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Abstract: Transformer-based time series forecasting models use patch tokens for temporal patterns
and variate tokens to learn covariates’ dependencies. While patch tokens inherently facilitate self-
supervised learning, variate tokens are more suitable for linear forecasters as they help to mitigate
distribution drift. However, the use of variate tokens prohibits masked model pretraining, as masking
an entire series is absurd. To close this gap, we propose LSPatch-T (Long–Short Patch Transfer), a
framework that transfers knowledge from short-length patch tokens into full-length variate tokens.
A key implementation is that we selectively transfer a portion of the Transformer encoder to ensure
the linear design of the downstream model. Additionally, we introduce a robust frequency loss
to maintain consistency across different temporal ranges. The experimental results show that our
approach outperforms Transformer-based baselines (Transformer, Informer, Crossformer, Autoformer,
PatchTST, iTransformer) on three public datasets (ETT, Exchange, Weather), which is a promising
step forward in generalizing time series forecasting models.

Keywords: multivariate time series forecasting; transfer learning; frequency analysis

1. Introduction

Time series data are created by performing sequential observations over time. However,
a single time step in a time series lacks semantic meaning. Instead, temporal information—
which encapsulates properties like continuity, periodicity, and trends—provides a deeper
reflection of the underlying dynamics in time series. Nevertheless, real-world time series often
involve intricate and overlapping temporal patterns, making it difficult to uncover the hidden
dependencies and particularly challenging to model temporal variation.

While one-dimensional convolution kernels have been widely studied for their ability
to capture temporal patterns in time series [1–4], they are inherently limited to modeling
variations between adjacent time points. A common remedy is to expand the receptive
field using global self-attention across temporal tokens, which has demonstrated notable
improvements [5–7]. These temporal tokens, formed by multiple variates at the same
timestamp, can be rolled into patch tokens by increasing the time dimension consecutively.
However, while this method addresses the local constraints, it still struggles to maintain
the multivariate correlations due to time-unaligned events. Recent research [8] takes an
inverted approach by applying channel independence, introducing variate tokens that
embed entire individual series into single tokens. This enables self-attention to effectively
model covariates dependency. Figure 1 illustrates fundamental difference in constructing
temporal, patch and variate tokens.
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Figure 1. Tokenizations for multivariate time series (3 variables in red, green and blue) in different
views: (a) temporal token, (b) variate token, and (c) patch token. One can obtain a new view from
another by basic transformations such as roll/unroll, channel split/merge, and concatenate/segment.

Dependencies in time series arise either from data that are synchronously sampled
at regular intervals or asynchronously sampled at varying points. The asynchronous
nature of multivariate time series forecasting (MTSF) poses challenges due to potential
delays and distinct physical measurements [9]. These issues make channel dependence
less effective at capturing variate-centric representations. Therefore, modern MTSF models
favor the channel independence approach [6,10], treating each multivariate time series
as independent univariate series. This approach avoids the need to learn cross-variable
relationships [8], allowing the model to focus solely on temporal information. This results
in faster convergence and noise robustness, as noisy channels remain isolated in their own
embeddings rather than contaminating others.

Furthermore, the success of recent time series forecasting models can be partly at-
tributed to self-supervised learning, where a pretext task extracts high-level abstract rep-
resentations and the learned weights will be transferred to downstream tasks [11–16].
Notably, PatchTST [6] has demonstrated that mask modeling on patch tokens significantly
improves performance across various datasets. However, with variate tokens, direct ap-
plication of mask signal modeling [17,18] is impractical, as masking an entire univariate
sequence lacks meaning.

In this paper, we address this challenge by proposing LSPatch-T (Long–Short Patch
Transferring). The novelty of this framework lies in its ability to enable a model that has
been pretrained on short patch tokens to be transferable to full-length variate tokens for
multivariate time series forecasting—an area that has not been explored previously. We
contribute to the field in two aspects of modeling:

• Partial transfer learning: We examine the transferability of short patch tokens that
generalize to longer lookback windows. In a trivial case, a whole series-variate token
can be attained by concatenating all sub-series. These full-length variate tokens are
then used for downstream forecasting, as they benefit from linear mapping, ensuring
causality and mitigating distribution shifts between the historical and forecasting
horizons. To achieve this, we transfer only a portion of the Transformer encoder to the
downstream model, which is built of multi-layer perceptions (MLPs).
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• Spectrum analysis-based loss function: In the frequency domain, a complex time
series signal can be decomposed into distinct components. Low-frequency compo-
nents capture slow-moving trends, while high-frequency components reflect rapid
fluctuations or noise. We leverage frequency loss to ensure consistent representations
between long and short patches, aligning with the low- and high-frequency bands.

2. Related Work
2.1. Transformers in Time Series Forecasting

Transformer [19] has gained attention for its outstanding performance in time series
forecasting. Ongoing research in this area explores various innovations, such as developing
new attention mechanisms and introducing intervention tokens to enhance model inputs.
While recent work on MLP-based models has questioned the necessity of Transformers [20],
they still excel in capturing long-range dependencies in sequential data, making them a
robust choice for time series modeling. Additionally, a comprehensive theoretical study [21]
demonstrated that Transformers are universal approximators of sequence-to-sequence
functions, further justifying their use in time series forecasting beyond empirical results.

The point-wise dot-product self-attention in the vanilla Transformer suffers from
quadratic complexity O(L2), limiting its ability to model long sequences. A number of effi-
cient Transformer variants have been developed to reduce this complexity, often lowering
it to O(L log L) by introducing sparsity biases [22–24] or approximating the self-attention
matrix with a lower order [25,26]. LogSparse [22] addresses the locality-agnostic lim-
itation by employing convolutional self-attention, where causal convolutions generate
queries and keys, while Informer [26] introduces sparse attention by selecting dominant
queries based on their compatible keys. Autoformer [24] employs auto-correlation-based at-
tention to discover dependencies and aggregate representations at the sub-series level.
FEDformer [25] applies attention in the frequency domain to analyze seasonal trend
profiles in time series, achieving linear complexity by randomly selecting a fixed-size
subset of frequencies. The success of Autoformer and FEDformer has sparked grow-
ing interest in exploring self-attention mechanisms in the frequency domain for time
series modeling [27,28].

The aforementioned works primarily focus on univariate time series forecasting,
which limits their applicability to real-world datasets that typically involve multivariate
data. To address this, Crossformer [5] embeds both the time and variate dimensions
into segments of a 2D array and introduces a two-stage attention mechanism to capture
dependencies across both dimensions. Two close yet complementary models, PatchTST [6]
and iTransformer [8], embody distinct approaches to multivariate time series forecasting—
one based on patch tokens and the other on variate tokens. PatchTST uses a sub-series-level
patch design, where time series are segmented into patches that serve as input tokens to
the Transformer. In contrast, iTransformer treats each univariate series as a token, with self-
attention capturing multivariate correlations and a feed-forward network learning global
representations across series [29]. Both architectures emphasize the growing trend toward
channel independence [10], where each channel represents a single univariate time series,
sharing the same embedding across all series. Acknowledging the strengths of Transformer-
based architectures in multivariate time series (MTS) forecasting—particularly in sub-series
patching and channel independence—this work advances the field by bridging the design
of patch tokens and variate tokens, proposing a transferring mechanism among them.

2.2. Learning Transferable Time Series Representation

Transfer learning in time series enables the learning of generalizable representations
across multiple levels, including time embedding and structural latent spaces. Time2Vec [15]
provides a model-agnostic vector representation for time embedding, effectively captur-
ing both periodic and non-periodic patterns, while remaining invariant to time rescaling.
Its simplicity allows it to seamlessly integrate with a wide range of models, making it a
versatile tool in time series analysis.



Energies 2024, 17, 6452 4 of 17

In terms of learning structure, TS2Vec [16] employs contrastive learning in a hierarchi-
cal manner over augmented context views, distinguishing between positive and negative
samples across both instance-wise and temporal dimensions. However, the augmentation
strategies used in contrastive learning can introduce distortions to time series data. Addi-
tionally, forecasting can be seen as a form of denoising autoencoder, where future values
are masked and then reconstructed. To leverage this concept, Ti-MAE [12] and PatchTST [6]
adopt a strategy in which randomly masked sub-series are predicted during the upstream
task. TempSSL [11] and SimMTM [30] combines contrastive learning on historical against
target horizons and target mask modeling, allowing it to capture temporal dependencies
while mitigating distribution shifts.

Universal time series forecasting poses a formidable challenge due to the intricate
nature of time series signals, which are composed of multiple underlying distributions.
TimeGPT-1 [31], a Transformer-based foundational model, has demonstrated potential for
zero-shot transfer learning across a broad range of time series tasks. Likewise, Moment [32]
provides an extensive repository of large-scale, pre-trained, open-source time series models,
while TimesFM [13], a decoder-only Transformer, capitalizes on a vast corpus of time
series data for pretraining. MOIRAI [33] advances the field by addressing the critical
challenges of universal forecasting, such as accommodating multiple temporal frequencies
and facilitating any-variate forecasting. It achieves this by incorporating multi-patch size
inputs and outputs, enabling the model to adeptly navigate the heterogeneous nature of
time series data.

Patch tokenization in PatchTST [6] is designed to be transferable by patchifying sub-
series, enabling the application of Masked Signal Modeling. However, this approach does
not accommodate the use of a linear head, which has proven to be effective in forecasting
tasks. Conversely, the variate tokenization in iTransformer [8] supports a linear forecasting
head but sacrifices transferability by disregarding patch context. To facilitate transfer
learning with variate tokens, we introduce a dual-stream learning paradigm. The upstream
phase utilizes masked modeling on sub-series to capture short-term dependencies, while
the downstream phase focuses on forecasting using full-length time series data. These two
streams are connected through a frequency-loss objective, ensuring coherence between
short- and long-term dependencies during transfer learning. Frequency loss allows the
model to handle temporal dynamics across a wide range of spectral and temporal scales.

3. LSPatch-T

This section conceptualizes our LSPatch-T, which works around two key ideas: (1) par-
tial transfer learning and (2) spectrum analysis-based loss function. To formulate represen-
tation learning, we review the transferability and backbone network based on Transformer
and MLP blocks. Then, we discuss our motivation and how to define an objective function
with frequency loss. First of all, we describe our problem of interest, which is multivariate
time series forecasting.

3.1. Problem Definition

A multivariate time series (MTS) is a multi-channel signal that is defined by a set of
C covariates at a timestamp t, xt = (x1, ..., xC)t ∈ RC, C > 1. Given a series of historical
observations (lookback window) Xt:t+L = [xt+1, xt+2, ..., xt+L] ∈ RC×L with C channels
and L time steps. The time series forecasting task (TSF) aims to predict the next S time
horizon Ys+1:s+S = [xs+1, xs+2, ..., xs+S] ∈ RC×S, s = t + L. In the formula, we need to learn
a map Fθ : X ∈ RC×L → Y ∈ RC×S that predicts the multistep in future by maximizing the
joint log-likelihood

max
θ

E(X,Y) log p(Y|Fθ(X)) (1)

Although most studies assume that xt represents covariates recorded simultaneously
at time step t, real-world datasets often exhibit time lags among variates. In the above
problem, a multi-step predictive distribution can be obtained by rolling one-step predictions.
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Note that, in practice, it may be more effective to focus on modeling specific values, such as
summary statistics, rather than the entire probability distribution. Models that focus on
these specific values are referred to as point-forecasters [34].

Instead of training the predictive model Fθ from scratch in a supervised manner,
we adopt a self-supervised learning method that provides a robust initialization for θ.
Subsequently, θ is fine-tuned on the same dataset to optimize the performance of the
forecasting task.

3.2. Partial Transfer Learning

Studies [6,12,13] have demonstrated that mask modeling methods learn representa-
tions that can be transferred to downstream forecasting tasks. Mask modeling, in short,
masks a portion of patches randomly during training and learns each token’s represen-
tation via predicting the values of these masks. Masking is crucial for learning abstract
representation because it conceptualizes locality while avoiding trivial inferences, such
as merely interpolating between neighboring time values. This approach encourages a
high-level understanding of the entire sequence, rather than relying solely on adjacent
data points.

The core of this study lies in transferring the weights from a pretrained model, which
was trained using short-length patch tokens, to a downstream task that operates on full-
length variate tokens. This extension is made possible through the shared-weight mech-
anism. Specifically, during pretraining, trainable weights are shared both across tokens
and among covariates. Also, feed-forward layers in Transformer’s blocks work as memory
cells [35] that implicitly store the correlations between covariates, allowing latent features
to be transferred to the downstream task.

Simply, a set of patch tokens with identical length l can be concatenated to construct
a longer patch, as illustrated in Figure 2. Formally, given a subseries xt+kl:t+(k+1)l of
window size l starting at time t, and stretching from frame t + kl to frame t + (k + 1)l,
the consecutive concatenation subseries xt:t+nl that starts at time t and stretches out n
frames of same window size l is defined as follows:

xt:t+nl =
[
xt:t+l xt+l:t+2l ... xt+(n−1)l:t+nl

]
(2)

This study considers the extreme case, n = L/l, where short-length patch tokens
are concatenated into a full-length variate token, meaning all patches in a univariate
series are concatenated (the case on top of Figure 2). Furthermore, both patch tokens and
variate tokens are designed following the channel independence principle, ensuring that
temporal dependencies are preserved within a single univariate series through the attention
mechanism. In the pretext task, the backbone network is the Transformer Encoder. However,
since we concatenate n patch tokens into a single variate token, using self-attention here
becomes awkward. To address this, we replace the Transformer blocks with MLP blocks.
This substitution aligns with our design, as we only transfer the value-embedding matrix
(excluding the key and query embeddings) to serve as the weight for the linear layer in the
MLP block.

Figure 3 describes our LSPatch-T self-supervised framework, operating through
two phases: pretraining with mask signal modeling (left) and the downstream forecasting
task (right). In the pretraining phase, each univariate signal from the multivariate time
series is segmented into patches, with a subset of these patches masked to generate visible
and masked tokens. These tokens are processed through a Vanilla Transformer Encoder
backbone to learn hidden representations, and a decoder head is used to reconstruct the
masked patches. Each block in the Transformer Encoder consists of three main components:
a self-attention module, a feed-forward network, and residual connections. This phase fo-
cuses on capturing local dependencies within signals, leveraging time loss to align temporal
relationships and frequency loss to preserve spectral coherence. In the downstream phase,
the patching operation is replaced by inverted variate tokens, allowing the model to handle
full-length multivariate signals for forecasting tasks. A newly introduced embedding
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layer processes these tokens, paired with a forecasting-specific prediction head. While the
backbone architecture remains largely consistent with the Transformer Encoder to ensure
transferability, the self-attention mechanism is replaced by a lightweight MLP layer for
improved computational efficiency in long-term forecasting. Notably, the MLP layer is
initialized with only the weights of the value matrix learned during the pretraining phase,
which we conceptualize as partial transfer learning. Similar to pretraining, the downstream
phase also employs time loss and frequency loss. This dual-phase design enables LSPatch-T
to transition from learning localized short-term patterns to global long-term dependencies
in forecasting.

Figure 2. A full-length variate token is obtained by concatenating short-length patch tokens.

Figure 3. LSPatch-T self-supervised framework: LSPatch-T follows a two-phase approach. (1) In
the pretraining phase, each univariate signal undergoes patching and masking to create visible
and masked tokens. These tokens are then passed through the Transformer Encoder backbone,
with a reconstruction head on top to predict the masked patches. (2) In the downstream phase,
patching is replaced by inverted variate tokens, and a different embedding layer and prediction
head are used for forecasting. The backbone network in the downstream phase is kept as close as
possible to the Transformer encoder, with only the self-attention mechanism replaced by an MLP
layer. Both the pretraining and downstream phases adopt channel independence as well as time loss
and frequency loss.
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In the pretext task, the use of patch tokens is essential, as the pretraining focuses on
reconstructing masked information based on the visible portions, effectively capturing
temporal dependencies [12,30]. However, in the downstream task, the focus shifts to
predicting future values based on historical data, and when performing this task, causality
and temporal continuity become more crucial [4,34,36–39]. During weight transfer, we
replace both the initial embedding layer and the final projection layer. This adjustment
ensures the transition between patch tokens and variate tokens takes place without violating
the embedding size. The detailed implementation of the embedding process is provided in
the following section.

3.3. Components

The multivariate time series is split into C univariate series, each of which is fed
independently into the Transformer backbone, adhering to the channel independence
setting. To prevent distribution shift, we apply Reversible Instance Normalization [40] to
normalize each univariate series instance before processing.

Our framework consists of four main components: (1) patching, (2) token embedding,
(3) a backbone model, and (4) a projection head. Both the pretraining and downstream
phases utilize these components, but there are key differences in the configurations at
certain stages, which will be highlighted below.

Patching: To put it simply, patching involves splitting a time series into several
sub-series. A patch can be understood as a segment of length l from the original time
series signal, xt:t+l . In time series signaling, this is equivalent to short-time analysis or the
window method. The benefits of patching are twofold: first, it is compatible with modern
Transformer-based architectures, which excel at learning global dependencies; second, it
reduces the computational complexity of algorithms that operate on single timestamps.
Furthermore, the inverse process of patching is concatenation, which is used to aggregate
patch tokens into a variate token during downstream tasks.

Token embedding: Tokenization is the process of calculating token embedding of each
patch, resulting in what is called a patch token or token embedding. In upstream phase, each
patch is embedded using a linear projection added to a learnable temporal positional embed-
ding to maintain its temporal order, represented as zn = Wembxt+nl:t+(n+1)l + Wpos ∈ RD,
where Wemb ∈ RD×l , Wpos ∈ RD and n = 0...⌊L/l⌋. However, for the downstream task,
a variate token at channel c naturally preserves their order through the linear projection,
z = Wembxt:t+L ∈ RD, where Wemb ∈ RD×L represents the neuron permutation [20].
Therefore, positional encoding is not required in this case. There are two key configurations
we would like to emphasize. First, the embedding layer, Wemb, is shared both across
patches and channels. Second, we do not transfer this embedding layer from the upstream
to the downstream task due to the difference in input dimensions, where l < L. Rather, we
initialize new weights to embed the entire lookback window in the downstream stage.

Vanilla Transformer: Our chosen backbone network for pretraining is the Vanilla
Transformer Encoder, which combines the two baselines, PatchTST and iTransformer [6,8].
The propagation at each Transformer block includes Multi-head Self-Attention [19] followed
by linear projection and batch normalization. The attention of each head is calculated
as follows:

headi = Attention(Qi, Ki, Vi) = softmax(
z⊤n Wq

i (z
⊤
n Wk

i )
⊤

√
d

)z⊤n Wv
i (3)

where Wq
i , Wk

i , Wv
i ∈ RD×D are projection parameters, respectively, for query, key, and

value at i-th head, and zn ∈ RD is a token embedding. The correlation among patch to-
kens is retained in these projection matrices through the attention mechanism, which
is a crucial factor in making Transformers a standard choice for pre-trained models.
However, the switch to variate tokens has an interesting effect: the number of tokens
reduces to just one, meaning the operation only needs to calculate the attention score
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for itself and naturally becomes an MLP layer [41,42]. Therefore, here, we initialize
the MLP’s parameters using the embeddings of values (Wv) learned in the pretraining
phase. Given a variate token z, its embedding is calculated for each MLP block as follows:
z(out) = WFF(z + Layernorm(z⊤Wv)), where WFF have also been transferred from the
pretrained model.

Projection head: The projection head sits atop the backbone model, mapping the
output tokens to the final predictions. During the pretraining phase, we predict only the
values of the invisible tokens that have been masked by indexing them with 0, following
the Masked Image Modeling (MIM) strategy [17]. Here, the focus is on predicting the
missing patches rather than reconstructing the entire sequence [18]. Prediction for a patch
token, zn, is calculated as ot+nl:t+(n+1)l = MLP(zn) ∈ Rl . On the other hand, our goal in
the downstream task is to achieve predictions for the entire forecasting horizon for each
variate. Therefore, the formula would be os+1:s+S = MLP(z) ∈ RS, s = t + L. In this way,
the downstream model can inherit the advantage of learning seasonal components from
linear mapping [29,41].

3.4. Robust Frequency Loss

We apply a standard time loss along with our proposed frequency loss in both the
pretraining and fine-tuning phases.

Time loss: We employ the Mean Squared Error (MSE) to quantify the discrepancy
between the predictions and the ground truth. The loss for each channel is computed, then
averaged across C time series to determine the time-domain loss.

Ltime(ŷ, y) = Ex[
1
C

C

∑
c
||ŷ(c) − y(c)||2] (4)

where y = xs+1:s+S and ŷ is its prediction over horizon [t + L + 1, t + L + S]
Frequency loss: Time series signals are often non-stationary processes, entangled by

trend, seasonality (low-frequency), and noise (high-frequency) components. Several prior
studies have incorporated frequency information into time series forecasting [24,25,27].
Unlike approaches such as TimesNet [28] and FEDformer [25], which focus on selecting
dominant frequencies—primarily from the low-frequency band—while overlooking the
high-frequency regions, our approach balances the contributions from both frequency
bands. This ensures that low- and high-frequency components are given equal considera-
tion, allowing us a broader range of temporal patterns to be captured.

Lfreq(ŷ, y) = Ex[
1
C

C

∑
c

tanh(||Ŷ (c) −Y (c)||2)] (5)

where Y is the spectral magnitude of series xs+1:s+S from Fourier Transform, and Ŷ is its
predicted series counterparts. This study applies tanh as a scaling function, which has been
investigated in [43]. Other scaling functions have been discussed in [44].

The work [33] suggests a strategy that captures varied frequency bands by using larger
patch sizes for high-frequency data and vice versa. This aligns with our approach, where in
the upstream phase, we use smaller patch sizes to capture low-frequency patterns. In the
downstream task, we extend this to larger patch sizes to accommodate the broader context
of high-frequency data. Throughout both phases, frequency loss is employed to ensure
consistency between the frequency components of the ground truth and predictions.

The total training objective is the weighted sum of time loss and frequency loss

Ltotal = αLfreq + (1 − α)Ltime (6)

where α is a hyperparameter that is used to control the contribution of each loss.
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4. Experiments

This section begins with a brief description of the datasets used, followed by the
presentation of the main experimental results and ablation studies. Finally, key discussions
and insights are provided.

4.1. Dataset

We conducted experiments on six popular multivariate datasets:

• Weather dataset (github.com/zhouhaoyi/ETDataset, accessed on May 2024): The
dataset contains 21 meteorological indicators collected every 10 min from the Weather
Station of the Max Planck Biogeochemistry Institute in Germany during 2020.

• Exchange dataset (github.com/laiguokun/multivariate-time-series-data/tree/
master/exchange_rate, accessed on May 2024): The dataset includes daily exchange
rates from eight countries, spanning from 1990 to 2016.

• ETT (Electricity transformer temperature) dataset (www.bgc-jena.mpg.de/wetter/,
accessed on May 2024): The dataset consists of seven factors related to electricity
transformers, recorded from July 2016 to July 2018. It has four subsets: ETTh1/ETTh2,
recorded hourly, and ETTm1/ETTm2, recorded every 15 min.

We followed the iTransformer settings for splitting the training, validation, and test
sets to conduct the experiments and comparison. The details of the dataset are presented in
Table 1. In the pretraining phase, we used only the training set for model training, selecting
the best model for the validation but setting aside the test data. In the downstream phase,
both the training and validation sets were used for model training, and the final results
were recorded in the test set.

Table 1. Summary of datasets.

Dataset Features Time Steps Frequency Information

ETTh1 7 17,420 Hourly Electronic
ETTh2 7 17,420 Hour Electronic
ETTm1 7 69,680 15 min Electronic
ETTm2 7 69,680 15 min Electronic
Weather 21 52,696 10 min Weather

Exchange 8 7,588 Daily Economy

4.2. Settings

All experiments were conducted using the PyTorch framework on an NVIDIA H100 GPU.
Here, we list common hyper-parameter settings for training. The ADAM optimizer was em-
ployed with initial learning rates of 10−3, 5 × 10−4 and 10−4. A batch size of
32 was used, with the number of training epochs fixed at 10. The dimensionality of the
series representation was set to 512. RevIN normalization was applied to avoid a distribu-
tion shift between training and test data [40]. Additional configurations for the pretraining
phase and downstream are provided in Table 2. We make the source code available at
https://github.com/synapsespectrum/LSPatch-T for reproducibility.

Table 2. Summary of configurations for pretraining and downstream.

Settings Pretraining Downstream

Task Mask modeling Forecasting
Patch size (l) 12 L

Masking ratio 40% (same as PatchTST) no
Causal no yes

Batch size 64 32
Backbone Transformer Encoder Multi-MLP

github.com/zhouhaoyi/ETDataset
github.com/laiguokun/multivariate-time-series-data/tree/master/exchange_rate
github.com/laiguokun/multivariate-time-series-data/tree/master/exchange_rate
www.bgc-jena.mpg.de/wetter/
https://github.com/synapsespectrum/LSPatch-T
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Current literature in the field of time series forecasting commonly adopts a set of
hyperparameters for the lookback window size and forecasting horizon size, which are
{24, 48, 96, 168, 192, 336, 720}. In accordance with this convention, our paper applied
the same settings to ensure fair comparisons. The choice of these values is closely tied to
the characteristics of datasets recorded on an hourly basis. For example, 24 h corresponds
to one day, 168 h to one week, and 720 h to approximately one month. Table 3 provides
details of our data split, where the division is performed chronologically, progressing from
past to future time steps.

Table 3. Dataset splits.

Dataset Training Validation Testing

ETTh1 & ETTh2 12 months (8545) 4 months (2881) 4 months (2881)
ETTm1 & ETTm2 12 months (34465) 4 months (11521) 4 months (11521)

Weather 8.5 months (36792) 1.2 months (5271) 2.4 months (10540)
Exchange 420 months (5120) 54 months (665) 117 months (1422)

For comparison, we chose the following baselines: Vanilla Transformer [19],
Informer [26], Autoformer [24], Crossformer [5], PatchTST [6], and iTransformer [8]. The re-
sults were reproduced in our own environment using the official implementations for each
baseline. The architecture for each model was kept as the default unless otherwise specified.
The conventional Transformer model is not built for time series forecasting tasks, so we
used the version that had been studied in Crossformer. The Mean Squared Error (MSE)
and Mean Absolute Error (MAE) were utilized as evaluation metrics. All experiments were
repeated twice, and the best results for each metric are reported.

4.3. Main Results

Table 4 demonstrates that LSPatch-T and PatchTST are the two leading models,
with LSPatch-T achieving the best performance (in both metrics) in most cases, or ranking
second otherwise (MSE: 2.11%, MAE: 1.46% improvement over PatchTST). Three key obser-
vations emerge from these results. First, the superiority of channel independence in MTSF
is reaffirmed, as PatchTST, iTransformer and LSPatch-T significantly outperform models
like Crossformer (MSE: 61.95%, MAE: 41.99%), Autoformer (MSE: 41.25%, MAE: 28.82%),
Informer (MSE: 78.07%, MAE: 67.31%), and Transformer (MSE: 78.62%, MAE: 59.65%),
which rely on channel dependence. Second, LSPatch-T excels in long-term predictions
related to the ETTh and Weather datasets, particularly in the longer forecasting horizons of
192, 336, and 720 time steps. Third, although LSPatch-T shares a similar design with
iTransformer—using variate tokens and a linear layer as the forecaster—our model sur-
passes iTransformer (MSE: 3.32%, MAE: 2.60% improvement), highlighting the effectiveness
of transfer learning where weights are initialized from a well-trained plateau. The results
are notable because we performed unsupervised pretraining and supervised forecasting
on the same dataset without additional samples, yet the two-phase training approach
yielded better results than using supervised forecasting alone. We also note that in our
reproduction of the experiments, iTransformer did not outperform PatchTST, as claimed in
the original work.

We also note that LSPatch-T required a relatively smaller number of computations
(measured in FLOPs) compared to other baselines. As shown in Figure 4, LSPatch-T and
iTransformer are the two lightest models, with FLOPs of 2.87B and 2.26B, respectively,
while Crossformer and Vanilla Transformer are the two heaviest models. Although we
adopted the same pretraining strategy as PatchTST, in the downstream phase, we replaced
the self-attention module with a linear layer, which led to a significant reduction in overall
computation—approximately 77.67%.
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Figure 4. Number of computations measured in FLOPs of LSPatch-T compared to other baselines.

Table 4. Comparison of downstream LSPatch-T against other baselines across Weather, Exchange,
and ETT datasets. The lookback window size is fixed at 96, and the forecasting horizon is
{24, 48, 96, 168, 192, 336, 720}. Avg means averaged by prediction lengths. The best performance is
reported in bold, and the second best is underlined.

Model LSPatch-T PatchTST iTransformer Crossformer Autoformer Informer Transformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er

24 0.105 0.139 0.104 0.138 0.106 0.137 0.097 0.153 0.422 0.407 0.164 0.247 0.262 0.338
48 0.139 0.181 0.140 0.183 0.138 0.177 0.132 0.209 0.913 0.661 0.249 0.335 0.528 0.514
96 0.173 0.218 0.178 0.223 0.179 0.220 0.163 0.241 0.484 0.488 0.283 0.354 0.762 0.632
168 0.208 0.250 0.213 0.254 0.219 0.257 0.216 0.292 0.812 0.619 0.294 0.354 1.117 0.749
192 0.225 0.264 0.227 0.266 0.233 0.268 0.219 0.295 1.088 0.736 0.302 0.358 1.302 0.812
336 0.284 0.306 0.286 0.308 0.293 0.312 0.292 0.349 1.614 0.911 0.360 0.395 1.495 0.897
720 0.366 0.358 0.371 0.360 0.379 0.366 0.423 0.419 1.689 0.968 0.435 0.437 1.789 0.996
Avg 0.214 0.245 0.217 0.247 0.221 0.248 0.220 0.280 1.003 0.684 0.298 0.354 1.036 0.705

Ex
ch

an
ge

24 0.032 0.119 0.032 0.118 0.033 0.122 0.380 0.377 0.070 0.194 1.288 0.856 0.500 0.528
48 0.057 0.163 0.055 0.161 0.057 0.166 0.535 0.469 0.133 0.267 1.755 1.032 0.892 0.709
96 0.110 0.228 0.112 0.231 0.119 0.244 0.959 0.672 0.187 0.311 1.982 1.076 1.695 0.954
168 0.198 0.312 0.200 0.315 0.200 0.318 1.192 0.775 0.313 0.404 2.666 1.249 2.639 1.221
192 0.225 0.335 0.228 0.338 0.231 0.343 1.293 0.784 0.356 0.429 2.944 1.304 2.996 1.297
336 0.419 0.466 0.416 0.463 0.422 0.470 2.166 1.094 0.538 0.537 3.842 1.491 3.138 1.236
720 1.112 0.794 1.092 0.785 1.027 0.768 2.057 1.119 1.285 0.876 4.162 1.669 3.190 1.367
Avg 0.308 0.345 0.305 0.344 0.298 0.347 1.226 0.756 0.412 0.431 2.663 1.240 2.150 1.045

ET
T

h1

24 0.290 0.344 0.293 0.348 0.312 0.365 0.323 0.387 0.396 0.432 0.396 0.432 0.616 0.581
48 0.328 0.367 0.339 0.375 0.344 0.384 0.358 0.399 0.477 0.456 0.477 0.456 0.799 0.693
96 0.371 0.392 0.386 0.401 0.390 0.406 0.406 0.427 0.467 0.468 0.467 0.468 0.874 0.717
168 0.408 0.414 0.423 0.428 0.429 0.429 0.471 0.474 0.535 0.489 0.535 0.489 1.105 0.852
192 0.421 0.421 0.436 0.434 0.441 0.435 0.503 0.505 0.565 0.513 0.565 0.513 0.866 0.700
336 0.461 0.443 0.509 0.467 0.476 0.452 0.647 0.596 0.488 0.480 0.488 0.480 1.185 0.876
720 0.478 0.475 0.575 0.510 0.491 0.483 0.748 0.664 0.571 0.541 0.571 0.541 1.171 0.860
Avg 0.394 0.408 0.423 0.423 0.412 0.422 0.494 0.493 0.500 0.483 0.500 0.483 0.945 0.754
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Table 4. Cont.

Model LSPatch-T PatchTST iTransformer Crossformer Autoformer Informer Transformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ET
T

h2

24 0.172 0.261 0.175 0.266 0.185 0.269 0.239 0.331 0.301 0.373 0.805 0.720 0.865 0.723
48 0.231 0.302 0.227 0.299 0.238 0.311 0.765 0.598 0.300 0.365 1.433 0.946 1.168 0.878
96 0.288 0.339 0.290 0.342 0.297 0.345 0.814 0.705 0.377 0.411 2.433 1.235 1.842 1.114
168 0.357 0.380 0.347 0.377 0.358 0.384 1.517 0.875 0.419 0.432 5.786 1.981 4.165 1.607
192 0.368 0.391 0.371 0.394 0.375 0.397 1.769 1.075 0.442 0.443 4.498 1.731 5.909 1.976
336 0.410 0.421 0.411 0.427 0.433 0.435 2.652 1.379 0.483 0.484 3.907 1.634 3.674 1.544
720 0.425 0.442 0.435 0.451 0.458 0.459 2.780 1.427 0.462 0.477 3.455 1.585 2.320 1.289
Avg 0.322 0.362 0.322 0.365 0.335 0.371 1.505 0.913 0.398 0.426 3.188 1.405 2.849 1.304

ET
T

m
1

24 0.211 0.282 0.214 0.286 0.225 0.296 0.229 0.314 0.448 0.453 0.321 0.368 0.367 0.407
48 0.284 0.332 0.298 0.346 0.294 0.342 0.315 0.364 0.433 0.449 0.475 0.456 0.386 0.414
96 0.321 0.358 0.334 0.373 0.349 0.381 0.369 0.420 0.443 0.457 0.592 0.554 0.536 0.523
168 0.358 0.379 0.367 0.389 0.374 0.392 0.431 0.450 0.517 0.484 0.684 0.608 0.626 0.579
192 0.364 0.382 0.371 0.390 0.381 0.395 0.475 0.501 0.518 0.483 0.734 0.620 0.670 0.596
336 0.395 0.405 0.403 0.408 0.438 0.429 0.609 0.578 0.547 0.503 0.934 0.739 0.850 0.706
720 0.457 0.442 0.458 0.446 0.505 0.466 0.845 0.709 0.501 0.491 1.037 0.778 1.047 0.781
Avg 0.341 0.369 0.349 0.377 0.367 0.386 0.468 0.477 0.487 0.474 0.682 0.589 0.640 0.572

ET
T

m
2

24 0.101 0.194 0.100 0.193 0.104 0.201 0.135 0.248 0.138 0.250 0.185 0.315 0.137 0.263
48 0.137 0.229 0.135 0.229 0.138 0.231 0.228 0.329 0.192 0.291 0.263 0.373 0.246 0.381
96 0.176 0.258 0.177 0.257 0.183 0.266 0.314 0.395 0.236 0.321 0.385 0.488 0.398 0.458
168 0.230 0.293 0.234 0.297 0.240 0.302 0.442 0.467 0.289 0.346 0.552 0.577 0.515 0.536
192 0.240 0.299 0.241 0.302 0.253 0.313 0.633 0.579 0.275 0.332 0.636 0.617 0.750 0.644
336 0.299 0.337 0.305 0.343 0.311 0.347 0.974 0.691 0.330 0.367 1.206 0.839 1.251 0.841
720 0.397 0.395 0.406 0.403 0.406 0.403 3.100 1.179 0.428 0.423 3.093 1.339 2.470 1.183
Avg 0.226 0.286 0.228 0.289 0.234 0.295 0.832 0.555 0.270 0.333 0.903 0.650 0.824 0.615

4.4. Effectiveness of Lookback Window

Although it is used as a default setting in various baselines, the choice of a fixed
lookback window size of 96 (as selected in the abovementioned experiments) does not
consistently yield better performance across all datasets. To clarify this point, we evaluate
the robustness of our model with respect to lookback window size, as shown in Figure 5.
LSPatch-T is compared in the MSE metric against PatchTST, iTransformer, and Crossformer
on the ETTh1 and Weather datasets. The results demonstrate that LSPatch-T achieves
the lowest MSE across all lookback windows for both datasets. Notably, among the four
baselines, only LSPatch-T strictly follows the principle that a longer input horizon leads to
better performance, benefiting from the increased temporal information. It is also important
to highlight that there is a loss plateau starting at a lookback window of 192, where further
increasing the window yields’ diminishing returns. This comparison provides insights into
how each model handles long-term dependencies in time series .
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Figure 5. Impact of input horizon on forecasting performances. The forecasting horizon is fixed at
168 and the lookback window is set to {48, 96, 192, 336, 720}.

4.5. Effectiveness of Frequency Loss

We study the effectiveness of frequency loss in Figure 6. Although the forecasting per-
formance shows only a slight improvement (0.66% on average) compared to using time loss
alone, the improvement is consistent across all forecasting horizons, as seen in Figure 6b.
This offers the promising benefit of incorporating frequency analysis when dealing with
time series data. Additionally, Figure 6a illustrates the advantages of scaling in the fre-
quency domain. From an optimization perspective, the L2 objective tends to smooth the
regression by averaging across the frequency spectrum, giving dominant frequencies more
weight while reducing the contribution of others. Scaling acts as an equalizer, suppress-
ing dominant frequencies and amplifying the less prominent ones, thereby encouraging
finer reconstruction. While this method has been explored to some extent in computer
vision [43,44], its application in time series analysis is relatively new [25,28], and important
frequencies are often selected heuristically. This study takes a step further by balancing the
contributions of all frequencies, rather than selecting specific ones.

Figure 6. Impact of frequency loss function. (a) Frequency domain analysis. (b) Forecasting per-
formances on ETTh1 dataset, the LSPatch-T* is a model that can be trained only with time loss.
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4.6. Cross-Data Transferability

We conducted pretraining on one dataset and fine-tuned the model on another to
assess the performance of LSPatch-T in cross-dataset forecasting tasks. As shown in Table 5,
ETTh2 → ETTh1 denotes pretraining on ETTh2 and transferring to ETTh1. As antici-
pated, cross-domain forecasting results are slightly lower than in-domain predictions.
In particular, ETTh2 → ETTh1 achieves a 0.77% improvement in MSE and 0.86% in MAE,
while Weather → ETTh1 and Exchange → ETTh1 show improvements of 0.23%(MSE),
0.42% (MAE) and 0.50% (MSE), 0.75% (MAE), respectively. Notably, the improvements
are more significant when forecasting longer horizons, as demonstrated in the case with
a horizon of 720. Nonetheless, we observed a slightly inferior performance on shorter
horizons, which suggests that concatenating more patch tokens into a variate token en-
hances transferability.

Table 5. Transferability across the data domain (→). The improvement is marked with ↑, while the
decline is marked with ↓.

Model Transferred LSPatch-T LSPatch-T Performance

Source Target Horizon MSE MAE MSE MAE MSE MAE

In
-d

om
ai

n

ETTh2
↓

ETTh1

96 0.374 0.392 0.371 0.392 ↓0.73% ↓0.02%
192 0.426 0.421 0.421 0.421 ↓1.26% ↓0.12%
336 0.463 0.440 0.461 0.443 ↓0.47% ↑0.62%
720 0.455 0.462 0.478 0.475 ↑4.92% ↑2.69%
Avg 0.429 0.429 0.433 0.432 ↑0.77% ↑0.86%

C
ro

ss
-d

om
ai

n

Weather
↓

ETTh1

96 0.373 0.392 0.371 0.392 ↓0.52% ↓0.06%
192 0.425 0.422 0.421 0.421 ↓0.97% ↓0.14%
336 0.462 0.440 0.461 0.443 ↓0.30% ↑0.67%
720 0.467 0.469 0.478 0.475 ↑2.40% ↑1.10%
Avg 0.432 0.431 0.433 0.432 ↑0.23% ↑0.42%

Exchange
↓

ETTh1

96 0.375 0.391 0.371 0.392 ↓0.90% ↑0.04%
192 0.427 0.421 0.421 0.421 ↓1.44% ↓0.12%
336 0.464 0.441 0.461 0.443 ↓0.77% ↑0.36%
720 0.456 0.463 0.478 0.475 ↑4.53% ↑2.48%
Avg 0.431 0.429 0.433 0.432 ↑0.50% ↑0.75%

4.7. Discussion

We have presented key results in the previous sections. In summary, LSPatch-T
has demonstrated improvements in multivariate time series forecasting by leveraging
self-supervised learning and views of token representation. However, there are several
limitations to this relatively simple setup that we would like to address:

1. Incomplete utilization of patch dependencies: One obvious drawback of the model
is that variate tokens may not fully exploit the patch dependencies learned during pre-
training. The embedding layers used in pretraining and downstream tasks are derived
from different projections, leading to separate embedding spaces. This discrepancy
can increase the training time required for the downstream model to adapt to the
patch token embedding space. A potential solution is to initialize the downstream
embedding layer by replicating the pre-trained weights for each concatenated patch,
providing better alignment between the two phases. Additionally, extending the
framework to incorporate a dynamic range of window sizes would be a valuable
direction for future research, but one should carefully investigate the treatment for
time misalignment arisen with this design.

2. Theoretical framework of variate tokens: Our results demonstrate the promise of
transfer learning with variate tokens, which is compromised by recent
studies [8,29]. However, the theoretical foundation of variate tokens in the con-
text of transfer learning has not been fully explored here. Future work will focus on
situating this within a representation learning framework, with particular focus on
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examining the structure of the embedding space where variate tokens can substitute
patch tokens.

3. Effectiveness of frequency Loss: The ablation study indicates that combining fre-
quency loss with time loss boost performance. In this work, the proposed frequency
loss acts as a regularizer, ensuring balance across different spectral ranges, yet it
may not be effective for datasets where seasonal patterns are less prominent. This
limitation arises when frequency loss is calculated on individual short-term series and
the long-term trends in the data are neglected. A proper improvement could involve
using contrastive learning to feed multiviews (multi-segments) of the signal into the
frequency analysis.

5. Conclusions

Pretraining with short-length patch tokens and channel independence enhances perfor-
mance during downstream fine-tuning on the same dataset when using full-length variate
tokens. Empirical studies focused on three public datasets demonstrate the effectiveness of
our approach in two key areas: long-range forecasting and multivariate transfer learning.
In summary, downstream forecasting with our LSPatch-T leads to 2.11% and 3.32% deduc-
tions in the average MSE compared to PatchTST and iTransformer, respectively. However,
our work is not without limitations. Regarding our framework, which only investigates
the trivial case of concatenation, inherently limiting its ability to capture local context,
the extension to dynamic range of window sizes should be considered as a future research
direction. Furthermore, several key aspects, such as developing a theoretical framework for
embedding space or incorporating contrastive learning, have yet to be addressed. We hope
this piece of work inspires researchers to further explore transfer learning in the context of
time series analysis.
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