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Abstract: Hydraulic fracturing operations possess the capacity to induce the reactivation of faults,
increasing the risk of fault slip and seismic activity. In this study, a coupled poroelastic model
is established to characterize the distribution and movement of fluids within rock formations in
the Shangluo region of Sichuan province, China. The effect of hydraulic fracturing projects on the
variations of pore pressure and Coulomb effective stress within a high-permeability fault is analyzed.
The potential fault-slip mechanism is investigated. The results show that the fault plays different
roles for fluid movement, including the barrier, fluid transport channel, and diversion channel, which
is related to injection–production schemes. In addition, fluid injection leads to a high probability
of fault reactivation. We find that increasing the injection time and fluid injection rate can result in
larger slip distances. The injection production scenarios influence the fault-slip mechanism, resulting
in a normal fault or reverse fault. However, the arrangement of production wells around the injection
can effectively reduce the risk of fault reactivation.

Keywords: fluid–solid coupling; Coulomb failure stress; hydraulic fracturing; seismic simulation;
fault slip

1. Introduction

Shale gas, as an unconventional energy source, has gained significant attention. Re-
cently, the occurrence of fault reactivation induced by fluid injection during the stimulation
process has been widely concerning for researchers [1–3]. Previous studies highlighted
the influence of both geologic and engineering factors, such as pre-existing fractures and
hydraulic fracturing schemes, on fault slip and earthquakes [4–6]. Fault activity is deemed
to be associated with fracturing operations [7]. Slow and steady slip occurring on major
faults in the vicinity of some shale gas wells during fracturing process is observed [8,9]. Ob-
servations show that fault slip leads to casing deformation and the changes in shear stress
during fault activity are associated with seismic events [10–12]. Currently, the Shangluo
region in Sichuan has become a mature shale gas development area, where five earthquakes
with magnitudes greater than 4.0 (MW > 4.0) occurred during hydraulic fracturing opera-
tions [13,14]. The largest event (MW 4.7) took place on 28 January 2017. Significant surface
deformation due to fault reactivation was observed [15]. Understanding the mechanisms
and control measures of fault reactivation induced by hydraulic fracturing is crucial for
seismic monitoring and mitigation during shale gas exploitation.

Fault-slip events are influenced by multiple factors, such as stress state [16,17], fluid
properties [18–20], temperature [21,22], and the combined impact of various factors [23,24].
Cyclical injection and production cause stress perturbations that lead to seismic activities
around fault zones [22,25]. The maximum magnitude of seismic activities occurs during
the injection phase of the fracturing fluid. Even small stress changes during the production
flowback phase reactivate the faults and generate a large number of seismicity events [26,27].
Based on laboratory and field experiments on the permeability and frictional properties of
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faults [28], it is possible that stress changes during the fracturing process could induce fault
reactivation, leading to long-distance fault slips [29].

Numerical models for describing fault slip induced by hydraulic fracturing remain
a challenge. There are two categories of numerical methods for the simulation of rock
fracturing processes: discontinuous methods and continuous methods. The discontinuous
methods most commonly used are based on linear elastic fracture mechanics (LEFM), which
include cohesive zone models (CZM) and discrete fracture network models (DFN).

DFN is a commonly used discontinuity method. Initially, a semi-analytical numerical
model for the calculation of induced stresses along hydraulic fractures was developed [30].
The influence of fracture initiation location, fluid pressure, fracture dip, and friction factor
on fracture slip was discussed. It was found that the region of high-pressure fluid flow has a
higher risk of fault reactivation, while the fluid flows at the bottom of the fault could reduce
the fault-slip distance. In the DFN model, the effect of fault reactivation is realized by stress
perturbation. The DFN model can reflect the characteristics of fluid–solid coupling in the
shear process, where crack opening caused by fluid injection can lead to formation slip [31].
After improving the discrete fracture model, a test was conducted to demonstrate that the
method has lower computational cost and more desirable convergence performance than
the standard DFM [32]. Subsequently, to further improve the DFN model [33], both static
and dynamic induced effects were considered, which could simulate the seismic response
in a fractured rock mass. The DFN method approach can represent the injection-induced
stress perturbations and pore pressure changes well, but there are still many problems in
modelling large deformations and long-distance sliding of faults.

The method of combining continuous and discontinuous method is more widely used
for considering excessive displacement. Many researchers have used FLAC3D to simulate
hydraulic fracturing under a variety of conditions, including direct injection [5,21], staged
injection [34], and isothermal water injection [35]. The possibility of fluid injection
induced seismicity was discussed. The stress change during fracturing was explained by
considering pore pressure diffusion and poroelastic effects. By monitoring the hydraulic
behavior in the rock matrix and along the fault, it was found that the fault is more likely to
be reactivated when the shear stress is dominant. In addition, the magnitude of removing
grouting induced seismic activity is also influenced by the unequal distribution of fault-
slip time. Rocks with lower modulus show greater slip distance and seismic activity
during shear failure. Some researchers focused on the issue of fracture propagation
during fluid injection and developed a fully coupled continuous and discontinuous
method [36,37] to simulate fluid pressure and fracture propagation mode in porous media.
The results show that the conversion between fracture propagation modes depends on
the injection flow rate.

While stress perturbations within faults during hydraulic fracturing operations have
been widely investigated, the mechanisms underlying induced fault slip have not been
thoroughly studied. Moreover, predicting the trend of slip motion and understanding
the effects of injection remain crucial unresolved issues. In this study, a fully coupled
fluid–solid geomechanical model is proposed to simulate the response of a fault, and then
the seismic theory is applied to estimate the magnitude of the seismicity. Three important
factors affecting the fault slip behavior are discussed: injection time, injection rate, and
production scenarios. This research aims to provide a numerical method for assessing
induced seismic events and fault slip distance, and to clarify the mechanisms underlying
hydraulic fracturing on fault slip events.

2. Methodology
2.1. Coupled Poroelastic Model

The coupled poroelastic model describes how a saturated porous elastic medium
responds to changes in stress and pore pressure. According to this model, changes in pore
pressure could affect the pore elastic stress of the medium and, conversely, changes in stress
could affect the pore pressure [38].
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The formulation of consolidation in poroelastic media is given as follows. The dis-
placement vector u captures the deformation of the solid skeleton, and then the strain
tensor ε at a point inside the deformable medium is expressed according to the following
assumption [39]:

ε =
1
2

(
(

Energies 2024, 17, x FOR PEER REVIEW 3 of 19 
 

 

2. Methodology 
2.1. Coupled Poroelastic Model 

The coupled poroelastic model describes how a saturated porous elastic medium re-
sponds to changes in stress and pore pressure. According to this model, changes in pore 
pressure could affect the pore elastic stress of the medium and, conversely, changes in 
stress could affect the pore pressure [38]. 

The formulation of consolidation in poroelastic media is given as follows. The dis-
placement vector 𝑢 captures the deformation of the solid skeleton, and then the strain 
tensor 𝜀 at a point inside the deformable medium is expressed according to the following 
assumption [39]: 𝜀 = 12 ൫(𝛻𝑢)் + (𝛻𝑢)൯ (1)

The equilibrium condition of stress field in the deformable medium is provided 
based on the poroelastic theory:  𝛻 ∙ 𝜎 + 𝑓 = 0 (2)

where 𝑓 is the body force. The total stress tensor reads 𝜎 = 𝜎௘௫ + ℂ: (𝜀 − 𝜀௜௡௘௟), where ℂ 
is the 4th order elasticity tensor, and “:” refers to the double-dot tensor product (or double 
contraction). The elastic strain 𝜀௘௟ is the difference between the total strain 𝜀 and all in-
elastic strains 𝜀௜௡௘௟. There may also be an extra stress contribution 𝜎௘௫ with contributions 
from initial stresses and viscoelastic stresses. Therefore, Equation (2) is rewritten as  𝛻 ∙ (𝜎௘௫ + ℂ: (𝜀 − 𝜀௜௡௘௟)) + 𝑓 = 0 (3)

The constitutive equations for a saturated fluid-filled porous elastic medium can be 
expressed as [38,40] 𝐺𝛻ଶ𝑢 + 𝐺1 − 2𝑣 𝛻𝜀௩௢௟ − 𝛼஻𝛻𝑝 = 0 (4)

where 𝐺  is the shear modulus, 𝑢  is the velocity field, 𝑣  is Poisson’s ratio, 𝜀௩௢௟  is the 
volumetric strain, 𝛼஻ is the Biot coefficient, and ∇𝑝 is the applied pressure gradient. 

The pore fluid mass conservation equation can be expressed with [41] ∂∂t ൫𝜀௣𝜌௙൯ + 𝛻 ∙ ൫𝜌𝑢௣൯ = 𝑄௠ (5)
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Therefore, the mass conservation equation is eventually rewritten as 

u)T + (
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The equilibrium condition of stress field in the deformable medium is provided based
on the poroelastic theory:
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·σ + f = 0 (2)

where f is the body force. The total stress tensor reads σ = σex +C : (ε− εinel), where C is
the 4th order elasticity tensor, and “:” refers to the double-dot tensor product (or double
contraction). The elastic strain εel is the difference between the total strain ε and all inelastic
strains εinel . There may also be an extra stress contribution σex with contributions from
initial stresses and viscoelastic stresses. Therefore, Equation (2) is rewritten as
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fined as the weighted compressibility of both [42], which can be calculated from Equation 
(3): 𝑆 = 𝜀௣𝜒௙ + 𝜕𝜀௣𝜕𝑝  (6)
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p = 0 (4)

where G is the shear modulus, u is the velocity field, v is Poisson’s ratio, εvol is the volumet-
ric strain, αB is the Biot coefficient, and
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p is the applied pressure gradient.
The pore fluid mass conservation equation can be expressed with [41]

∂

∂t

(
εpρ f

)
+
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·
(
ρup

)
= Qm (5)

where ρ f is fluid density, εp is the medium’s porosity, and Qm is the fluid mass source. To
account for the coupling between fluid and solid fields, the storage coefficient S is defined
as the weighted compressibility of both [42], which can be calculated from Equation (3):

S = εpχ f +
∂εp

∂p
(6)

∂

∂t
(
εpρ

)
= ρS

∂p
∂t

(7)

Fluid flow in a porous elastic medium is described with Darcy’s law. The velocity of
the flow in the flow field is calculated with

up = − k
µ

(
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p + ρ f g
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D
)

(8)

where up is the Darcy’s velocity, k is the permeability of the medium, µ is the fluid viscosity,
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D is the difference in elevation.
Therefore, the mass conservation equation is eventually rewritten as

ρ f S
∂p
∂t

+
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D
)]

= Qm − ρ f αB
∂

∂t
εvol (9)

Assuming that the fluid flow process is a saturated flow process, the flow equations
specified by Darcy’s law are satisfied. To ensure accuracy, substantial grid refinement is
required in the vicinity of interfaces with rapidly changing permeability, such as between
faults and cap rocks. Failure to meet the accuracy requirements of mesh discretization may
result in anomalous pore pressure oscillations and reduced convergence rates.
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2.2. Strain–Permeability Model

This study utilizes a function based on porosity and volumetric strain to express the
permeability variation in the model. In addition, the approach proposed by Cappa and
Rutqvist [43] is used to represent the permeability of fracture zones, which links fracture
aperture and fracture spacing:

k =
b3

12s
(10)

where k is the permeability of fault, b is the pore diameter, and s is the fracture width. The
permeability is affected by both tensile and shear fracturing, which adds to the initial fault
permeability. Rutqvist et al. (2013) [44] used the permeability variation model that took into
account the plastic strain along a fault, which is positively correlated with the fault plane:

k = k0 + k f = k0 + A
(
εn − εt

n
)3 (11)

where k0 is the initial permeability of fault, A is the constant, and εt
n is the threshold strain,

which represents the strain at the moment when the fault first starts to slip. This study uses
εt

n = 1 × 10−4 and A = 1 × 10−5, indicating a potential increase in permeability by three
orders of magnitude. This permeability variation is significant compared to the initial fault
permeability. As the fractures propagate, pressure diffuses rapidly within the rock mass.

2.3. Coulomb Failure Stress Changes

The Coulomb failure envelope can be estimated based on the rock strength properties,
such as the friction angle, cohesion, and tensile strength. Before injection, faults are
commonly in either a critical or stable stress condition (Figure 1a). However, the significant
change in pore pressure caused by the injection of water can induce the reactivation of the
fault (Figure 1b). When the pressure of fluid injection reaches a certain level, it can cause slip
(shear failure) by exceeding the failure envelope [45]. Figure 1c illustrates the contraction
of the Mohr circle, where the change in the vertical principal stress is determined by
the variations in applied load pressure and the Biot coefficient, while the change in the
horizontal principal stress is related to the rock’s Poisson’s ratio [21,46,47]. In this situation,
the hydraulic fracture does not directly contact the fault, but the rock is elastically deformed
during injection. This change in the local stress field near the fault can activate the fault, as
shown in Figure 1c, where the Mohr circle approaches the Coulomb failure envelope.
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By utilizing the updated stress state, the evolution of Coulomb failure stress (∆CFS)
during the injection and production processes can be obtained [48] with

∆CFS = ∆τ − ∆σ′n = (∆τ − µs∆σn) + µs∆Pp (12)

σn =
1
2
(σ1 + σ3)−

1
2
(σ1 − σ3)cos(2β) (13)

σ′n = σn − Pp (14)

τ =
1
2
(σ1 − σ3)sin(2β) (15)

where τ is the shear stress, σn is the total normal stress, µs is the coefficient of static friction,
and Pp is the pore pressure. The Coulomb failure criterion relates the frictional strength of
the fault to two factors: (1) the Terzaghi effective stress (σn − Pp) and (2) the coefficient of
static friction, µs, which is commonly assumed to range between 0.6 and 0.8. It is assumed
that the frictional properties along the fault plane are homogeneous and the representative
value of the static friction coefficient, µs, is taken as 0.6.

3. Numerical Model
3.1. Geologic Model and Boundary Conditions

The study area is located in the Shangluo region of Sichuan province, China. A
finite element model was established to simulate the injection process with COMSOL
Multiphysics 6.0. The model has a length of 24,000 m and a height of 12,000 m, as shown
in Figure 2. Three different distances between the injection well and the fault were set,
as shown in Figure 3a: (a) d = 150 m, (b) d = 450 m, and (c) d = 750 m. To investigate the
influence of injection/production schemes on fault slip, three different configurations were
set in the simulations: (1) case 1 with two injection wells; (2) case 2 with one injection well
located on the hanging wall of the fault and one production well located on the footwall of
the fault; and (3) case 3 with one injection well located on the footwall of the fault and one
production well located on the hanging wall of the fault (Figure 3b). Note that the spacing
D between two wells in each case is fixed at 1500 m.
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Figure 2. Two-dimensional geological model of the study area. T1, P, Z, and Pt2-3 represent limestone
formation, and S represents shale reservoir.

The sedimentary sequence of the study area consists of a dense, low-permeability
limestone caprock, a shale reservoir and a fault. The material properties are presented in
Table 1 [49]. The hydraulic fracturing target is the Longmaxi shale formation, which is
buried at a depth of approximately 2.7 to 3 km. The reservoir has a thickness of approxi-
mately 200 m and is restricted by adjacent layers with very low porosity and permeability.
The fault, which has a dip angle of 80◦, is 40 m thick. It is commonly characterized as
comprising a fault core and the surrounding damage zone [50–52].



Energies 2024, 17, 1614 6 of 18

Energies 2024, 17, x FOR PEER REVIEW 6 of 20 
 

 

Table 1. Material properties used in the models. 

Category Limestone Shale Fault 
Young’s Modulus 𝐸/GPa 47.1 26.2 5 

Poisson ratio 𝜈 0.12 0.2 0.25 
Porosity 𝜀௣ 0.015 0.025 0.04 

Permeability k/mଶ 1.00 × 10−19 3.00 × 10−17 2.35 × 10−14 
Cohesive force 𝑐/MPa 30.4 16.2 0 

Internal friction angle 𝜑/° 46.2 36.2 31 
Rock density 𝜌௦/(kg/mଷ) 2700 2700 2700 
Fluid density 𝜌௙/(kg/mଷ) 1050 1050 1050 

Biot coefficient 𝛼஻ 0.8 0.8 0.8 

 
Figure 2. Two-dimensional geological model of the study area. Tଵ, P, Z, and Pt2-3 represent lime-
stone formation, and S represents shale reservoir. 

 
Figure 3. Schematic representation of the injection/production schemes: (a) three different distances 
between the injection well and the fault, where the spacing D between two wells in each case is fixed 
at 1500 m; (b) three injection/production scenarios used in the simulations. 

3.2. Boundary Condition and Parameter Setting 
The solid mechanics equations are subject to roller support boundary conditions on 

both the left and right sides of the model. The bottom boundary is fixed, while the top 
boundary is free. Regarding the fluid flow equations, a non-flow boundary condition is 
set at the bottom of the model, where the normal component of velocity is zero. To ensure 
a uniform pressure distribution along the fault, it is important to have a sufficiently wide 
domain width. The injection and production processes are simulated using well boundary 
conditions, with injection and production rates of 15 m3/h and a total simulation time of 
50 h. A finite element mesh is generated using the free triangular grid method. 
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Table 1. Material properties used in the models.

Category Limestone Shale Fault

Young’s Modulus E/GPa 47.1 26.2 5
Poisson ratio ν 0.12 0.2 0.25

Porosity εp 0.015 0.025 0.04
Permeability k/m2 1.00 × 10−19 3.00 × 10−17 2.35 × 10−14

Cohesive force c/MPa 30.4 16.2 0
Internal friction angle ϕ/◦ 46.2 36.2 31
Rock density ρs/

(
kg/m3) 2700 2700 2700

Fluid density ρ f /
(
kg/m3) 1050 1050 1050

Biot coefficient αB 0.8 0.8 0.8

3.2. Boundary Condition and Parameter Setting

The solid mechanics equations are subject to roller support boundary conditions on
both the left and right sides of the model. The bottom boundary is fixed, while the top
boundary is free. Regarding the fluid flow equations, a non-flow boundary condition is set
at the bottom of the model, where the normal component of velocity is zero. To ensure a
uniform pressure distribution along the fault, it is important to have a sufficiently wide
domain width. The injection and production processes are simulated using well boundary
conditions, with injection and production rates of 15 m3/h and a total simulation time of
50 h. A finite element mesh is generated using the free triangular grid method.

To replicate the in situ stress conditions in the study area, the model is initialized with
the following steps:

(1) Effective stress initialization: The initial stress state input for the solid mechanics
calculations is pore pressure, which represents pre-existing stress conditions.

(2) To prevent the calculation of induced slip from being affected by settlement effects, it
is necessary to apply the stress state induced by gravity settlement to the undeformed
model. This can be achieved by performing two iterations of steady-state calculations,
using the results from the first iteration as the starting point for the second iteration.
This iterative process helps ensure convergence of the calculation and eliminates the
influence of settlement displacement on simulation results.
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By following these initialization steps, the model aims to capture realistic stress conditions
and reduce the impact of settlement displacement on the calculation of induced slip.

3.3. Verification

To verify the model, we compare the numerical and analytical solutions of pore pres-
sure distribution after injection using Darcy’s law and Biot’s theory. The computational
model is depicted in Figure 4, using the same boundary conditions and material prop-
erties as the geological model. Figure 5a shows the comparison between the numerical
and analytical solutions for the maximum pore pressure. The numerical solution yields
a value of 7.07 MPa, while the analytical solution yields a value of 6.71 MPa. Figure 5b
presents the distribution of pore pressure at the boundary of the model obtained with the
analytic and numerical solutions. The numerical model considers the enhanced perme-
ability caused by the injection, allowing fluid pressure to diffuse more smoothly than the
analytical solution. Both approaches exhibit excellent agreement, validating the reliability
of the numerical simulation.
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4. Results
4.1. Effect of Injection on Fluid Distribution
4.1.1. Pore Pressure Distribution

Figure 6 shows the pore pressure distribution in the model. High pore pressure initially
appears around the injection well. Once the fluid encounters a fault, it rapidly flows along
the fault, while a small amount of the fluid diffuses into the surrounding cap rock. When
the fluid reaches the ground (see Figure 6c), the pore pressure rapidly diffuses along the
fault to the deeper layer of the formation. At the end of the simulation, the fault is filled
with fluid and the pore pressure remains stable. The fluid is stored in the fault, creating a
high-pressure fluid state along it.
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4.1.2. Evolution of Pore Pressure along the Fault

Figure 7 shows the pore pressure distribution along the fault. When d = 150 m,
pore pressure diffusion along the fault is relatively slow during the pre-injection period
(t = 0–9.5 h), as shown in Figure 7a. As the pore pressure within the fault reaches its peak at
t = 12 h, the fluid rapidly transports along the fault [43,53]. It can be seen that a high pore
pressure appears about 3000 m below the surface at t = 30 h. At the end of the simulation,
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the high-pressure fluid fills the entire fault and then the pore pressure inside the fault
remains relatively stable, always slightly lower than the peak pressure inside the fault.
When the injection well is far away from the fault (d = 750 m), the distribution characteristics
of the pore pressure show similar features. In the pre-injection period, the fluid flow occurs
mainly within the reservoir; thus, the pore pressure within the fault is significantly lower
than that in the case of d = 150 m.
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Figure 8 shows the pore pressure distribution along the fault at t = 50 h for different
injection and production scenarios. When the injection well and the production well is
set in the simulation, the pore pressure in the fault significantly reduces, and, in some
cases, negative pore pressure even occurs. As shown in Figure 9, the distance between
the production well and the fault significantly affects fluid distribution characteristics
inside the fault. In case 2, where the production well is located far away from the fault,
the fault acts as a conduit due to its high permeability, and fluid within the fault flows
rapidly towards the production well. As a result, the pore pressure within the fault is
significantly lower than that in case 1. However, if the production well is close to the
fault (case 3), the presence of the production well prevents the increase in pore pressure
within the fault. The production well, being close to the fault, first establishes hydraulic
connectivity. Then, fluid in the surrounding rock formations is rapidly drawn in by the
well. In this situation, the fault acts as a barrier for fluid flow, resulting in less noticeable
pressure changes within the fault.

Energies 2024, 17, x FOR PEER REVIEW 10 of 20 
 

 

  
(a) (b) 

Figure 7. Variation of pore pressure along the fault with time: (a) d = 150 m; (b) d = 750 m. 

Figure 8 shows the pore pressure distribution along the fault at t = 50 h for different 
injection and production scenarios. When the injection well and the production well is set 
in the simulation, the pore pressure in the fault significantly reduces, and, in some cases, 
negative pore pressure even occurs. As shown in Figure 9, the distance between the pro-
duction well and the fault significantly affects fluid distribution characteristics inside the 
fault. In case 2, where the production well is located far away from the fault, the fault acts 
as a conduit due to its high permeability, and fluid within the fault flows rapidly towards 
the production well. As a result, the pore pressure within the fault is significantly lower 
than that in case 1. However, if the production well is close to the fault (case 3), the pres-
ence of the production well prevents the increase in pore pressure within the fault. The 
production well, being close to the fault, first establishes hydraulic connectivity. Then, 
fluid in the surrounding rock formations is rapidly drawn in by the well. In this situation, 
the fault acts as a barrier for fluid flow, resulting in less noticeable pressure changes within 
the fault. 

 
Figure 8. Pore pressure distribution along the fault at t = 50 h for different scenarios. Figure 8. Pore pressure distribution along the fault at t = 50 h for different scenarios.



Energies 2024, 17, 1614 10 of 18Energies 2024, 17, x FOR PEER REVIEW 11 of 20 
 

 

  
(a) case 1 (b) case 2 

 
(c) case 3 

Figure 9. Pore pressure distribution for different injection–production scenarios when d = 150 m: (a) 
case 1, (b) case 2 and (c) case 3. 

4.2. Coulomb Failure Stress (∆CFS) 
Injection activities can significantly affect fault stability by generating high pore pres-

sures along the fault. Previous research suggests that the fault could be unstable and acti-
vated when the Coulomb failure stress exceeds 0.05–0.2 MPa [2,25]. In the simulations, 
two different injection locations and three different injection schemes are considered (Fig-
ure 10). 

When d = 150 m, the pore pressure within the fault is much higher for case 1 than 
other cases (Figure 10a). In case 1, high Coulomb failure stress occurs within the fault, 
mostly larger than 1 MPa, indicating that the fault is in a relatively active state. In case 2, 
where the production well is located far away from the fault, there is a significant reduc-
tion in the Coulomb failure stress, which is reduced by approximately 30% compared to 
case 1. The activated region in case 2 is located at the base of the fault. In case 3, where the 
production well is at the proximal end of the fault, most of the area on the fault is close to 
the activation state, which is prone to induce slip. 

When d = 750 m, the activation region of the fault is much smaller than that for d = 
150 m. In case 1, the value of ΔCFS is low and the possibility of fault slip is small. As shown 
in Figure 10b, for cases 2 and 3, it is only at the tip of the fluid flow that there is a higher 

Figure 9. Pore pressure distribution for different injection–production scenarios when d = 150 m:
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4.2. Coulomb Failure Stress (∆CFS)

Injection activities can significantly affect fault stability by generating high pore pres-
sures along the fault. Previous research suggests that the fault could be unstable and
activated when the Coulomb failure stress exceeds 0.05–0.2 MPa [2,25]. In the simula-
tions, two different injection locations and three different injection schemes are considered
(Figure 10).

When d = 150 m, the pore pressure within the fault is much higher for case 1 than other
cases (Figure 10a). In case 1, high Coulomb failure stress occurs within the fault, mostly
larger than 1 MPa, indicating that the fault is in a relatively active state. In case 2, where
the production well is located far away from the fault, there is a significant reduction in the
Coulomb failure stress, which is reduced by approximately 30% compared to case 1. The
activated region in case 2 is located at the base of the fault. In case 3, where the production
well is at the proximal end of the fault, most of the area on the fault is close to the activation
state, which is prone to induce slip.
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When d = 750 m, the activation region of the fault is much smaller than that for d = 150 m.
In case 1, the value of ∆CFS is low and the possibility of fault slip is small. As shown in
Figure 10b, for cases 2 and 3, it is only at the tip of the fluid flow that there is a higher risk of
fault activation. The fluid-filled region returns to a relatively stable stress state. The injection
and production scheme helps to reduce the possibility of fault activation.

Figure 11 illustrates the distribution of Coulomb failure stresses at different stages
of fluid injection for d = 150 m. The plot shows that the Coulomb failure stress changes
primarily along the wellbore, the fracture zone, and the fault. Fracturing creates a failure
zone that facilitates fluid redistribution. The high-pressure fluid in the zone continues to
flow, redistributing pore pressure from high-pressure to low-pressure areas. High-pressure
injection causes deformation of the rock, maintaining relatively high pore pressure within
the reservoir and the fault. The pore pressure stored in the fault also causes the fault to
remain at a high ∆CFS level.
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4.3. Induced Seismic Events

Fault reactivation caused by hydraulic fracturing is one potential factor contributing
to seismic activity. When the Coulomb stress on both sides of a fault reaches a critical level,
seismic activity could be induced, such as in Harrison County and Poland Township in
Ohio [38,54], Alberta [55], and Pohang [5]. Since shale gas development began in 2012, the
number of seismic events in Shangluo City has increased significantly. Several earthquakes
exceeded the magnitude of 3. The sources of induced seismicity are usually located near
the injection position, which is typically around 2 to 3 km. Injection-induced seismicity has
certain characteristics compared to natural earthquakes, such as higher source intensity
and shallower source depth.

4.3.1. Calculation of Seismic Slip Events

Seismic events can be estimated based on the shear displacement and material proper-
ties. As shown in Figure 12, the vertices of the mesh triangles serve as the nodes at which
events occur. Each node has an associated area of influence, which is defined as one third
of the total area of all surrounding triangles. The seismic moment can be calculated with

M0 = GAd (16)

where G is the shear modulus, A is the total area of sliding nodes in an earthquake event,
and d is the average value of plastic slip of all slip nodes.
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Figure 12. Seismic event estimation method.

Equation (16) only considers shear failure and ignores seismic events caused by tensile
failure. It may overestimate the proportion of large seismic events in the model, as some
slip behavior does not result in seismic activity. Therefore, only the nodes that experience
seismic slip should be counted as seismic events. Each node is treated as an individual
event with a radius of R. Slip nodes within this range can be calculated as part of the same
event; otherwise, they are considered to be separate events.

The moment magnitude can be calculated with [44]

Mw =
2
3

log10M0 − 9.1 (17)

Injection-induced fault activity can be classified into three categories on the basis of
slip velocity: creep and slow slip, aseismic slip, and seismic slip [3]. In this study, slip nodes
are considered to be seismic slip only if they satisfy two conditions: (1) the Coulomb failure
stress is greater than 0.2 MP, and (2) the slip velocity is greater than 0.2 mm/s. The ∆CFS
threshold guarantees that rock failure occurs within the defined area, while the critical
velocity threshold prevents slow creep and aseismic slip [27,56].
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4.3.2. Distribution of Seismic Slip Events

Figure 13 presents simulated seismic events caused by fluid injections. The results
show a similarity between the distribution of seismic events and that of pore pressure.
During the initial stage of injection, the magnitude of seismic events is relatively small
(mostly smaller than 2). Typically, micro-seismic events are first observed near the
injection well after 4–6 h of injection. However, there is a significant increase in seismic
activity after a period of fluid injection as the fluid enters the fault. The majority of these
events are earthquakes with Mw = 2–3, but some can even reach Mw > 4. Seismic activity
first occurs near the injection well and then spreads to both sides of the fault. Seismic
events occur at the interface between the reservoir and the caprock due to differences in
material properties. The reservoir rock is subject to damage due to high-pressure fluid.
In contrast, the hydraulic transformation of caprock with low permeability and good
rock properties is negligible, resulting in a significant velocity difference of deformation
at the reservoir/caprock interface. As a result, seismic events are mostly concentrated at
the interface.
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associated seismic events after 20 h of fluid injection; (c) the distribution of seismic events after 50 h
of fluid injection.

5. Discussion
5.1. Effects of Injection on Formation Deformation

When the fracturing fluid is injected into the target reservoir, it will inevitably
produce pore pressure accumulation, effective stress change, and reservoir deforma-
tion [58,59]. To prevent the deformation of the reservoir from being transmitted to the
surface and causing damage to ground facilities, it is necessary to consider the ground
uplift caused by the injection of fracturing fluid. Under the influence of high-pressure
fluid injection, the rock mass above the reservoir deforms, causing an upward move-
ment [60]. Figure 14 shows that displacement mainly concentrates near the injection well
and the high-permeability fault.
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5.2. Fault Slip
5.2.1. Effect of Injection Time

Figure 15 shows the variation in fault slip with time. At the beginning, slippage is
small. At t = 40 h, a significant upward shift occurs. At the end of the simulation, the fault
is fully filled with fluid and there is relatively stable slippage between the upper and lower
walls of the fault, indicating a trend of reverse fault slippage. With a maximum distance of
slippage of about 0.14 m, the slip near the surface is greater than that in the deep rock layer.
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5.2.2. Effect of Injection Rate

Injection rate is a crucial factor that affects the efficiency of hydraulic fracturing and
directly impacts the extent of reservoir stimulation. Higher injection pressure often results
in better reservoir modification. However, it also increases the probability of induced fault
slip. Figure 16 shows that the effect of injection rate on the fault is not significant when the
injection rate is less than 7.5 m3/h. As the injection rate increases, the affected area within
the fault expands noticeably. Due to the injection well’s proximity to the hanging wall
of the fault, the hanging wall experiences larger relative displacements compared to the
footwall. When the injection rate is 22.5 m3/h, the slippage increases by approximately 25%.
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Therefore, an appropriate reduction in the injection rate could minimize the occurrence of
fault slip without significantly compromising the effectiveness of reservoir modification.
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5.2.3. Effect of Injection–Production Schemes

Figure 17a shows the impact of injection–production schemes on slip mechanisms.
For the cases with d = 150 m and 450 m, where the injection well is closer to the fault,
a significant velocity component on the hanging wall results in a reverse fault-slip state.
When the distance of the two injection wells to the fault is the same (d = 750 m), the injection
on the footwall is dominant, facilitating fluid flow towards the lower portion of the fault.
The hanging wall rock mass undergoes downward sliding, resulting in a negative slip
difference, which indicates a normal fault behavior.
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Figure 17. Slippage along the fault for (a) different spacing between the wells and the fault, and (b)
different production scenarios.

(1) Case 1 with two injection wells; (2) case 2 with one injection well located on the
hanging wall of the fault and one production well located on the footwall of the fault; and
(3) case 3 with one injection well located on the footwall of the fault and one production
well located on the hanging wall of the fault.

For cases 2 and 3, where one injection well and one production well are set, slip
distance of −0.38 m and −0.31 m occurs, respectively (Figure 17b). If the production
well is far from the fault (case 2), the fault is in a conduit state and most of the fluid
migrates through the fault to the production well. This weakens the movement trend of the
hanging wall of the fault. When the production well is located close to the fault (case 3), the
surrounding rock mass contracts towards the well, resulting in a relatively slow movement
rate. In summary, due to the presence of the production well, the hanging wall motion
component is reduced, resulting in a normal fault-slip mechanism.
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6. Conclusions

This study presents a fully coupled numerical investigation of seismic events and
fault-slip mechanisms in the Shangluo region of Sichuan province, China. The distribution
of fluid pressure and Coulomb failure stress was simulated using FEM. The findings are
listed as follows:

(1) High-permeability faults display three distinct behaviors under different production
schemes: barrier, fluid transport channel, and conduit channel. The faults act as
conduits in the absence of producing wells. Where the production well is located far
away from the fault, the fault acts as a conduit channel. If the production well is close
to the fault, the fault acts as a barrier for fluid flow.

(2) The migration of high-pressure fluid in the formation is closely related to the degree
of rock fracturing. This leads to most of the area on the fault close to the activation
state. As the fluid distribution within the fault rock mass tends to be stable, the fault
can return to a relatively stable stress state.

(3) The results show that the displacement mainly occurs near the injection well and the
fault. The production time and injection rate affect the distance of fault slip, and the
fault slip near the surface is greater than in other places. The injection production
scenarios could influence the fault-slip mechanism, resulting in a normal fault or
reverse fault.

These results could help to understand seismic events and fault behavior in the
Shangluo region and provide valuable insights for reservoir stimulations and seismic
hazard assessments in similar geological settings.
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