Relationship Between Cognitive Abilities and Lower-Limb Movements: Can Analyzing Gait Parameters and Movements Help Detect Dementia? A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Inclusion and Exclusion Criteria
- Studies focused on either gait or lower-limb movement in cross-sectional studies.
- Studies involving people with dementia or mild cognitive impairment.
- Full-text articles.
- Studies that investigated single and dual tasks and their outcomes on people with MCI or dementia.
- Studies focused on upper-limb movements.
- Studies examining the impacts of drugs or alcohol.
- Studies not published in the English language.
- Studies not observing dual-task protocol.
- Studies observing Parkinson’s or other neurodegenerative diseases.
2.3. Data Extraction
2.4. Quality Assessment of Studies Retrieved
3. Results
3.1. Participant Groups, Use of Sensors, and Test Conditions
3.2. Gait Parameters Comparison for Single and Dual Tasks
3.2.1. Gait Speed
3.2.2. Gait Variability
3.2.3. Cadence and Other Spatiotemporal Parameters
3.3. Secondary Task Types and Their Effect on Gait in Dual-Task Protocol
3.4. Brain Activity During Dual-Task Protocol
4. Discussion
4.1. Single- and Dual-Task Effects on Gait Parameters
4.2. Effects of Secondary Task Type in Dual-Task Protocol on Gait
4.3. Differences in Gait Performance for MCI and Dementia
4.4. Brain Activity During Dual Task for MCI and Dementia
4.5. Limitations and Final Remarks
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Australian Institute of Health and Welfare. Dementia in Australia; Australian Institute of Health and Welfare: Canberra, Australia, 2023. Available online: https://www.aihw.gov.au/reports/dementia/dementia-in-aus/contents/summary (accessed on 5 March 2024).
- Ferri, C.P.; Prince, M.; Brayne, C.; Brodaty, H.; Fratiglioni, L.; Ganguli, M.; Hall, K.; Hasegawa, K.; Hendrie, H.; Huang, Y.; et al. Global prevalence of dementia: A Delphi consensus study. Lancet 2005, 366, 2112–2117. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.H.; Rountree, S.; Massman, P.; Doody, R.S.; Li, H. Alzheimer’s disease and mild cognitive impairment deteriorate fine movement control. J. Psychiatr. Res. 2008, 42, 1203–1212. [Google Scholar] [CrossRef] [PubMed]
- Axer, H.; Axer, M.; Sauer, H.; Witte, O.W.; Hagemann, G. Falls and gait disorders in geriatric neurology. Clin. Neurol. Neurosurg. 2010, 112, 265–274. [Google Scholar] [CrossRef]
- Jeon, S.Y.; Han, S.J.; Jeong, J.H.; Fregni, F. Effect of exercise on balance in persons with mild cognitive impairment. NeuroRehabilitation 2014, 35, 271–278. [Google Scholar] [CrossRef]
- Gleason, C.E.; Gangnon, R.E.; Fischer, B.L.; Mahoney, J.E. Increased Risk for Falling Associated with Subtle Cognitive Impairment: Secondary Analysis of a Randomized Clinical Trial. Dement. Geriatr. Cogn. Disord. 2009, 27, 557–563. [Google Scholar] [CrossRef]
- Rasmussen, J.; Langerman, H. Alzheimer’s Disease—Why We Need Early Diagnosis. Degener. Neurol. Neuromuscul. Dis. 2019, 9, 123–130. [Google Scholar] [CrossRef]
- Barnes, D.E.; Yaffe, K. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 2011, 10, 819–828. [Google Scholar] [CrossRef]
- Alzheimer’s Association. Medical Tests for Diagnosing Alzheimer’s. Alzheimer’s Disease and Dementia. 2024. Available online: https://www.alz.org/alzheimers-dementia/diagnosis/medical_tests (accessed on 2 July 2024).
- Kurniadi, N.E.; Davis, J.J. Comparison shopping: Is neuropsychological evaluation more expensive than neuroimaging? Clin. Neuropsychol. 2021, 36, 2061–2072. [Google Scholar] [CrossRef]
- Steis, M.R.; Schrauf, R.W. A Review of Translations and Adaptations of the Mini-Mental State Examination in Languages Other than English and Spanish. Res. Gerontol. Nurs. 2009, 2, 214–224. [Google Scholar] [CrossRef]
- Montero-Odasso, M.M.; Sarquis-Adamson, Y.; Speechley, M.; Borrie, M.J.; Hachinski, V.C.; Wells, J.; Riccio, P.M.; Schapira, M.; Sejdic, E.; Camicioli, R.M.; et al. Association of Dual-Task Gait With Incident Dementia in Mild Cognitive Impairment. JAMA Neurol. 2017, 74, 857–865. [Google Scholar] [CrossRef]
- Hausdorff, J.M.; Buchman, A.S. What Links Gait Speed and MCI With Dementia? A Fresh Look at the Association Between Motor and Cognitive Function. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2013, 68, 409–411. [Google Scholar] [CrossRef] [PubMed]
- Andrews-Hanna, J.R.; Snydtr, A.Z.; Vincent, J.L.; Lustig, C.; Head, D.; Raichle, M.E.; Buckner, R.L. Disruption of Large-Scale Brain Systems in Advanced Aging. Neuron 2007, 56, 924–935. [Google Scholar] [CrossRef] [PubMed]
- Kahya, M.; Moon, S.; Ranchet, M.; Vukas, R.R.; Lyons, K.E.; Pahwa, R.; Akinwuntan, A.; Devos, H. Brain activity during dual task gait and balance in aging and age-related neurodegenerative conditions: A systematic review. Exp. Gerontol. 2019, 128, 110756. [Google Scholar] [CrossRef] [PubMed]
- Beauchet, O.; Allali, G.; Berrut, G.; Hommet, C.; Dubost, V. Assal Gait analysis in demented subjects: Interests and perspectives. Neuropsychiatr. Dis. Treat. 2008, 4, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.A.; Verghese, J. Chapter 22—Gait and Dementia. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Marquis, S.; Moore, M.M.; Howieson, D.B.; Sexton, G.; Payami, H.; Kaye, J.A.; Camicioli, R. Independent Predictors of Cognitive Decline in Healthy Elderly Persons. Arch. Neurol. 2002, 59, 601. [Google Scholar] [CrossRef]
- Sheridan, P.L.; Solomont, J.; Kowall, N.; Hausdorff, J.M. Influence of Executive Function on Locomotor Function: Divided Attention Increases Gait Variability in Alzheimer’s Disease. J. Am. Geriatr. Soc. 2003, 51, 1633–1637. [Google Scholar] [CrossRef]
- Sobol, N.A.; Hoffmann, K.; Vogel, A.; Lolk, A.; Gottrup, H.; Høgh, P.; Hasselbalch, S.G.; Beyer, N. Associations between physical function, dual-task performance and cognition in patients with mild Alzheimer’s disease. Aging Ment. Health 2015, 20, 1139–1146. [Google Scholar] [CrossRef]
- IJmker, T.; Lamoth, C.J.C. Gait and cognition: The relationship between gait stability and variability with executive function in persons with and without dementia. Gait Posture 2012, 35, 126–130. [Google Scholar] [CrossRef]
- Hollman, J.H.; Kovash, F.M.; Kubik, J.J.; Linbo, R.A. Age-related differences in spatiotemporal markers of gait stability during dual task walking. Gait Posture 2007, 26, 113–119. [Google Scholar] [CrossRef]
- Ruffieux, J.; Keller, M.; Lauber, B.; Taube, W. Changes in Standing and Walking Performance Under Dual-Task Conditions Across the Lifespan. Sports Med. 2015, 45, 1739–1758. [Google Scholar] [CrossRef]
- Belur, P.; Hsiao, D.; Myers, P.S.; Earhart, G.M.; Rawson, K.S. Dual-task costs of texting while walking forward and backward are greater for older adults than younger adults. Hum. Mov. Sci. 2020, 71, 102619. [Google Scholar] [CrossRef] [PubMed]
- Mazaheri, M.; Hoogkamer, W.; Potocanac, Z.; Verschueren, S.; Roerdink, M.; Beek, P.J.; Peper, C.E.; Duysens, J. Effects of aging and dual tasking on step adjustments to perturbations in visually cued walking. Exp. Brain Res. 2015, 233, 3467–3474. [Google Scholar] [CrossRef] [PubMed]
- Allali, G.; Verghese, J. Management of Gait Changes and Fall Risk in MCI and Dementia. Curr. Treat. Options Neurol. 2017, 19, 29. [Google Scholar] [CrossRef] [PubMed]
- Abelha, M.; Fernandes, S.; Mesquita, D.; Seabra, F.; Ferreira-Oliveira, A.T. Graduate Employability and Competence Development in Higher Education—A Systematic Literature Review Using PRISMA. Sustainability 2020, 12, 5900. [Google Scholar] [CrossRef]
- Doi, T.; Makizako, H.; Shimada, H.; Park, H.; Tsutsumimoto, K.; Uemura, K.; Suzuki, T. Brain activation during dual-task walking and executive function among older adults with mild cognitive impairment: A fNIRS study. Aging Clin. Exp. Res. 2013, 25, 539–544. [Google Scholar] [CrossRef]
- Protzak, J.; Gramann, K. EEG beta-modulations reflect age-specific motor resource allocation during dual-task walking. Sci. Rep. 2021, 11, 16110. [Google Scholar] [CrossRef]
- Hasani, H.; Mardi, S.; Shakerian, S.; Taherzadeh-Ghahfarokhi, N.; Mardi, P. The Novel Coronavirus Disease (COVID-19): A PRISMA Systematic Review and Meta-Analysis of Clinical and Paraclinical Characteristics. BioMed Res. Int. 2020, 2020, 3149020. [Google Scholar] [CrossRef]
- Yusop, S.R.M.; Rasul, M.S.; Yasin, R.M.; Hashim, H.U.; Jalaludin, N.A. An Assessment Approaches and Learning Outcomes in Technical and Vocational Education: A Systematic Review Using PRISMA. Sustainability 2022, 14, 5225. [Google Scholar] [CrossRef]
- Mancioppi, G.; Fiorini, L.; Rovini, E.; Cavallo, F. The use of Motor and Cognitive Dual-Task quantitative assessment on subjects with mild cognitive impairment: A systematic review. Mech. Ageing Dev. 2021, 193, 111393. [Google Scholar] [CrossRef]
- Salzman, T.; Laurin, E.; Thibault, C.; Farrell, P.; Fraser, S. A systematic review and meta-analysis of dual-task outcomes in subjective cognitive decline. Alzheimer S Dement. Diagn. Assess. Dis. Monit. 2025, 17, e70054. [Google Scholar] [CrossRef]
- Oxford Centre for Evidence-Based Medicine. Oxford Centre for Evidence-Based Medicine: Levels of Evidence (March 2009)—Centre for Evidence-Based Medicine, University of Oxford. www.cebm.ox.ac.uk. 2009. Available online: https://www.cebm.ox.ac.uk/resources/levels-of-evidence/oxford-centre-for-evidence-based-medicine-levels-of-evidence-march-2009 (accessed on 26 January 2025).
- Boripuntakul, S.; Lord, S.R.; Brodie, M.A.D.; Smith, S.T.; Methapatara, P.; Wongpakaran, N.; Sungkarat, S. Spatial variability during gait initiation while dual tasking is increased in individuals with mild cognitive impairment. J. Nutr. Health Aging 2013, 18, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Doi, T.; Shimada, H.; Makizako, H.; Tsutsumimoto, K.; Uemura, K.; Anan, Y.; Suzuki, T. Cognitive function and gait speed under normal and dual-task walking among older adults with mild cognitive impairment. BMC Neurol. 2014, 14, 67. [Google Scholar] [CrossRef] [PubMed]
- Nascimbeni, A.; Caruso, S.; Salatino, A.; Carenza, M.; Rigano, M.; Raviolo, A.; Ricci, R. Dual task-related gait changes in patients with mild cognitive impairment. Funct. Neurol. 2015, 30, 59. [Google Scholar] [PubMed Central]
- Ansai, J.H.; Andrade, L.P.; Rossi, P.G.; Takahashi, A.C.M.; Vale, F.A.C.; Rebelatto, J.R. Gait, dual task and history of falls in elderly with preserved cognition, mild cognitive impairment, and mild Alzheimer’s disease. Braz. J. Phys. Ther. 2017, 21, 144–151. [Google Scholar] [CrossRef]
- Auvinet, B.; Touzard, C.; Montestruc, F.; Delafond, A.; Goeb, V. Gait disorders in the elderly and dual task gait analysis: A new approach for identifying motor phenotypes. J. NeuroEngineering Rehabil. 2017, 14, 7. [Google Scholar] [CrossRef]
- Crockett, R.A.; Hsu, C.L.; Best, J.R.; Liu-Ambrose, T. Resting State Default Mode Network Connectivity, Dual Task Performance, Gait Speed, and Postural Sway in Older Adults with Mild Cognitive Impairment. Front. Aging Neurosci. 2017, 9, 423. [Google Scholar] [CrossRef]
- Nascimbeni, A.; Caruso, S.; Salatino, A.; Carenza, M.; Rigano, M.; Raviolo, A.; Ricci, R. Gray matter volume and dual-task gait performance in mild cognitive impairment. Brain Imaging Behav. 2016, 11, 887–898. [Google Scholar] [CrossRef]
- König, A.; Klaming, L.; Pijl, M.; Demeurraux, A.; David, R.; Robert, P. Objective measurement of gait parameters in healthy and cognitively impaired elderly using the dual-task paradigm. Aging Clin. Exp. Res. 2017, 29, 1181–1189. [Google Scholar] [CrossRef]
- Ansai, J.H.; de Andrade, L.P.; Rossi, P.G.; Almeida, M.L.; Vale, F.A.C.; Rebelatto, J.R. Association Between Gait and Dual Task With Cognitive Domains in Older People with Cognitive Impairment. J. Mot. Behav. 2017, 50, 409–415. [Google Scholar] [CrossRef]
- Hunter, S.W.; Divine, A.; Frengopoulos, C.; Odasso, M.M. A framework for secondary cognitive and motor tasks in dual-task gait testing in people with mild cognitive impairment. BMC Geriatr. 2018, 18, 202. [Google Scholar] [CrossRef]
- Lee, J.; Park, S. Effects of a priority-based dual task on gait velocity and variability in older adults with mild cognitive impairment. J. Exerc. Rehabil. 2018, 14, 993–997. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Silva, F.; Ferreira, J.V.; Plácido, J.; Deslandes, A.C. Spatial navigation and dual-task performance in patients with Dementia that present partial dependence in instrumental activity of daily living. IBRO Rep. 2020, 9, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Lowe, D.A.; MacAulay, R.K.; Szeles, D.M.; Milano, N.J.; Wagner, M.T. Dual-Task Gait Assessment in a Clinical Sample: Implications for Improved Detection of Mild Cognitive Impairment. J. Gerontol. Ser. B 2019, 75, 1372–1381. [Google Scholar] [CrossRef]
- Ghoraani, B.; Boettcher, L.N.; Hssayeni, M.D.; Rosenfeld, A.; Tolea, M.I.; Galvin, J.E. Detection of mild cognitive impairment and Alzheimer’s disease using dual-task gait assessments and machine learning. Biomed. Signal Process. Control. 2021, 64, 102249. [Google Scholar] [CrossRef]
- Mancioppi, G.; Fiorini, L.; Rovini, E.; Zeghari, R.; Gros, A.; Manera, V.; Robert, P.; Cavallo, F. Innovative motor and cognitive dual-task approaches combining upper and lower limbs may improve dementia early detection. Sci. Rep. 2021, 11, 7449. [Google Scholar] [CrossRef]
- Wu, S.; Matsuura, T.; Okura, F.; Makihara, Y.; Zhou, C.; Aoki, K.; Mitsugami, I.; Yagi, Y. Detecting Lower MMSE Scores in Older Adults Using Cross-Trial Features From a Dual-Task with Gait and Arithmetic. IEEE Access 2021, 9, 150268–150282. [Google Scholar] [CrossRef]
- Kuo, H.-T.; Yeh, N.-C.; Yang, Y.-R.; Hsu, W.-C.; Liao, Y.-Y.; Wang, R.-Y. Effects of different dual task training on dual task walking and responding brain activation in older adults with mild cognitive impairment. Sci. Rep. 2022, 12, 8490. [Google Scholar] [CrossRef]
- Zheng, Y.; Lang, S.; Liang, J.; Jiang, Y.; Zhao, B.; Chen, H.; Huang, D.; Li, Q.; Liu, H.; Chen, S.; et al. Effects of motor-cognitive interaction based on dual-task gait analysis recognition in middle age to aging people with normal cognition and mild cognitive impairment. Front. Aging Neurosci. 2022, 14, 969822. [Google Scholar] [CrossRef]
- Åberg, A.C.; Petersson, J.R.; Giedraitis, V.; McKee, K.J.; Rosendahl, E.; Halvorsen, K.; Berglund, L. Prediction of conversion to dementia disorders based on timed up and go dual-task test verbal and motor outcomes: A five-year prospective memory-clinic-based study. BMC Geriatr. 2023, 23, 535. [Google Scholar] [CrossRef]
- Du, S.; Ma, X.; Wang, J.; Mi, Y.; Zhang, J.; Du, C.; Li, X.; Tan, H.; Liang, C.; Yang, T.; et al. Spatiotemporal gait parameter fluctuations in older adults affected by mild cognitive impairment: Comparisons among three cognitive dual-task tests. BMC Geriatr. 2023, 23, 603. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Q.; Tian, C.; Zeng, J.; Yang, M.; Li, J.; Mao, J. A dual-task gait test detects mild cognitive impairment with a specificity of 91.2%. Front. Neurosci. 2023, 16, 1100642. [Google Scholar] [CrossRef] [PubMed]
- Weng, W.-H.; Yang, Y.-R.; Yeh, N.-C.; Ku, P.-H.; Wang, P.-S.; Liao, Y.-Y.; Wang, R.-Y. Gait performance and prefrontal cortex activation during single and dual task walking in older adults with different cognitive levels. Front. Aging Neurosci. 2023, 15, 1177082. [Google Scholar] [CrossRef]
- Ali, N.; Liu, J.; Tian, H.; Pan, W.; Tang, Y.; Zhong, Q.; Gao, Y.; Xiao, M.; Wu, H.; Sun, C.; et al. A novel dual-task paradigm with story recall shows significant differences in the gait kinematics in older adults with cognitive impairment: A cross-sectional study. Front. Aging Neurosci. 2022, 14, 992873. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. ‘Mini-mental state’. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Mazaheri, M.; Negahban, H.; Soltani, M.; Mehravar, M.; Tajali, S.; Hessam, M.; Salavati, M.; Kingma, I. Effects of narrow-base walking and dual tasking on gait spatiotemporal characteristics in anterior cruciate ligament-injured adults compared to healthy adults. Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 2017, 25, 2528–2535. [Google Scholar] [CrossRef]
- Tavakoli, S.; Forghany, S.; Nester, C. The effect of dual tasking on foot kinematics in people with functional ankle instability. Gait Posture 2016, 49, 364–370. [Google Scholar] [CrossRef]
- Patel, P.; Lamar, M.; Bhatt, T. Effect of type of cognitive task and walking speed on cognitive-motor interference during dual-task walking. Neuroscience 2014, 260, 140–148. [Google Scholar] [CrossRef]
- Montero-Odasso, M.; Bergman, H.; Phillips, N.A.; Wong, C.H.; Sourial, N.; Chertkow, H. Dual-tasking and gait in people with Mild Cognitive Impairment. The effect of working memory. BMC Geriatr. 2009, 9, 41. [Google Scholar] [CrossRef]
- Tseng, Y.; Cullum, M.; Zhang, R. Older Adults with Amnestic Mild Cognitive Impairment Exhibit Exacerbated Gait Slowing under Dual-Task Challenges. Curr. Alzheimer Res. 2014, 11, 494–500. Available online: https://www.ingentaconnect.com/content/ben/car/2014/00000011/00000005/art00009 (accessed on 25 October 2024). [CrossRef]
- Yang, Q.; Tian, C.; Tseng, B.; Zhang, B.; Huang, S.; Jin, S.; Mao, J. Gait Change in Dual Task as a Behavioral Marker to Detect Mild Cognitive Impairment in Elderly Persons: A Systematic Review and Meta-analysis. Arch. Phys. Med. Rehabil. 2020, 101, 1813–1821. [Google Scholar] [CrossRef] [PubMed]
- Lamoth, C.J.; van Deudekom, F.J.; van Campen, J.P.; Appels, B.A.; de Vries, O.J.; Pijnappels, M. Gait stability and variability measures show effects of impaired cognition and dual tasking in frail people. J. NeuroEng. Rehabil. 2011, 8, 2. [Google Scholar] [CrossRef] [PubMed]
- Varma, V.R.; Ghosal, R.; Hillel, I.; Volfson, D.; Weiss, J.; Urbanek, J.; Hausdorff, J.M.; Zipunnikov, V.; Watts, A. Continuous gait monitoring discriminates community-dwelling mild Alzheimer’s disease from cognitively normal controls. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2021, 7, e12131. [Google Scholar] [CrossRef]
- Boripuntakul, S.; Kamnardsiri, T.; Lord, S.R.; Maiarin, S.; Worakul, P.; Sungkarat, S. Gait variability during abrupt slow and fast speed transitions in older adults with mild cognitive impairment. PLoS ONE 2022, 17, e0276658. [Google Scholar] [CrossRef] [PubMed]
- Reuter-Lorenz, P.A.; Cappell, K.A. Neurocognitive Aging and the Compensation Hypothesis. Curr. Dir. Psychol. Sci. 2008, 17, 177–182. [Google Scholar] [CrossRef]
- Beauchet, O.; Dubost, V.; Gonthier, R.; Kressig, R.W. Dual-Task-Related Gait Changes in. Gerontology 2004, 51, 48–52. [Google Scholar] [CrossRef]
- Swanenburg, J.; de Bruin, E.D.; Favero, K.; Uebelhart, D.; Mulder, T. The reliability of postural balance measures in single and dual tasking in elderly fallers and non-fallers. BMC Musculoskelet. Disord. 2008, 9, 162. [Google Scholar] [CrossRef]
- Yogev-Seligmann, G.; Rotem-Galili, Y.; Mirelman, A.; Dickstein, R.; Giladi, N.; Hausdorff, J.M. How Does Explicit Prioritization Alter Walking During Dual-Task Performance? Effects of Age and Sex on Gait Speed and Variability. Phys. Ther. 2010, 90, 177–186. [Google Scholar] [CrossRef]
- Oh-Park, M.; Holtzer, R.; Mahoney, J.; Wang, C.; Raghavan, P.; Verghese, J. Motor dual-task effect on gait and task of upper limbs in older adults under specific task prioritization: Pilot study. Aging Clin. Exp. Res. 2013, 25, 99–106. [Google Scholar] [CrossRef]
- Clair-Thompson, H.L.S. Backwards digit recall: A measure of short-term memory or working memory? Eur. J. Cogn. Psychol. 2010, 22, 286–296. [Google Scholar] [CrossRef]
- Cascella, M.; Al Khalili, Y. Short Term Memory Impairment. In StatPearls; StatPearls: Treasure Island, FL, USA, 2024; Available online: https://www.ncbi.nlm.nih.gov/books/NBK545136/ (accessed on 26 January 2025).
- Possti, D.; Fahoum, F.; Sosnik, R.; Giladi, N.; Hausdorff, J.M.; Mirelman, A.; Maidan, I. Changes in the EEG spectral power during dual-task walking with aging and Parkinson’s disease: Initial findings using Event-Related Spectral Perturbation analysis. J. Neurol. 2020, 268, 161–168. [Google Scholar] [CrossRef]
- Kahya, M.; Gouskova, N.; Lo, O.-Y.; Zhou, J.; Cappon, D.; Pascual-Leone, A.; Lipsitz, L.; Manor, B. Brain Activity During Dual-Task Standing in Older Adults with Mild Cognitive Impairment. Innov. Aging 2022, 6 (Suppl. S1), 736. [Google Scholar] [CrossRef]
- Leung, J.; Smith, R.; Harvey, L.A.; Moseley, A.M.; Chapparo, J. The impact of simulated ankle plantarflexion contracture on the knee joint during stance phase of gait: A within-subject study. Clin. Biomech. 2014, 29, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Orendurff, M.S.; Singer, M.L.; Gao, F.; Hunt, G.; Foreman, K.B. Effect of plantarflexion resistance of an ankle-foot orthosis on ankle and knee joint power during gait in individuals post-stroke. J. Biomech. 2018, 75, 176–180. [Google Scholar] [CrossRef]
- Ramírez, F.; Gutiérrez, M. Dual-Task Gait as a Predictive Tool for Cognitive Impairment in Older Adults: A Systematic Review. Front. Aging Neurosci. 2021, 13, 769462. [Google Scholar] [CrossRef]
- Oliva, H.N.P.; Machado, F.S.M.; Rodrigues, V.D.; Leão, L.L.; Monteiro-Júnior, R.S. The effect of dual-task training on cognition of people with different clinical conditions: An overview of systematic reviews. IBRO Rep. 2020, 9, 24–31. [Google Scholar] [CrossRef]
Level | Therapy/Prevention, Etiology/Harm |
---|---|
1a | Systematic review (with homogeneity) of randomized controlled trials |
1b | Individual randomized controlled trial (with narrow confidence interval) |
1c | All or none |
2a | Systematic review (with homogeneity) of cohort studies |
2b | Individual cohort study (including low-quality randomized controlled trial, e.g., <80% follow-up) |
2c | “Outcomes” research; ecological studies |
3a | Systematic review (with homogeneity) of case–control studies |
3b | Individual case–control study |
4 | Case series (and poor-quality cohort and case control studies) |
5 | Expert opinion without explicit critical appraisal, or based on physiology, bench research, or “first principles” |
Grade | Contents |
---|---|
A | Consistent level 1 studies |
B | Consistent level 2 or 3 studies or extrapolations from level 1 studies |
C | Level 4 studies or extrapolations from level 2 or 3 studies |
D | Level 5 evidence or troublingly inconsistent or inconclusive studies of any level |
Study | Evidence Level & Recommendation | Main Findings |
---|---|---|
Boripuntakul et al. (2014) [35] | 2b—Individual Cohort Study, Recommendation Level—B |
|
Doi et al. (2014) [36] | 2b—Individual Cohort Study, Recommendation Level—B |
|
Nascimbeni et al. (2015) [37] | 3b—Case–Control Study, Recommendation Level—B |
|
Ansai et al. (2017) [38] | 3b—Case–Control Study, Recommendation Level—B |
|
Auvinet et al. (2017) [39] | 2b—Individual Cohort Study, Recommendation Level—B |
|
Crockett et al. (2017) [40] | 2b—Individual Cohort Study, Recommendation Level—B |
|
Doi et al. (2017) [41] | 2b—Individual Cohort Study, Recommendation Level—B |
|
König et al. (2017) [42] | 3b—Case–Control Study, Recommendation Level—B |
|
Ansai et al. (2018) [43] | 3b—Case–Control Study, Recommendation Level—B |
|
Hunter et al. (2018) [44] | 3b—Case–Control Study, Recommendation Level—B |
|
Lee J. and S. Park, (2018) [45] | 3b—Case–Control Study, Recommendation Level—B |
|
de Oliveira Silva et al. (2020) [46] | 3b—Case–Control Study, Recommendation Level—B |
|
Lowe et al. (2020) [47] | 2b—Individual Cohort Study, Recommendation Level—B |
|
Ghoraani et al. (2021) [48] | 3b—Case–Control Study, Recommendation Level—B |
|
Mancioppi et al. (2021) [49] | 3b—Case–Control Study, Recommendation Level—B |
|
Wu et al. (2021) [50] | 2b—Individual Cohort Study, Recommendation Level—B |
|
Kuo et al. (2022) [51] | 2b—Individual Cohort Study, Recommendation Level—B |
|
Zheng et al. (2022) [52] | 3b—Case–Control Study, Recommendation Level—B |
|
Åberg et al. (2023) [53] | 2b—Individual Cohort Study, Recommendation Level—B |
|
Du et al. (2023) [54] | 3b—Case–Control Study, Recommendation Level—B |
|
Wang et al. (2023) [55] | 3b—Case–Control Study, Recommendation Level—B |
|
Weng et al. (2023) [56] | 3b—Case–Control Study, Recommendation Level—B |
|
Ali et al. (2022) [57] | 3b—Case–Control Study, Recommendation Level—B |
|
Parameter | Study | Task Type | Population Type | Mean Parameter Values | Method of Motion Analysis | Significance |
---|---|---|---|---|---|---|
Gait Velocity | Nascimbeni et al. (2015) [37] (m/s) | Single Task | Control MCI | 0.97 0.83 | STEP 32, DEM Italia, Leinì, Turin, Italy using 3 footswitch sensors | Significant differences for gait velocity between ST and DT (p < 0.01), but not between groups |
Dual Task (phonemic fluency, short story recall, counting backwards) | Control MCI | 0.78, 0.75, 0.81 0.59, 0.59, 0.65 | ||||
Konig et al. (2017) [42] (m/s) | Single Task | Control MCI Dementia | 0.88 0.77 0.75 | CE marked 3D accelerometer | Significant differences for dementia when compared to the group with no cognitive impairment and the group with MCI for both conditions (p < 0.0001) | |
Dual Task | Control MCI Dementia | 0.75 0.64 0.62 | ||||
Hunter et al. (2018) [44] (m/s) | Single Task | Control MCI | 1.23 1.13 | GaitRite | Significant differences found between groups in both conditions (p < 0.001). Greater reduction in gait speed for MCI | |
Dual Task (motor, counting, motor + counting, animals, counting, motor and counting | Healthy MCI | 1.21, 1.19, 1.15, 1.11, 1.02, 0.99 1.05, 1.00, 0.95, 0.88, 0.73, 0.75 | ||||
Lee J. & S. Park (2018) [45] (m/s) | Single Task/Dual Task (no priority) | Healthy, MCI | 1.05.71 ± 0.0643/0.91.97 ± 0.0887 0.9975 ± 0.1784/ 0.7286 ± 0.1845 | Orthotak 3D analysis system, 6 3D cameras | Significant difference between gait priority and cognitive priority results in DT (p < 0.002) | |
Dual Task (gait priority, cognitive priority) | Healthy MCI Healthy MCI | 0.8884 ± 0.0709 0.5438 ± 0.2462 0.8771 ± 0.0788 0.5746 ± 0.1801 | ||||
Weng et al. (2023) [56] (m/s) | Single Task | Healthy MCI Dementia | 1.2068 1.1914 1.0213 | GaitRite | Significant differences between control and dementia for both conditions (p < 0.05) | |
Dual Task | Healthy MCI Dementia | 1.054 0.9783 0.7984 | ||||
Ali et al. [57] (m/s) | Single Task | Healthy (SCI) MCI | 1.064 1.108 1.039 | Vicon Nexus 2.8 Motion Capture System | Significant differences between control, MCI, and SCI (p < 0.001). | |
Dual Task (serial subtraction, naming animals, story recall, words recall) | Healthy SCI MCI | 0.968, 0.888, 0.844, 0.945 0.984, 0.948, 0.93, 0.974 0.865, 0.877, 0.831, 0.897 | ||||
Wang et al. (2023) [55] (m/s) | Single Task | Healthy MCI | 125.47 104.16 | Stopwatch | Significant differences in speed between non-cognitive impairment and MCI, in both ST and DT condition | |
Dual Task | Healthy MCI | 92.8 66.31 |
Parameter | Study | Task Type | Population Type | Mean Parameter Values | Method of Motion Analysis | Significance |
---|---|---|---|---|---|---|
Gait Variability | Nascimbeni et al. (2015) (%) [37] | Single Task | Control MCI | 3.58 3.17 | STEP 32, DEM Italia, Leinì, Turin, Italy using 3 footswitch sensors | Significant difference between ST and DT conditions |
Dual Task (phonemic fluency, short story recall, counting backwards) | Control MCI | 4.44, 5.57, 3.93 5.52, 5.42, 5.07 | ||||
Lee J. & S. Park (2018) [45] (only focused on no priority results) (%) | Single Task | Control MCI | 2.77 ± 1.05 4.49 ± 1.90 | Orthotak 3D analysis system, 6 3D cameras | Statistically significant variability present between groups for dual-task condition | |
Dual Task | Control MCI | 2.44 ± 0.99 11.21 ± 6.84 | ||||
Boripuntakul et al. (2014) [35] (%) | Single Task | Control MCI | 10.29 ± 3.99 14.92 ± 6.87 | GaitRite | Statistically significant during DT between both groups (p < 0.0001) | |
Dual Task | Control MCI | 15.46 ± 5.15 19.97 ± 8.30 | ||||
Weng et al. (2023) [56] (%) | Single Task | Control MCI Dementia | 2.44 ± 1.54, 2.59 ± 1.17 3.31 ± 3.47 | GaitRite | Significant differences not found between groups (p > 0.05) | |
Dual Task | Control MCI Dementia | 3.72 ± 2.87 6.8 ± 7.65 5.38 ± 3.42 |
Parameter | Study | Task Type | Population Type | Mean Parameter Values | Method of Motion Analysis | Significance |
---|---|---|---|---|---|---|
Cadence | Weng et al. (2023) [56] (Steps/min) | Single Task | Control MCI Dementia | 117.78 ± 13.32 119.7 ± 8.83 108.73 ± 11.16 | GaitRite | Statistically significant between control and dementia in DT condition (p < 0.05) |
Dual Task | Control MCI Dementia | 110.02 ± 13.15 107.75 ± 12.51 98.08 ± 12.63 | ||||
Ansai et al. (2018) [43] (Steps/min) | Single Task | Control MCI Dementia | 103.2 ± 13.5 103.5 ± 14.1 100.73 ± 11 | Stopwatch | Statistically significant between dementia and other groups in both conditions (p~0.000) | |
Dual Task | Control MCI Dementia | 65.8 ± 11.3 60.3 ± 11.8 53.9 ± 12.7 | ||||
Konig et al. (2017) [42] (Steps/min) | Single Task | Control MCI, Dementia | 101.57 99.95 97.19 | Accelerometers | Statistically significant between ST and DT condition, but not across groups | |
Dual Task | Control MCI Demetia | 95.98 87.28 84.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aditya, S.; Armitage, L.; Clarke, A.; Traynor, V.; Pappas, E.; Kanchanawong, T.; Lee, W.C.-C. Relationship Between Cognitive Abilities and Lower-Limb Movements: Can Analyzing Gait Parameters and Movements Help Detect Dementia? A Systematic Review. Sensors 2025, 25, 813. https://doi.org/10.3390/s25030813
Aditya S, Armitage L, Clarke A, Traynor V, Pappas E, Kanchanawong T, Lee WC-C. Relationship Between Cognitive Abilities and Lower-Limb Movements: Can Analyzing Gait Parameters and Movements Help Detect Dementia? A Systematic Review. Sensors. 2025; 25(3):813. https://doi.org/10.3390/s25030813
Chicago/Turabian StyleAditya, Swapno, Lucy Armitage, Adam Clarke, Victoria Traynor, Evangelos Pappas, Thanaporn Kanchanawong, and Winson Chiu-Chun Lee. 2025. "Relationship Between Cognitive Abilities and Lower-Limb Movements: Can Analyzing Gait Parameters and Movements Help Detect Dementia? A Systematic Review" Sensors 25, no. 3: 813. https://doi.org/10.3390/s25030813
APA StyleAditya, S., Armitage, L., Clarke, A., Traynor, V., Pappas, E., Kanchanawong, T., & Lee, W. C.-C. (2025). Relationship Between Cognitive Abilities and Lower-Limb Movements: Can Analyzing Gait Parameters and Movements Help Detect Dementia? A Systematic Review. Sensors, 25(3), 813. https://doi.org/10.3390/s25030813