Voltage Correction Factors for Air-Insulated Transmission Lines Operating in High-Altitude Regions to Limit Corona Activity: A Review
Abstract
:1. Introduction
2. Electric Field Formulas Based on Peek’s Work
3. Environmental Conditions and Atmospheric Corrections
3.1. Environmental Conditions
3.2. Atmospheric Correction Factors
4. Published Correction Factors
4.1. Sphere-Sphere Gap, Rod-Rod Gap and Rod-Plane Gaps
4.2. Conductors of Circular Cross Section
4.3. Tabulated Altitude Correction Factors Found in International Standards
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nelson, J.P. High-Altitude Considerations for Electrical Power Systems and Components. IEEE Trans. Ind. Appl. 1984, IA-20, 407–412. [Google Scholar] [CrossRef]
- Phillips, T.; Robertson, L.; Rohlfs, A.; Thompson, R. Influence of Air Density on Electrical Strength of Transmission Line Insulation. IEEE Trans. Power Appar. Syst. 1967, PAS-86, 948–961. [Google Scholar] [CrossRef]
- Rickmann, J.; Elg, A.-P.; Fan, J.; Li, Q.; Liao, Y.; Pigini, A.; Tabakovic, D.; Wu, D.; Yujian, D. Current State of Analysis and Comparison of Atmospheric and Altitude Correction Methods for Air Gaps and Clean Insulators. In Proceedings of the 19th International Symposium on High Voltage Engineering, Pilsen, Czech Republic, 23–28 August 2015; pp. 1–6. [Google Scholar]
- Wu, D.; Li, M.; Kvarngren, M. Uncertainties in the application of atmospheric and altitude corrections as recommended in IEC standards. In Proceedings of the 16th International Symposium on High Voltage Engineering, Cape Town, South Africa, 24–28 August 2009; pp. 1–6. [Google Scholar]
- Du, Z.; Huang, D.; Qiu, Z.; Shu, S.; Ruan, J.; Huang, D.; Shu, S.; Du, Z. Prediction study on positive DC corona onset voltage of rod-plane air gaps and its application to the design of valve hall fittings. IET Gener. Transm. Distrib. 2016, 10, 1519–1526. [Google Scholar] [CrossRef]
- Qi-fa, W.; Wei-ning, W.; Yong, C. Discussion of UHV transmission line insulation design and the effect on environment. In Proceedings of the Intrrnational Workshop on UHVAC Transmission Technology, Beijing, China, 2005; pp. 46–57. [Google Scholar]
- Erich Heberlein, G.; Malkowski, C.; Cibulka, M.J. The effect of altitude on the operation performance of low voltage switchgear and controlgear components. In Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No.00CH37129); IEEE: Piscataway, NJ, USA, 2000; Volume 4, pp. 2688–2694. [Google Scholar]
- Hu, J.; Sun, C.; Jiang, X.; Yang, Q.; Zhang, Z.; Shu, L. Model for Predicting DC Flashover Voltage of Pre-Contaminated and Ice-Covered Long Insulator Strings under Low Air Pressure. Energies 2011, 4, 628–643. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, A. Calculation of Spark Breakdown or Corona Starting Voltages in Nonuniform Fields. IEEE Trans. Power Appar. Syst. 1967, PAS-86, 200–206. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, A. On the electrical breakdown of gaseous dielectrics-an engineering approach. IEEE Trans. Electr. Insul. 1989, 24, 721–739. [Google Scholar] [CrossRef] [Green Version]
- Riba, J.-R.; Abomailek, C.; Casals-Torrens, P.; Capelli, F. Simplification and cost reduction of visual corona tests. IET Gener. Transm. Distrib. 2018, 12, 834–841. [Google Scholar] [CrossRef] [Green Version]
- Lucas, J.R. High Voltage Engineering; University of Moratuwa: Moratuwa, Sri Lanka, 2001; p. 204. [Google Scholar]
- Schlabbach, J.; Rofalski, K.H. Power System Engineering: Planning, Design, and Operation of Power Systems and Equipment; WILEY-VCH Verlag GmbH & Co.: Weinheim, Germany, 2008; ISBN 978-3-527-40759-0. [Google Scholar]
- Electric Power Research Institute. Transmission Line Reference Book 345 kV and above, 2014th ed.; Electric Power Research Institute (EPRI): Palo Alto, CA, USA, 2014. [Google Scholar]
- USDA. Design Manual for High Voltage Transmission Lines; USDA: Washington, DC, USA, 2005.
- Hernández-Guiteras, J.; Riba, J.-R.; Casals-Torrens, P. Determination of the corona inception voltage in an extra high voltage substation connector. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 82–88. [Google Scholar] [CrossRef]
- Huang, S.; Liu, Y.; Chen, S.; Zhou, G.; Zhuang, W. Corona Onset Characteristics of Bundle Conductors in UHV AC Power Lines at 2200 m Altitude. Energies 2018, 11, 1047. [Google Scholar] [CrossRef]
- Robertson, L.M.; Wagner, C.F.; Bliss, T.J. Colorado High-Altitude Corona Tests I—Scope, Tests, and Instrumentation. Trans. Am. Inst. Electr. Eng. Part III Power Appar. Syst. 1957, 76, 356–364. [Google Scholar] [CrossRef]
- Robertson, L.M.; Lantz, A.D. Colorado High-Altitude Corona Tests II—Insulators and Associated Hardware. Trans. Am. Inst. Electr. Eng. Part III Power Appar. Syst. 1957, 76, 366–369. [Google Scholar] [CrossRef]
- Robertson, L.M.; Shankle, D.F.; Smith, J.C.; O’neil, J.E. Leadville High-Altitude Extra-High-Voltage Test Project Part II—Corona-Loss Investigations. Trans. Am. Inst. Electr. Eng. Part III Power Appar. Syst. 1961, 80, 725–732. [Google Scholar] [CrossRef]
- Hu, Q.; Shu, L.; Jiang, X.; Zhang, Z.; Hu, J. Effect of Atmospheric Parameters on AC Corona Onset Voltage of Conductors. In Proceedings of the 2010 International Conference on High Voltage Engineering and Application, New Orleans, LA, USA, 11–14 October 2010; pp. 417–420. [Google Scholar]
- Yu, Q.; Ji, Y.; Zhang, Z.; Wen, Z.; Feng, C. Design and research of high voltage transmission lines on the Qinghai–Tibet Plateau—A Special Issue on the Permafrost Power Lines. Cold Reg. Sci. Technol. 2016, 121, 179–186. [Google Scholar] [CrossRef]
- Xie, L.; Zhao, L.; Lu, J.; Cui, X.; Ju, Y. Altitude Correction of Radio Interference of HVDC Transmission Lines Part I: Converting Method of Measured Data. IEEE Trans. Electromagn. Compat. 2017, 59, 275–283. [Google Scholar] [CrossRef]
- Zhao, L.; Cui, X.; Xie, L.; Lu, J.; He, K.; Ju, Y. Altitude Correction of Radio Interference of HVdc Transmission Lines Part II: Measured Data Analysis and Altitude Correction. IEEE Trans. Electromagn. Compat. 2017, 59, 284–292. [Google Scholar] [CrossRef]
- He, W.; Wan, B.; Lan, L.; Pei, C.; Zhang, J.; Chen, Y.; Chen, X.; Wen, X. Effect of Altitude on the Audible Noise Level of AC Power lines. Energies 2017, 10, 1055. [Google Scholar] [CrossRef]
- Biswas, H.; Sharma, V.D.; Chibber, O.P.; Ray, S.K. Himalayas Challenge 400-kV Installation. Transm. Distrib. World Mag. 2008, 60, 44–51. [Google Scholar]
- Cross Border Indo-Nepal Transmission Line project. Available online: http://sjvn.nic.in/writereaddata/Portal/Images/transmission_line_18_04_13.pdf (accessed on 11 December 2017).
- Línea de Transmisión de 500 kV Mantaro-Marcona-Socabaya-Montalvo (917 km). Available online: https://www.osinergmin.gob.pe/seccion/centro_documental/electricidad/Documentos/PROYECTOS GFE/Acordeón/Transmisión/2.1.1.pdf (accessed on 11 December 2017).
- Gutman, I.; Pigini, A.; Rickmann, J.; Fan, J.; Wu, D.; Gockenbach, E. Atmospheric and altitude correction of air gaps, clean and polluted insulators: State-of-the-art within CIGRÉ and IEC. In CIGRÉ Session 2014; Cigré: Paris, France, 2014; pp. 1–10. [Google Scholar]
- Peek, F.W. The Law of Corona and the Dielectric Strength of Air-II. Proc. Am. Inst. Electr. Eng. 1911, 30, 1051–1092. [Google Scholar] [CrossRef]
- Peek, F.W. Law of Corona and Dielectric Strength of Air-III. Trans. Am. Inst. Electr. Eng. 1913, XXXII, 1767–1785. [Google Scholar] [CrossRef]
- Peek, F.W. The Law of Corona and the Dielectric Strength of Air-IV The Mechanism of Corona Formation and Loss. Trans. Am. Inst. Electr. Eng. 1927, XLVI, 1009–1024. [Google Scholar] [CrossRef]
- Krasniqi, I.; Komoni, V.; Alidemaj, A.; Kabashi, G. Corona losses dependence from the conductor diameter. In Proceedings of the 10th WSEAS international conference on System science and simulation in engineering, Penang, Malaysia, 3–5 October 2011. [Google Scholar]
- The Central Station Engineers of the Westinghouse Eectric Corporation, Electrical Transmission and Distribution Reference Book; Westinghouse: East Pittsburgh, PA, USA, 1964.
- Li, Z.-X.; Fan, J.-B.; Yin, Y.; Chen, G. Numerical calculation of the negative onset corona voltage of high-voltage direct current bare overhead transmission conductors. IET Gener. Transm. Distrib. 2010, 4, 1009–1015. [Google Scholar] [CrossRef]
- IEEE. 4-2013—IEEE Standard for High-Voltage Testing Techniques; IEEE: Piscataway, NJ, USA, 2013. [Google Scholar] [CrossRef]
- IEEE. C37.04-1999—IEEE Standard Rating Structure for AC High-Voltage Circuit Breakers; IEEE: Piscataway, NJ, USA, 1999. [Google Scholar] [CrossRef]
- IEEE. C57.13-2016—IEEE Standard Requirements for Instrument Transformers; IEEE: Piscataway, NJ, USA, 2008; ISBN 978-0-7381-5411-4. [Google Scholar]
- IEEE. ANSI/IEEE C37.30-1971—American National Standard Definitions and Requirements for High-Voltage Air Switches, Insulators, and Bus Supports; IEEE: Piscataway, NJ, USA, 1971. [Google Scholar] [CrossRef]
- Institute, E.P.R. EPRI AC Transmission Line Reference Book: 200 kV and Above, 2014th ed.; Electric Power Research Institute: Palo Alto, CA, USA, 2014. [Google Scholar]
- Addendum to Doc.20: Interferences Produced by Corona Effect of Electric Systems. Available online: https://e-cigre.org/publication/061-addendum-to-doc20--interferences-produced-by-corona-effect-of-electric-systems (accessed on 10 July 2018).
- Naidu, M.S.; Kamaraju, V. High Voltage Engineering; Tata McGraw-Hill Publishing Company Limited: New York, NY, USA, 1996; ISBN 0-07-462286-2. [Google Scholar]
- Carsimamovic, A.; Mujezinovic, A.; Carsimamovic, S.; Bajramovic, Z.; Kosarac, M.; Stankovic, K. Calculation of the corona onset voltage gradient under variable atmospheric correction factors. In Proceedings of the IEEE EUROCON 2015—International Conference on Computer as a Tool (EUROCON), Salamanca, Spain, 8–11 September 2015; pp. 1–5. [Google Scholar]
- Fridman, A.; Fridman, A.; Kennedy, L.A. Plasma Physics and Engineering, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2011; ISBN 9781439812280. [Google Scholar]
- He, W.; He, J.; Wan, B.; Chen, Y.; Pei, C.; Chen, Y. Influence of altitude on radio interference level of AC power lines based on corona cage. IET Sci. Meas. Technol. 2015, 9, 861–865. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, B.; He, J. Current-voltage characteristics of dc corona discharges in air between coaxial cylinders. Phys. Plasmas 2015, 22, 023501. [Google Scholar] [CrossRef]
- Peek, F.W. Dielectric phenomena in high-voltage engineering; McGraw-Hill Book Company, Inc.: New York, NY, USA, 1929. [Google Scholar]
- Kuffel, J.; Zaengl, W.S.; Kuffel, P. High Voltage Engineering Fundamentals, 2nd ed.; Elsevier: New York City, NY, USA, 2000; ISBN 978-0-7506-3634-6. [Google Scholar]
- Zaengl, W.S.; Nyffenegger, H.U. Critical Field Strength for Cylindrical Conductors in Air: An Extension of Peek’s Formula. In Proceedings of the 3rd International Conference on Gas Discharges, London, UK, 9–12 September 1974; pp. 302–305. [Google Scholar]
- Yin, F.; Farzaneh, M.; Jiang, X. Corona investigation of an energized conductor under various weather conditions. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 462–470. [Google Scholar] [CrossRef]
- Al-Hamouz, Z.M. Corona power loss, electric field, and current density profiles in bundled horizontal and vertical bipolar conductors. IEEE Trans. Ind. Appl. 2002, 38, 1182–1189. [Google Scholar] [CrossRef]
- Huang, W.; He, Z.; Cai, W.; Deng, H.; Deng, W.; Qin, H. Study on the environmental factors of rod-plane gap discharge based on UV imaging. Gaodianya Jishu/High Volt. Eng. 2015, 41, 2788–2794. [Google Scholar] [CrossRef]
- Maskell, B.R. The Effect of Humidity on a Corona Discharge in Air. Available online: https://www.researchgate.net/publication/235121402_The_Effect_of_Humidity_on_a_Corona_Discharge_in_AiR (accessed on 10 July 2018).
- Pretorius, P.H.; Britten, A.C.; Govender, T.; Hubbard, K.R.; Mahatho, N.; Parus, N. On the electromagnetic interference associated with the power line carrier system of the cahora bassa hvdc line—A hypothesis based on recent investigations and observations. In Cigré Session 2012; Cigré: Paris, France, 2012; pp. 1–8. [Google Scholar]
- Maruvada, P.S.; Bisnath, S. Corona in Transmission Systems: Theory, Design and Performance; Crown Publications: Johannesburg, South Africa, 2011; ISBN 9780620493888. [Google Scholar]
- Garcia, J.; Herrera, F.; Ortiz, H. Study of the breakdown voltage of the air in high altitudes, applying lightning impulses (1.2/50 s) under conditions of controlled humidity and temperature. In Proceedings of the 1999 Eleventh International Symposium on High Voltage Engineering, London, UK, 27–23 August 1999. [Google Scholar]
- IEEE. 4-1995—IEEE Standard Techniques for High-Voltage Testing; IEEE: Piscataway, NJ, USA, 1995. [Google Scholar] [CrossRef]
- Hu, Q.; Shu, L.; Jiang, X.; Sun, C.; Zhang, S.; Shang, Y. Effects of air pressure and humidity on the corona onset voltage of bundle conductors. IET Gener. Transm. Distrib. 2011, 5, 621–629. [Google Scholar] [CrossRef]
- IEEE. IEEE Standard Definitions of Terms Relating to Corona and Field Effects of Overhead Power Lines; IEEE: Piscataway, NJ, USA, 2005. [Google Scholar] [CrossRef]
- ISO ISO 2533:1975—Standard Atmosphere. Available online: https://www.iso.org/standard/7472.html (accessed on 10 July 2018).
- High-voltage test techniques—Part 1: General definitions and test requirements. Available online: https://webstore.iec.ch/publication/300 (accessed on 10 July 2018).
- Hu, Q.; Shu, L.; Jiang, X.; Sun, C.; Yuan, Q.; Yang, Z. Effect of Atmospheric Factors on AC Corona Inception Voltage of Conductors and Its Correction. Power Syst. Technol. 2010, 34, 70–76. [Google Scholar]
- Liu, D.-M.; Guo, F.-S.; Sima, W.-X. Modification of DC Flashover Voltage at High Altitude on the Basis of Molecular Gas Dynamic. J. Electr. Eng. Technol. 2015, 10, 625–633. [Google Scholar] [CrossRef]
- Chan, J.K.; Kuffel, J.; Sibilant, G.C.; Bell, J. Methodology for HVDC corona tests. In 2016 CIGRE-IEC Colloquium; Cigré: Montréal, QC, Canada, 2016; pp. 1–10. [Google Scholar]
- Bian, X.; Wang, L.; Liu, Y.; Yang, Y.; Guan, Z. High Altitude Effect on Corona Inception Voltages of DC Power Transmission Conductors Based on the Mobile Corona Cage. IEEE Trans. Power Deliv. 2013, 28, 1971–1973. [Google Scholar] [CrossRef]
- Ortéga, P.; Waters, R.T.; Haddad, A.; Hameed, R.; Davies, A.J. Impulse breakdown voltages of air gaps: A new approach to atmospheric correction factors applicable to international standards. IEEE Trans. Dielectr. Electr. Insul. 2007, 14, 1498–1508. [Google Scholar] [CrossRef]
- Dakin, T.W.; Luxa, G.; Oppermann, G.; Vigreux, J.; Wind, G.; Winkelnkemper, H. Breakdown of gases in uniform fields—Paschen’s curves for air, N2 and SF6. Elektra 1974, 32, 61–82. [Google Scholar]
- Electronic components industry association. Withstanding Voltage Test Procedure for Electrical Connectors, Sockets and Coaxial Contacts: EIA-364-20E; Electronic Components Industry Association (ECIA): Englewood, CO, USA, 2015. [Google Scholar]
- Xiao, D.; Ma, Q.; Xie, Y.; Zheng, Q.; Zhang, Z. A Power-Frequency Electric Field Sensor for Portable Measurement. Sensors 2018, 18, 1053. [Google Scholar] [CrossRef] [PubMed]
- Yazdani, M.; Thomson, D.J.; Kordi, B. Passive Wireless Sensor for Measuring AC Electric Field in the Vicinity of High-Voltage Apparatus. IEEE Trans. Ind. Electron. 2016, 63, 4432–4441. [Google Scholar] [CrossRef]
- Mahomed, F. Circuit Level Modelling of a Capacitive Electric Field Sensor. Mater Thesis, University of Witwatersrand, Johannesburg, South Africa, 2012. [Google Scholar]
Surface Irregularity Factor | Type of Surface |
---|---|
m = 1 | Smooth and polished surface |
m = 0.6–0.8 | Dry weather |
m = 0.3–0.6 | Extreme pollution, snowflakes, raindrops |
m = 0.25 | Heavy rain |
Altitude (m) | Temperature (°C) | Pressure (Pa) | Air Density (kg/m3) | Relative Air Density, δ (-) |
---|---|---|---|---|
0 | 15.0 | 101,325.0 | 1.225000 | 1.000000 |
500 | 11.8 | 95,460.8 | 1.167270 | 0.952873 |
1000 | 8.5 | 89,874.6 | 1.111640 | 0.907463 |
1500 | 5.3 | 84,556.0 | 1.058070 | 0.863728 |
2000 | 2.0 | 79,495.2 | 1.006490 | 0.821625 |
2500 | −1.3 | 74,682.5 | 0.956859 | 0.781109 |
3000 | −4.5 | 70,108.5 | 0.909122 | 0.742140 |
3500 | −7.8 | 65,764.1 | 0.863229 | 0.704677 |
4000 | −11.0 | 61,640.2 | 0.819129 | 0.668677 |
4500 | −14.3 | 57,728.3 | 0.776775 | 0.634102 |
5000 | −17.5 | 54,019.9 | 0.736116 | 0.600911 |
5500 | −20.8 | 50,506.8 | 0.697106 | 0.569066 |
6000 | −24.0 | 47,181.0 | 0.659697 | 0.538528 |
g | m1 | w1, 2 |
---|---|---|
<0.2 | 0.0 | 0.0 |
0.2–1.0 | g(g − 0.2)/0.8 | g(g − 0.2)/0.8 |
1.0–1.2 | 1.0 | 1.0 |
1.2–2.0 | 1.0 | (2.2 − g)(2.0 − g)/0.8 |
>2.0 | 1.0 | 0.0 |
Author | Geometry | Correction Factor |
---|---|---|
Paschen [67] | Uniform field | |
Peek [30,31,32,47] | Parallel. conductors, AC | |
Peek [32] | Coaxial cylinders, AC, DC− | |
Peek [32] | Coaxial cylinders, DC+ | |
Peek [30,31,32] | Parallel conductors | |
Westingh. [34] | Parallel conductors | |
IEEE Std4 [36] | General | U = U0(k1·k2) |
IEEE Std4 [36] | Sphere-sphere gap, AC | |
IEEE Std4 [36] | Rod-rod gap, DC | |
Hu et al. [58] | Bundle conductors, AC | |
Hu et al. [21] | Smooth conductors | |
Phillips et al. [2] | 500 kV line; impulse | |
Hu et al. [62] | Cylindrical Conductors | |
Bian et al. [65] | four-bundle conductors, DC | |
Ortéga et al. [66] | Rod-plane gap; +impulse |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riba, J.-R.; Larzelere, W.; Rickmann, J. Voltage Correction Factors for Air-Insulated Transmission Lines Operating in High-Altitude Regions to Limit Corona Activity: A Review. Energies 2018, 11, 1908. https://doi.org/10.3390/en11071908
Riba J-R, Larzelere W, Rickmann J. Voltage Correction Factors for Air-Insulated Transmission Lines Operating in High-Altitude Regions to Limit Corona Activity: A Review. Energies. 2018; 11(7):1908. https://doi.org/10.3390/en11071908
Chicago/Turabian StyleRiba, Jordi-Roger, William Larzelere, and Johannes Rickmann. 2018. "Voltage Correction Factors for Air-Insulated Transmission Lines Operating in High-Altitude Regions to Limit Corona Activity: A Review" Energies 11, no. 7: 1908. https://doi.org/10.3390/en11071908