of wash buffer per channel | 10 |
9 | Fluorescence labeling | per channel) | 15 |
10 | Wash #4 | of wash buffer per channel | 10 |
11 | Bead extraction | of wash buffer into 5 clean Eppendorf tubes. | 15 |
12 | Quantification | Perform fluorescence quantification of the samples by using the flow cytometer. | 10 |
Total microfluidic assay time (min) | 151 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clime, L.; Pavel, C.; Malic, L.; Nassif, C.; Geissler, M.; Lupu, N.; Óvári, T.-A.; Poncelet, L.; Veilleux, G.; Moslemi, E.; et al. Microfluidic Integration of Magnetically Functionalized Microwires for Flow Cytometry Protein Quantification. Materials 2025, 18, 215. https://doi.org/10.3390/ma18020215
Clime L, Pavel C, Malic L, Nassif C, Geissler M, Lupu N, Óvári T-A, Poncelet L, Veilleux G, Moslemi E, et al. Microfluidic Integration of Magnetically Functionalized Microwires for Flow Cytometry Protein Quantification. Materials. 2025; 18(2):215. https://doi.org/10.3390/ma18020215
Chicago/Turabian StyleClime, Liviu, Catalin Pavel, Lidija Malic, Christina Nassif, Matthias Geissler, Nicoleta Lupu, Tibor-Adrian Óvári, Lucas Poncelet, Gaétan Veilleux, Elham Moslemi, and et al. 2025. "Microfluidic Integration of Magnetically Functionalized Microwires for Flow Cytometry Protein Quantification" Materials 18, no. 2: 215. https://doi.org/10.3390/ma18020215
APA StyleClime, L., Pavel, C., Malic, L., Nassif, C., Geissler, M., Lupu, N., Óvári, T.-A., Poncelet, L., Veilleux, G., Moslemi, E., Hernández-Castro, J. A., Sinnett, D., Che, D., & Veres, T. (2025). Microfluidic Integration of Magnetically Functionalized Microwires for Flow Cytometry Protein Quantification. Materials, 18(2), 215. https://doi.org/10.3390/ma18020215