Integration of Traction Electricity Consumption Determinants with Route Geometry and Vehicle Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Route Geometry Architecture: Railway Lines
- No. 143 from Lubliniec station to Kalety station (first-rate railway line category, first-class railway line category);
- No. 131 from Kalety station to Chorzów Batory station (magistral railway line category, main railway line category);
- No. 137 from Chorzów Batory station to Katowice station (magistral railway line category).
- Rails;
- Sleepers;
- Ballast;
- Rail fastening elements.
- The start of the route at point 1 Lubliniec, to point 7 Nakło Śląskie, with an elevation of hm1 = 57.32 m; the value of the slope angle in this segment is α1 = +0.16 %;
- Point 7 Nakło Śląskie, and 17 Katowice – the endpoint of the route with the elevation of hm2 = 47.37 m; the value of the slope angle in this segment is α2 = −0.18 %.
- 1–10: Lubliniec–Bytom Północny–CWRt;
- 10–12: Bytom Północy–Bytom–JRT;
- 12–13: Bytom–Chorzów Stary–CWRt;
- 13–15: Chorzów Stary–Chorzów Batory–JRT;
- 15–17: Chorzów Batory–Katowice–CWRt.
2.2. Characteristics of Traction Electric Vehicle: Electric Multiple Units
2.3. Scientific Research and Industry-Specific Methods
- Brainstorming: used to create ideas and associations for solving specific problems by scientific research and project teams. The success of BM correlates with the activity of the whole team. BM is a heuristic method;
- Mind mapping: used to identify, define, and record the main subject and develop new and related ideas. It takes into account the use of keywords as well as the hierarchy of concepts. As a result of reflections and creative ideas, a knowledge map is generated using concepts, drawings, short phrases, and other items. MMM is a heuristic method;
- Systems approach, which represents systems thinking. This approach is focused on the big picture and the interaction between the individual elements of the whole;
- Heuristic method, which unifies various ways and rules of conduct for making sound decisions in difficult situations. The heuristic method requires defining a problem, formulating a hypothesis, collecting and analyzing data, and obtaining conclusions;
- Failure mode and effect analysis: designed to prevent the consequences and effects of defects, its purpose is to prevent failures.
- Variant I, the existing approach, which involves calculating the values of electricity consumption q and the total specific energy consumption measured at the motor terminals j0 for individual component segments and the complete route. The approach is considered prevalent to date, according to [59].
- Variant II, the new approach, which involves calculating the values of electricity consumption qi and the total specific energy consumption measured at the motor terminals ji for individual component segments and the complete route [59,60,61]. It was used to complete the following:
- Measuring electricity consumption during braking for JRT (qJRT braking and j0JRT braking), aligned with [62];
- Measuring electricity consumption during braking on CWR track (qCWRt braking and j0CWRt braking), aligned with [62];
- Measuring electricity consumption during startup on JRT (qJRT startup and j0JRT startup);
- Measuring electricity consumption during startup on CWR track (qCWRt startup and j0CWRt startup).
3. Results
3.1. Traction Electricity Consumption to Date
3.2. Traction Electricity Consumption: A New Approach during Braking
3.2.1. Braking on Jointed Railway Track
3.2.2. Braking on Continuous Welded Rail Track
3.3. Traction Electricity Consumption: A New Approach during Startup
3.3.1. Startup on Jointed Railway Track
3.3.2. Startup on Continuous Welded Rail Tracks
3.4. Real Traction Electricity Consumption in Correlation with the Seasons: Traction Electric Vehicle Recorders
3.4.1. Summer Data
3.4.2. Winter Data
3.5. Comparative Analysis and Evaluation of the Values Obtained
4. Discussion
5. Conclusions
- Variant I—the approach most frequently used to date;
- Variant II—the new approach.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morlock, F.; Rolle, B.; Bauer, M.; Sawodny, O. Forecasts of Electric Vehicle Energy Consumption Based on Characteristic Speed Profiles and Real-Time Traffic Data. IEEE Trans. Veh. Technol. 2019, 69, 1404–1418. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, R.; Ma, J.; Ma, Y. Considering Variable Road Geometry in Adaptive Vehicle Speed Control. Math. Probl. Eng. 2013, 2013, 617879. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, H.; Rodrigues, C.M.; Pinho, C. Impact of Road Geometry on Vehicle Energy Consumption and CO2 Emissions: An Energy-Efficiency Rating Methodology. Energies 2020, 13, 119. [Google Scholar] [CrossRef] [Green Version]
- Karwowski, K.; Kuciński, M.; Mizan, M.; Wilk, A. Sieć Sensorowa do Rejestracji Drgań Górnej Sieci Trakcyjnej w Celach Diagnostyki Eksploatacyjnej. Zesz. Nauk. Wydziału Elektrotechniki I Autom. Politech. Gdańskiej 2017, 57, 43–46. [Google Scholar]
- Haładyn, S. The Problem of Train Scheduling in the Context of the Load on the Power Supply Infrastructure. A Case Study. Energies 2021, 14, 4781. [Google Scholar] [CrossRef]
- Song, Y.; Jiang, T.; Nåvik, P.; Rønnquist, A. Geometry Deviation Effects of Railway Catenaries on Pantograph–Catenary Interaction: A Case Study in Norwegian Railway System. Railw. Eng. Sci. 2021, 29, 350–361. [Google Scholar] [CrossRef]
- Boschetti, G.; Mariscotti, A. Integrated Electromechanical Simulation of Traction Systems: Relevant Factors for the Analysis and Estimation of Energy Efficiency. In Proceedings of the 2012 Electrical Systems for Aircraft, Railway and Ship Propulsion, Bologna, Italy, 16–18 October 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Zalewski, W. Influence of Weather on the Variability of the Electricity Consumption. Econ. Manag. 2011, 3, 195–202. [Google Scholar]
- Douglas, H.; Roberts, C.; Hillmansen, S.; Schmid, F. An Assessment of Available Measures to Reduce Traction Energy Use in Railway Networks. Energy Convers. Manag. 2015, 106, 1149–1165. [Google Scholar] [CrossRef]
- Su, S.; Tang, T.; Wang, Y. Evaluation of Strategies to Reducing Traction Energy Consumption of Metro Systems Using an Optimal Train Control Simulation Model. Energies 2016, 9, 105. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, G.; Wei, S. Velocity Prediction Using Markov Chain Combined with Driving Pattern Recognition and Applied to Dual-Motor Electric Vehicle Energy Consumption Evaluation. Appl. Soft Comput. 2021, 101, 106998. [Google Scholar] [CrossRef]
- Ćwil, M.; Bartnik, W.; Jarzębowski, S. Railway Vehicle Energy Efficiency as a Key Factor in Creating Sustainable Transportation Systems. Energies 2021, 14, 5211. [Google Scholar] [CrossRef]
- Ahmed, C.; Nur, K.; Ochieng, W. GIS and Genetic Algorithm Based Integrated Optimization for Rail Transit System Planning. J. Rail Transp. Plan. Manag. 2020, 16, 100222. [Google Scholar] [CrossRef]
- Fischer, S.; Szürke, S.K. Detection Process of Energy Loss in Electric Railway Vehicles. Facta Univ. Ser. Mech. Eng. 2022, 1–19. [Google Scholar] [CrossRef]
- Fischer, S. Traction Energy Consumption of Electric Locomotives and Electric Multiple Units at Speed Restrictions. Acta Tech. Jaurinensis 2015, 8, 240–256. [Google Scholar] [CrossRef] [Green Version]
- Naldini, F.; Pellegrini, P.; Rodriguez, J. Real-Time Optimization of Energy Consumption in Railway Networks. Transp. Res. Procedia 2022, 62, 35–42. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, Q.; Liu, F. Analysis of Factors Affecting Traction Energy Consumption of Electric Multiple Unit Trains Based on Data Mining. J. Clean. Prod. 2020, 262, 121374. [Google Scholar] [CrossRef]
- Jefimowski, W. Comparative Analysis of Consuming Energy by High Speeds Trains Depending on the Applied Power Supply System. TTS Tech. Transp. Szyn. 2014, 21, 48–51. [Google Scholar]
- Spiryagin, M.; Wu, Q.; Polach, O.; Thorburn, J.; Chua, W.; Spiryagin, V.; Stichel, S.; Shrestha, S.; Bernal, E.; Ahmad, S.; et al. Problems, Assumptions and Solutions in Locomotive Design, Traction and Operational Studies. Railw. Eng. Sci. 2022, 30, 265–288. [Google Scholar] [CrossRef]
- Croce, A.I.; Musolino, G.; Rindone, C.; Vitetta, A. Traffic and Energy Consumption Modelling of Electric Vehicles: Parameter Updating from Floating and Probe Vehicle Data. Energies 2022, 15, 82. [Google Scholar] [CrossRef]
- Sysyn, M.; Gerbera, U.; Gruen, D.; Nabochenko, O.; Kovalchuk, V. Modelling and Vehicle Based Measurements of Ballast Settlements Under the Common Crossing. Eur. Transp. 2019, 71, 1–25. Available online: http://eadnurt.diit.edu.ua/jspui/handle/123456789/11681 (accessed on 21 December 2022).
- Huang, H.; Li, K.; Wang, Y. A Simulation Method for Analyzing and Evaluating Rail System Performance Based on Speed Profile. J. Syst. Sci. Syst. Eng. 2018, 27, 810–834. [Google Scholar] [CrossRef]
- De Martinis, V.; Weidmann, U.A. Definition of Energy-Efficient Speed Profiles Within Rail Traffic by Means of Supply Design Models. Res. Transp. Econ. 2015, 54, 41–50. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, X.; Yao, F.; Wang, F.; Sun, C. Mechanism-Based Modeling and Estimation of Optimal Energy Consumption in Traffic Flow for Electric Vehicles. In Proceedings of the 2021 33rd Chinese Control and Decision Conference (CCDC), Kunming, China, 22–24 May 2021; pp. 1896–1903. [Google Scholar] [CrossRef]
- Tian, Z.; Hillmansen, S.; Roberts, C.; Weston, P.; Chen, L.; Zhao, N.; Su, S.; Xin, T. Modeling and Simulation of DC Rail Traction Systems for Energy Saving. In Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 8–11 October 2014; pp. 2354–2359. [Google Scholar] [CrossRef]
- Fafoutellis, P.; Mantouka, E.G.; Vlahogianni, E.I. Eco-Driving and Its Impacts on Fuel Efficiency: An Overview of Technologies and Data-Driven Methods. Sustainability 2021, 13, 226. [Google Scholar] [CrossRef]
- Das, K.; Borah, C.K.; Agarwal, S.; Barman, P.; Sharma, S. Road Load Model Analysis for Eco-Routing Navigation Systems in Electric Vehicles. In Proceedings of the 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), Kuala Lumpur, Malaysia, 28 April–1 May 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Feng, X.; Zhang, H.; Ding, Y.; Liu, Z.; Peng, H.; Xu, B. A Review Study on Traction Energy Saving of Rail Transport. Discret. Dyn. Nat. Soc. 2013, 2013, 156548. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.Z.; Zhou, S.; Ou, X.M. Development and Application of a Life Cycle Energy Consumption and CO2 Emissions Analysis Model for High-Speed Railway Transport in China. Adv. Clim. Chang. Res. 2021, 12, 270–280. [Google Scholar] [CrossRef]
- Guevara-Cedeño, J.; Aguilar, J.; Torabi, R.; Berbey-Alvarez, A. Electric Mobility in Panama: A Review. In Proceedings of the 2018 Energy and Sustainability for Small Developing Economies (ES2DE), Funchal, Portugal, 9–12 July 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Thiel, C.; Amillo, A.G.; Tansini, A.; Tsakalidis, A.; Fontaras, G.; Dunlop, E.; Taylor, N.; Waldau-Jäger, A.; Araki, K.; Nishioka, K.; et al. Impact of Climatic Conditions on Prospects for Integrated Photovoltaics in Electric Vehicles. Renew. Sustain. Energy Rev. 2022, 158, 112109. [Google Scholar] [CrossRef]
- Benatia, D. Ring the Alarm! Electricity Markets, Renewables, and the Pandemic. Energy Econ. 2022, 106, 105755. [Google Scholar] [CrossRef]
- Sun, Y.; Anwar, A.; Razzaq, A.; Liang, X.; Siddique, M. Asymmetric Role of Renewable Energy, Green Innovation, and Globalization in Deriving Environmental Sustainability: Evidence from Top-10 Polluted Countries. Renew. Energy 2022, 185, 280–290. [Google Scholar] [CrossRef]
- Zhao, N.; Tian, Z.; Hillmansen, S.; Chen, L.; Roberts, C.; Gao, S. Timetable Optimization and Trial Test for Regenerative Braking Energy Utilization in Rapid Transit Systems. Energies 2022, 15, 4879. [Google Scholar] [CrossRef]
- Berbey, A.; Galán, R.; San Segundo, P.; Sanz-Bobi, J. Lyapunov Based Stability Analysis for Metro Lines. In Urban Transport XIV: Urban Transport and the Environment in the 21st Century; WIT Press: Southampton, UK; Boston, MA, USA, 2008; pp. 111–119. [Google Scholar] [CrossRef] [Green Version]
- Berbey, A.; Galán, R.; San Segundo, P.; Sanz Bobi, J.D.; y Caballero, R. Un Algoritmo de Replanificación en Tiempo Real Basado en un Indice de Estabilidad de Lyapunov Para Líneas de Metro. Rev. Iberoam. Automática E Inf. Ind. 2014, 11, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Tong, L.C.; Chen, J.; Tang, J.; Zhou, X. Joint Optimization of High-Speed Train Timetables and Speed Profiles: A Unified Modeling Approach Using Space-Time-Speed Grid Networks. Transp. Res. Part B Methodol. 2017, 97, 157–181. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhu, S.; D’Ariano, A.; Yin, J.; Miao, J.; Meng, L. Energy-Efficient Timetabling and Rolling Stock Circulation Planning Based on Automatic Train Operation Levels for Metro Lines. Transp. Res. Part C Emerg. Technol. 2021, 129, 103209. [Google Scholar] [CrossRef]
- Songpo, Y.; Jianjun, W.; Xin, Y.; Huijun, S.; Ziyou, G. Energy-Efficient Timetable and Speed Profile Optimization with Multi-Phase Speed Limits: Theoretical Analysis and Application. Appl. Math. Model. 2018, 56, 32–50. [Google Scholar] [CrossRef]
- Wilk, A.; Gelman, L.; Skibicki, J.; Judek, S.; Karwowski, K.; Jakubowski, A.; Kaczmarek, P. Novel Vision Monitoring Method Based on Multi Light Points for Space-Time Analysis of Overhead Contact Line Displacements. Sensors 2022, 22, 9281. [Google Scholar] [CrossRef] [PubMed]
- Leung, C.M.; Or, S.W.; Ho, S.L.; Lee, K.Y. Wireless Condition Monitoring of Train Traction Systems Using Magnetoelectric Passive Current Sensors. IEEE Sens. J. 2014, 14, 4305–4314. [Google Scholar] [CrossRef]
- Danielsen, S.; Fosso, O.B.; Molinas, M.; Suul, J.A.; Toftevaag, T. Simplified Models of a Single-Phase Power Electronic Inverter for Railway Power System Stability Analysis—Development and Evaluation. Electr. Power Syst. Res. 2010, 80, 204–214. [Google Scholar] [CrossRef]
- Biliński, J.; Malczewska, M.; Rojek, A.; Kruczek, W. Static Converters of Railway Vehicles—Technical Solutions and Directions of Construction Development. TTS Tech. Transp. Szyn. 2020, 27, 43–57. [Google Scholar]
- Biliński, J.; Łagosz, M. Metodology for Determination of the a Heart Losses and Thermal Loads in Traction Invertes. TTS Tech. Transp. Szyn. 2016, 23, 24–27. [Google Scholar]
- Zhong, Q.C.; Hornik, T. Control of Power Inverters in Renewable Energy and Smart Grid Integration, 1st ed.; John Wiley & Sons: London, UK, 2013. [Google Scholar]
- Hulagu, S.; Celikoglu, H.B. Electric Vehicle Location Routing Problem with Vehicle Motion Dynamics-Based Energy Consumption and Recovery. IEEE Trans. Intell. Transp. Syst. 2021, 23, 10275–10286. [Google Scholar] [CrossRef]
- Evans, J.; Berg, M. Challenges in Simulation of Rail Vehicle Dynamics. Veh. Syst. Dyn. 2009, 47, 1023–1048. [Google Scholar] [CrossRef]
- Bondarenko, I.; Severino, A.; Olayode, I.O.; Campisi, T.; Neduzha, L. Dynamic Sustainable Processes Simulation to Study Transport Object Efficiency. Infrastructures 2022, 7, 124. [Google Scholar] [CrossRef]
- Myamlin, S.; Neduzha, L.; Ten, O.; Shvets, A. Determination of Dynamic Performance of Freight Cars Taking Into Account Technical Condition of Side Bearers. Sci. Transp. Prog. 2013, 1, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Cheli, F.; Di Gialleonardo, E.; Melzi, S. Freight Trains Dynamics: Effect of Payload and Braking Power Distribution on Coupling Forces. Veh. Syst. Dyn. 2017, 55, 464–479. [Google Scholar] [CrossRef]
- Kovalchuk, V.; Sysyn, M.; Gerber, U.; Nabochenko, O.; Zarour, J.; Dehne, S. Experimental Investigation of the Influence of Train Velocity and Travel Direction on the Dynamic Behavior of Stiff Common Crossings. Facta Univ. Ser. Mech. Eng. 2019, 17, 345–356. [Google Scholar] [CrossRef]
- Jóvér, V.; Gáspár, L.; Fischer, S. Investigation of Tramway Line No. 1, in Budapest, Based on Dynamic Measurements. Acta Polytech. Hung. 2022, 19, 65–76. [Google Scholar] [CrossRef]
- Li, X.; Lo, H.K. Energy Minimization in Dynamic Train Scheduling and Control for Metro Rail Operations. Transp. Res. Part B Methodol. 2014, 70, 269–284. [Google Scholar] [CrossRef]
- Gonzalez, R.; Jayakumar, P.; Iagnemma, K. Generation of Stochastic Mobility Maps for Large-Scale Route Planning of Ground Vehicles: A Case Study. J. Terramechanics 2017, 69, 1–11. [Google Scholar] [CrossRef]
- Zhong, W.; Li, S.; Xu, H.; Zhang, W. On-line Train Speed Profile Generation of High-Speed Railway with Energy-Saving: A Model Predictive Control Method. IEEE Trans. Intell. Transp. Syst. 2020, 23, 4063–4074. [Google Scholar] [CrossRef]
- Bin, Z.; Shijun, Y.; Lanfang, Z.; Daming, L.; Yalan, C. Energy-Efficient Speed Profile Optimization for High-Speed Railway Considering Neutral Sections. IEEE Access 2021, 9, 25090–25100. [Google Scholar] [CrossRef]
- Heirich, O.; Robertson, P.; Strang, T. RailSLAM-Localization of Rail Vehicles and Mapping of Geometric Railway Tracks. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 5212–5219. [Google Scholar] [CrossRef] [Green Version]
- Lei, X.; Noda, N.A. Analyses of Dynamic Response of Vehicle and Track Coupling System with Random Irregularity of Track Vertical Profile. J. Sound Vib. 2002, 258, 147–165. [Google Scholar] [CrossRef]
- Burak-Romanowski, R.; Woźniak, K. Energy Aspects of Modernization of Railway Lines. Tech. Trans. Electrtical Eng. 2011, 108, 13–29. [Google Scholar]
- Kacprzak, J. Teoria Trakcji Elektrycznej; Wydawnictwo Politechniki Warszawskiej: Warszawa, Poland, 1996. [Google Scholar]
- Biliński, J.; Błażejewski, M.; Malczewska, M.; Szczepiórkowska, M. Resistance of Traction Vehicles Movement—Empirical Equations (1). TTS Tech. Transp. Szyn. 2019, 26, 34–39. [Google Scholar]
- Kampczyk, A. Determinants of Specific Traction Electricity Consumption in a Sustainability Development System Rail Transport. In Proceedings of the International Scientific Conference Innovations 4.0 in the Post COVID Global World, (ISCIW 2022), Warsaw, Poland, 4–6 October 2022. [Google Scholar]
- Kampczyk, A.; Gamon, W.; Gawlak, K. Implementation of Non-Contact Temperature Distribution Monitoring Solutions for Railway Vehicles in a Sustainability Development System Transport. Sensors 2022, 22, 9624. [Google Scholar] [CrossRef]
- Geoportal for Spatial Information Infrastructure. Geoportal Infrastruktury Informacji Przestrzennej. Available online: https://mapy.geoportal.gov.pl/imap/Imgp_2.html (accessed on 4 January 2023).
- Technical Conditions for Maintaining Track Surface on Railway Lines Id-1 (D-1). Warsaw. 2015. Available online: https://www.plk-sa.pl/klienci-i-kontrahenci/akty-prawne-i-przepisy/instrukcje-pkp-polskich-linii-kolejowych-sa/linie-kolejowe (accessed on 21 January 2023).
- Regulation of the Minister of Transport and Maritime Economy of 10 September 1998 on Technical Conditions to Be Met by Railway Structures and Their Location. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU19981510987 (accessed on 24 January 2023).
- Act of 28 March 2003 on Railway Transport. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20030860789 (accessed on 24 January 2023).
- Act of 7 July 1994. Building Law. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu19940890414 (accessed on 24 January 2023).
- Act of 17 May 1989. Geodetic and Cartographic Law. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU19890300163 (accessed on 9 January 2023).
- Technical Conditions for Maintaining Track Surface on Railway Lines Id-1 (D-1); PKP Polskie Linie Kolejowe: Warsaw, Poland, 2005.
- 4 Types of Classification of Terrain. Available online: https://civilnoteppt.com/4-types-of-classification-of-terrain-highway-engineering/ (accessed on 9 December 2022).
- Prinz, D.; Oweis, T.; Oberle, A. Rainwater Harvesting for Dry Land Agriculture—Developing a Methodology Based on Remote Sensing and GIS. In Proceedings of the XIII International Congress of Agricultural Engineering, Rabat, Morocco, 2–6 February 1998. [Google Scholar]
- Encyklopedia Leśna. Równina. Available online: https://www.encyklopedialesna.pl/haslo/rownina-1/ (accessed on 7 December 2022).
- Klimaszewski, M. Geomorfologia Polski, t. 1 i 2; PWN: Warszawa, Poland, 1994. [Google Scholar]
- Starkel, L. Geografia Polski—Środowisko Przyrodnicze; PWN: Warszawa, Poland, 1999. [Google Scholar]
- Regulation of the Council of Ministers of 15 October 2012 on the National Spatial Reference System. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20120001247 (accessed on 21 December 2022).
- Technical Standard Specifying the Principles and Accuracy of Surveying Measurements for the Installation of Multifunctional Railway Track Axis Adjustment Signs Ig-7. 2018. Available online: https://www.plk-sa.pl/klienci-i-kontrahenci/akty-prawne-i-przepisy/geodezja (accessed on 14 December 2022).
- Technical Standard About Organization and Execution of Measurements in Railway Surveying GK-1, Warsaw. 2015. Available online: https://www.pkp.pl/pl/geodezja-i-kartografia/informacje-ogolne (accessed on 17 December 2022).
- Regulation of the Minister of Development of 18 August 2020 on the Technical Standards for Performing Situational and Elevation Geodetic Measurements and for Developing and Transferring the Results of Such Measurements to the National Geodetic and Cartographic Resource. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20200001429 (accessed on 17 January 2023).
- PN-EN 50463; Railway Applications—Measurement of Energy on Board a Train. PKN: Warsaw, Poland, 2020.
- Scheepmaker, G.M.; Willeboordse, H.Y.; Hoogenraad, J.H.; Luijt, R.S.; Goverde, R.M.P. Comparing Train Driving Strategies on Multiple Key Performance Indicators. J. Rail Transp. Plan. Manag. 2020, 13, 100163. [Google Scholar] [CrossRef]
- Kuźmiński, Ł.; Maśloch, P.; Bazan, M.; Janiczek, T.; Halawa, K.; Wojtaszek, H.; Miciuła, I.; Chajduga, T.; Kawecki, A.; Czwartosz, R.; et al. Management of Delay Optimization at Intersections. Energies 2020, 13, 3087. [Google Scholar] [CrossRef]
- Wojtaszek, H.; Miciuła, I. Analysis of Factors Giving the Opportunity for Implementation of Innovations on the Example of Manufacturing Enterprises in the Silesian Province. Sustainability 2019, 11, 5850. [Google Scholar] [CrossRef] [Green Version]
- Żywiołek, J.; Rosak-Szyrocka, J.; Mrowiec, M. Knowledge Management in Households about Energy Saving as Part of the Awareness of Sustainable Development. Energies 2021, 14, 8207. [Google Scholar] [CrossRef]
- Ibrahim, A.; Jiang, F. The Electric Vehicle Energy Management: An Overview of the Energy System and Related Modeling and Simulation. Renew. Sustain. Energy Rev. 2021, 144, 111049. [Google Scholar] [CrossRef]
- Maciuk, K. Monitoring of Galileo on-Board Oscillators Variations, Disturbances & Noises. Measurement 2019, 147, 106843. [Google Scholar] [CrossRef]
- Maciuk, K. GPS-only, GLONASS-only and Combined GPS+GLONASS Absolute Positioning under Different Sky View Conditions. Teh. Vjesn. 2018, 25, 933–939. [Google Scholar] [CrossRef]
- Jánešová, M.; Kratochvíl, R. Use of Clustering for Creating Economic-Mathematical Model of Aweb Portal. Neural Netw. World 2019, 2, 61–70. [Google Scholar] [CrossRef]
- González-Gil, A.; Palacin, R.; Batty, P. Sustainable Urban Rail Systems: Strategies and Technologies for Optimal Management of Regenerative Braking Energy. Energy Convers. Manag. 2013, 75, 374–388. [Google Scholar] [CrossRef] [Green Version]
Technical Exploitation Parameters of Railway Lines | ||
---|---|---|
Name | First-Rate | Magistral |
exploitation load T | 10 ≤ T < 25 | T ≥ 25 |
speed of passenger trains Vm | 80 < Vm ≤ 120 | 120 < Vm ≤ 200 |
speed of freight trains Vtow | 60 < Vtow ≤ 80 | 80 < Vtow ≤ 120 |
permissible axle loads P | 210 ≤ P < 221 | P ≤ 221 |
Segment Designation | Name of Linear Objects | q | j0 | EIwe [kWh] |
---|---|---|---|---|
1–2 | Lubliniec–Rusinowice | 33.34 | 38.19 | 28.00 |
2–3 | Rusinowice–Koszęcin | 34.17 | 39.14 | 28.59 |
3–4 | Koszęcin–Kalety | 30.69 | 35.15 | 31.82 |
4–5 | Kalety–Miasteczko Śląskie | 25.65 | 29.38 | 28.68 |
5–6 | Miasteczko Śląskie–Tarnowskie Góry | 28.59 | 32.75 | 24.25 |
6–7 | Tarnowskie Góry–Nakło Śląskie | 43.33 | 49.63 | 20.49 |
7–8 | Nakło Śląskie–Radzionków | 49.69 | 56.92 | 17.45 |
8–9 | Radzionków–Radzionków Rojca | 47.10 | 53.95 | 11.31 |
9–10 | Radzionków Rojca–Bytom Północny | 44.63 | 51.12 | 16.74 |
10–11 | Bytom Północny–Bytom Karb | 18.57 | 21.27 | 7.73 |
11–12 | Bytom Karb–Bytom | 18.45 | 21.14 | 6.38 |
12–13 | Bytom–Chorzów Stary | 27.39 | 31.38 | 16.27 |
13–14 | Chorzów Stary–Chorzów Miasto | 27.44 | 31.43 | 7.97 |
14–15 | Chorzów Miasto–Chorzów Batory | 19.57 | 22.42 | 6.42 |
15–16 | Chorzów Batory–Katowice Załęże | 37.14 | 42.54 | 19.44 |
16–17 | Katowice Załęże–Katowice | 35.89 | 41.11 | 10.60 |
SUM | 282.13 |
Segment Designation | Name of Linear Objects | qJRT braking | j0JRT braking | EIIweJRT braking [kWh] |
---|---|---|---|---|
1–2 | Lubliniec–Rusinowice | 48.77 | 55.86 | 40.95 |
2–3 | Rusinowice–Koszęcin | 50.72 | 58.10 | 42.43 |
3–4 | Koszęcin–Kalety | 44.37 | 50.82 | 46.00 |
4–5 | Kalety–Miasteczko Śląskie | 44.23 | 50.66 | 49.46 |
5–6 | Miasteczko Śląskie–Tarnowskie Góry | 42.74 | 48.96 | 36.25 |
6–7 | Tarnowskie Góry–Nakło Śląskie | 72.93 | 83.54 | 34.50 |
7–8 | Nakło Śląskie–Radzionków | 69.69 | 79.82 | 24.47 |
8–9 | Radzionków–Radzionków Rojca | 50.65 | 58.02 | 12.17 |
9–10 | Radzionków Rojca–Bytom Północny | 37.33 | 42.76 | 14.00 |
10–11 | Bytom Północny–Bytom Karb | 27.33 | 31.31 | 11.37 |
11–12 | Bytom Karb–Bytom | 17.72 | 20.30 | 6.13 |
12–13 | Bytom–Chorzów Stary | 54.58 | 62.52 | 32.41 |
13–14 | Chorzów Stary–Chorzów Miasto | 44.02 | 50.42 | 12.78 |
14–15 | Chorzów Miasto–Chorzów Batory | 13.51 | 15.47 | 4.43 |
15–16 | Chorzów Batory–Katowice Załęże | 53.93 | 61.77 | 28.22 |
16–17 | Katowice Załęże–Katowice | 46.70 | 53.49 | 13.79 |
SUM | 409.36 |
Segment Designation | Name of Linear Objects | qCWRt braking | j0CWRt braking | EIIweCWRt braking [kWh] |
---|---|---|---|---|
1–2 | Lubliniec–Rusinowice | 48.66 | 55.74 | 40.86 |
2–3 | Rusinowice–Koszęcin | 50.61 | 57.97 | 42.33 |
3–4 | Koszęcin–Kalety | 44.25 | 50.68 | 45.88 |
4–5 | Kalety–Miasteczko Śląskie | 44.11 | 50.53 | 49.32 |
5–6 | Miasteczko Śląskie–Tarnowskie Góry | 42.64 | 48.84 | 36.16 |
6–7 | Tarnowskie Góry–Nakło Śląskie | 72.83 | 83.43 | 34.45 |
7–8 | Nakło Śląskie–Radzionków | 69.59 | 79.71 | 24.44 |
8–9 | Radzionków–Radzionków Rojca | 50.57 | 57.93 | 12.15 |
9–10 | Radzionków Rojca–Bytom Północny | 37.24 | 42.66 | 13.97 |
10–11 | Bytom Północny–Bytom Karb | 27.27 | 31.23 | 11.35 |
11–12 | Bytom Karb–Bytom | 17.67 | 20.24 | 6.11 |
12–13 | Bytom–Chorzów Stary | 54.50 | 62.43 | 32.36 |
13–14 | Chorzów Stary–Chorzów Miasto | 43.95 | 50.35 | 12.76 |
14–15 | Chorzów Miasto–Chorzów Batory | 13.44 | 15.40 | 4.41 |
15–16 | Chorzów Batory–Katowice Załęże | 53.83 | 61.66 | 28.17 |
16–17 | Katowice Załęże–Katowice | 46.63 | 53.42 | 13.77 |
SUM | 408.50 |
Segment Designation | Name of Linear Objects | qJRT startup | j0JRT startup | EIIweJRT startup [kWh] |
---|---|---|---|---|
1–2 | Lubliniec–Rusinowice | 47.30 | 54.18 | 39.72 |
2–3 | Rusinowice–Koszęcin | 49.24 | 56.40 | 41.19 |
3–4 | Koszęcin–Kalety | 42.88 | 49.12 | 44.46 |
4–5 | Kalety–Miasteczko Śląskie | 42.74 | 48.96 | 47.80 |
5–6 | Miasteczko Śląskie–Tarnowskie Góry | 41.28 | 47.29 | 35.01 |
6–7 | Tarnowskie Góry–Nakło Śląskie | 71.48 | 81.88 | 33.81 |
7–8 | Nakło Śląskie–Radzionków | 68.23 | 78.16 | 23.96 |
8–9 | Radzionków–Radzionków Rojca | 49.22 | 56.38 | 11.82 |
9–10 | Radzionków Rojca–Bytom Północny | 35.88 | 41.10 | 13.46 |
10–11 | Bytom Północny–Bytom Karb | 25.92 | 29.69 | 10.79 |
11–12 | Bytom Karb–Bytom | 16.32 | 18.69 | 5.65 |
12–13 | Bytom–Chorzów Stary | 53.15 | 60.88 | 31.56 |
13–14 | Chorzów Stary–Chorzów Miasto | 42.60 | 48.80 | 12.37 |
14–15 | Chorzów Miasto–Chorzów Batory | 12.10 | 13.86 | 3.97 |
15–16 | Chorzów Batory–Katowice Załęże | 52.48 | 60.11 | 27.46 |
16–17 | Katowice Załęże–Katowice | 45.28 | 51.87 | 13.37 |
SUM | 396.39 |
Segment Designation | Name of Linear Objects | qCWRt startup | j0CWRt startup | EIIweCWRt startup [kWh] |
---|---|---|---|---|
1–2 | Lubliniec–Rusinowice | 22.48 | 25.75 | 39.58 |
2–3 | Rusinowice–Koszęcin | 47.14 | 53.99 | 41.04 |
3–4 | Koszęcin–Kalety | 49.06 | 56.20 | 44.27 |
4–5 | Kalety–Miasteczko Śląskie | 42.70 | 48.91 | 47.59 |
5–6 | Miasteczko Śląskie–Tarnowskie Góry | 42.56 | 48.75 | 34.88 |
6–7 | Tarnowskie Góry–Nakło Śląskie | 41.13 | 47.11 | 33.75 |
7–8 | Nakło Śląskie–Radzionków | 71.35 | 81.72 | 23.92 |
8–9 | Radzionków–Radzionków Rojca | 68.10 | 78.01 | 11.80 |
9–10 | Radzionków Rojca–Bytom Północny | 49.11 | 56.26 | 13.42 |
10–11 | Bytom Północny–Bytom Karb | 35.76 | 40.96 | 10.75 |
11–12 | Bytom Karb–Bytom | 25.84 | 29.60 | 5.62 |
12–13 | Bytom–Chorzów Stary | 16.25 | 18.61 | 31.49 |
13–14 | Chorzów Stary–Chorzów Miasto | 53.03 | 60.75 | 12.34 |
14–15 | Chorzów Miasto–Chorzów Batory | 42.52 | 48.71 | 3.94 |
15–16 | Chorzów Batory–Katowice Załęże | 12.02 | 13.76 | 27.39 |
16–17 | Katowice Załęże–Katowice | 52.34 | 59.95 | 13.35 |
SUM | 395.13 |
Electric Multiple Units | Energy Intake Ewe [kWh] | Energy Returned Ewy [kWh] | Difference in Summer Ewe–Ewy [kWh] |
---|---|---|---|
Summer–July 2021 | |||
EN57AKŚ-223 | 272.26 | 92.68 | 179.58 |
EN57AKŚ-730 | 348.53 | 117.84 | 230.68 |
Summer–August 2021 | |||
EN57AKŚ-223 | 264.11 | 85.89 | 178.21 |
EN57AKŚ-730 | 344.68 | 111.63 | 233.05 |
Summer average | |||
EN57AKŚ-223 | 268.18 | 89.29 | 178.89 |
EN57AKŚ-730 | 346.61 | 114.74 | 231.87 |
Electric Multiple Units | Energy Intake Ewe [kWh] | Energy Returned Ewy [kWh] | Difference in Winter Ewe–Ewy [kWh] |
---|---|---|---|
Winter–January 2022 | |||
EN57AKŚ-223 | 387.16 | 92.16 | 295.00 |
EN57AKŚ-730 | 398.42 | 88.05 | 310.37 |
Winter–February 2022 | |||
EN57AKŚ-223 | 373.26 | 94.21 | 279.05 |
EN57AKŚ-730 | 372.37 | 91.42 | 280.95 |
Winter average | |||
EN57AKŚ-223 | 380.21 | 93.18 | 287.03 |
EN57AKŚ-730 | 385.39 | 89.74 | 295.66 |
Segment Designation | Name of Linear Objects | Railway Track Type | EIIwe braking [kWh] | EIIwe startup [kWh] | EIIwe Average [kWh] |
---|---|---|---|---|---|
1–2 | Lubliniec–Rusinowice | CWRt | 40.86 | 39.58 | 40.22 |
2–3 | Rusinowice–Koszęcin | CWRt | 42.33 | 41.04 | 41.69 |
3–4 | Koszęcin–Kalety | CWRt | 45.88 | 44.27 | 45.08 |
4–5 | Kalety–Miasteczko Śląskie | CWRt | 49.32 | 47.59 | 48.46 |
5–6 | Miasteczko Śląskie–Tarnowskie Góry | CWRt | 36.16 | 34.88 | 35.52 |
6–7 | Tarnowskie Góry–Nakło Śląskie | CWRt | 34.45 | 33.75 | 34.10 |
7–8 | Nakło Śląskie–Radzionków | CWRt | 24.44 | 23.92 | 24.18 |
8–9 | Radzionków–Radzionków Rojca | CWRt | 12.15 | 11.80 | 11.98 |
9–10 | Radzionków Rojca–Bytom Północny | CWRt | 13.97 | 13.42 | 13.70 |
10–11 | Bytom Północny–Bytom Karb | JRT | 11.37 | 10.79 | 11.08 |
11–12 | Bytom Karb–Bytom | JRT | 6.13 | 5.65 | 5.89 |
12–13 | Bytom–Chorzów Stary | CWRt | 32.36 | 31.49 | 31.93 |
13–14 | Chorzów Stary–Chorzów Miasto | JRT | 12.78 | 12.37 | 12.58 |
14–15 | Chorzów Miasto–Chorzów Batory | JRT | 4.43 | 3.97 | 4.20 |
15–16 | Chorzów Batory–Katowice Załęże | CWRt | 28.17 | 27.39 | 27.78 |
16–17 | Katowice Załęże–Katowice | CWRt | 13.77 | 13.35 | 13.56 |
SUM | 401.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kampczyk, A.; Gamon, W.; Gawlak, K. Integration of Traction Electricity Consumption Determinants with Route Geometry and Vehicle Characteristics. Energies 2023, 16, 2689. https://doi.org/10.3390/en16062689
Kampczyk A, Gamon W, Gawlak K. Integration of Traction Electricity Consumption Determinants with Route Geometry and Vehicle Characteristics. Energies. 2023; 16(6):2689. https://doi.org/10.3390/en16062689
Chicago/Turabian StyleKampczyk, Arkadiusz, Wojciech Gamon, and Katarzyna Gawlak. 2023. "Integration of Traction Electricity Consumption Determinants with Route Geometry and Vehicle Characteristics" Energies 16, no. 6: 2689. https://doi.org/10.3390/en16062689
APA StyleKampczyk, A., Gamon, W., & Gawlak, K. (2023). Integration of Traction Electricity Consumption Determinants with Route Geometry and Vehicle Characteristics. Energies, 16(6), 2689. https://doi.org/10.3390/en16062689