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Abstract: Accurately identifying and discriminating between different brain states is a
major emphasis of functional brain imaging research. Various machine learning techniques
play an important role in this regard. However, when working with a small number
of study participants, the lack of sufficient data and achieving meaningful classification
results remain a challenge. In this study, we employ a classification strategy to explore
stress and its impact on spatial activation patterns and brain connectivity caused by the
Stroop color–word task (SCWT). To improve our results and increase our dataset, we use
data augmentation with a deep convolutional generative adversarial network (DCGAN).
The study is carried out at two separate times of day (morning and evening) and involves
21 healthy participants. Additionally, we introduce binaural beats (BBs) stimulation to
investigate its potential for stress reduction. The morning session includes a control phase
with 10 SCWT trials, whereas the afternoon session is divided into three phases: stress,
mitigation (with 16 Hz BB stimulation), and post-mitigation, each with 10 SCWT trials.
For a comprehensive evaluation, the acquired fNIRS data are classified using a variety of
machine-learning approaches. Linear discriminant analysis (LDA) showed a maximum
accuracy of 60%, whereas non-augmented data classified by a convolutional neural network
(CNN) provided the highest classification accuracy of 73%. Notably, after augmenting the
data with DCGAN, the classification accuracy increases dramatically to 96%. In the time
series data, statistically significant differences were noticed in the data before and after BB
stimulation, which showed an improvement in the brain state, in line with the classification
results. These findings illustrate the ability to detect changes in brain states with high
accuracy using fNIRS, underline the need for larger datasets, and demonstrate that data
augmentation can significantly help when data are scarce in the case of brain signals.

Keywords: functional near-infrared spectroscopy (fNIRS); hemodynamic response; deep
convolutional generative adversarial network (DCGAN); feed-forward neural network;
linear support vector machines; decision tree; restricted Boltzmann machine; convolutional
neural networks; classification; binaural beats

1. Introduction
Originally developed for clinical tissue oxygenation monitoring [1], functional near-

infrared spectroscopy (fNIRS) has evolved into a useful tool for functional neuroimaging
studies [2–4]. To date, various fNIRS devices that track changes in local cerebral oxygenation
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by measuring variations in the concentration of deoxygenated hemoglobin (∆HbR) and
oxygenated hemoglobin (∆HbO) have been developed. fNIRS has been used to investigate
a variety of brain activity, such as cognitive and motor processes [5–8].

fNIRS is being used more often in functional neuroimaging studies due to its afford-
ability and portability [9]. As opposed to functional magnetic resonance imaging (fMRI),
fNIRS measures alterations in the brain’s hemodynamics. It shares similarities with fMRI
but stands out for being quiet (with no operating sound). Higher temporal resolution, free-
dom from space restriction, and no need for participants to lie down are all very appealing
features. These characteristics make fNIRS the preferred option for tracking hemodynamic
changes associated with brain activity, not only in lab settings but also in more ecologically
valid and real-world workspace environments.

As a useful neuroimaging tool, fNIRS has impressive potential and notable appli-
cations across multiple domains. Compared with electroencephalography, it has the ad-
vantage of having better spatial resolution and being less susceptible to noise [10]. Some
example applications of fNIRS include assessing early neurodevelopment [11], cogni-
tive discernment and perception [12], psychiatric conditions [13], language experiment
research [14], as well as addressing issues related to stroke and brain damage [15]. Addi-
tionally, fNIRS plays a crucial role in clinical and network imaging [16], Brain-Computer
Interfaces (BCIs) [17], and mental stress analysis [18,19].

Among the main sources of stress in an individual’s life is their workplace. Stress-
related problems can arise when workers are overworked and are unable to fulfill unrea-
sonable deadlines (. Many factors, such as disturbed sleep patterns, excruciating headaches,
decreased concentration, and elevated absenteeism, are caused by stress and influence
workers. Firms suffer large financial losses because of these ramifications. Anxiety, insom-
nia, recurrent injuries, and a rise in absenteeism—especially at work—are all associated
with stress [20].

A multitude of studies have employed fNIRS as a primary modality for studying
cortical activity with different stressors and cerebral regions. A 2018 study that examined
the impact of mental stress on occupational performance used multiple virtual training
instances and found significant prefrontal cortex activation (PFC) [21]. The increased
activity of the PFC was then used to detect stress. The next year, the effects of psychosocial
stress on cognition were examined using the Trier Social Stress Test (TSST) [22]. The
results showed that, in male teenagers exposed to psychosocial stress, maintaining an
increased level of physical activity did not always translate into improved inhibitory
control. Additionally, mental arithmetic exercises were employed as stressors in other
research projects by different investigators, confirming the efficacy of fNIRS as a tool for
early identification and measurement of mental stress [23,24]. The various application of
fNIRS across multiple stress paradigms highlights its efficacy as a neuroimaging tool for
assessing and quantifying mental stress.

The need for advanced methodologies that can identify and track particular brain
states has grown as a result of recent advancements in fNIRS technology, particularly in
the field of brain state monitoring for biomedical applications. These applications address
issues like stress and chronic diseases like dementia and mild cognitive impairment. One
notable issue that arises when incorporating brain images—such as activation maps and
connectivity maps—into the training and assessment of modern machine learning algo-
rithms is that there are not enough data, which makes the models more prone to overfitting.
Adopting data augmentation techniques becomes essential to lessening this challenge.
Conventional augmentation techniques, such as cropping, rotating, and zooming, are
frequently utilized; however, they have drawbacks, such as requiring manual intervention
and being impractical for complex images such as brain activation maps [25,26].
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Modern machine learning techniques, such as Generative Adversarial Networks
(GAN), provide a promising alternative to traditional augmentation methods [27]. In
the context of brain imaging and machine learning applications, GANs offer a workable
solution to the data scarcity dilemma by enabling the creation of realistic augmented data.
Typically, conventional GAN models need a significant amount of data to be trained and
used for image augmentation. However, recent noteworthy works by Toutouh et al. [28]
and Zhao et al. [29] have paved the way for training GAN models even with a limited
dataset size, such as a thousand images. These discoveries have greatly helped expand
the use of GANs in situations where data availability is limited. Hence, the idea behind
enhancing fNIRS data for reliable machine learning model development. This combination
of old and new methods, along with improvements in GAN training on smaller datasets,
adds up to a complete plan for reliable and efficient use of fNIRS data in the creation and
assessment of advanced machine learning models.

The main contribution of the current work is to classify different brain states with
higher classification accuracy with the help of GAN. In doing so, this work aims to inves-
tigate the effects of stress on the patterns of spatial activation elicited by the challenging
Stroop color–word task (SCWT). In addition, the current study aims to improve the brain
state using binaural beat stimulation. We conducted morning and evening sessions with
working individuals in anticipation of the participants experiencing stress due to the de-
mands of the workday. Our main objective is to examine how participants’ hemodynamic
responses to workplace stress change over time, determine whether these changes can
be reliably detected using classification techniques, and determine how stress levels are
reduced when exposed to binaural beats.

2. Materials and Methods
2.1. Participants

Twenty-one healthy volunteers—thirteen men and eight women—working at the
American University of Sharjah participated in this study (mean age: 29 ± 5 years). The
subjects’ vision was either normal or corrected to normal. None of the participants reported
having issues with hearing or seeing color. There was no history of neurological or visual
impairment in any of the participants, and there was no proof of drug addiction or ongoing
medication use. On the day of the experiment, the participants were instructed not to
consume any alcohol, caffeine, or other drinks that would increase their energy levels.
Prior to starting the experiment, every participant was given a comprehensive explanation
about the study and every participant had the choice to withdraw from the experiment at
any moment. Written consent forms were signed prior to the experiment. The American
University of Sharjah’s Institutional Review Board granted permission for this study, which
was carried out in compliance with the most recent Helsinki Declaration [30].

2.2. Task Design

This study used the SCWT as a stress-inducing paradigm. As part of the assignment,
participants had to pay attention to six distinct color words that were presented in random
order: “Green”, “Yellow”, “Red”, “Cyan”, “Magenta”, and “Blue”. Notably, the word
displayed on the computer screen was printed in a color that was not consistent with its
semantic meaning. A cognitive challenge was introduced by asking the participants to
select the color of the typed word as a response, not the word itself. Participants had to
select the ink color from six options that were displayed as push buttons underneath the
displayed word. The background of the buttons featured a third color, and the text on the
push buttons appeared in a different color to increase the complexity of the task. Rather
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than identifying the color of the button itself, participants were asked to identify the color
written inside it.

Every question had a time limit, and if the participant did not answer in the given
amount of time, a “Time is out” notification was displayed on the screen. Participants also
received feedback about how correct their selected option was on the screen. MATLAB®

2023 was used to implement the SCWT protocol, guaranteeing accuracy and consistency
in task execution. Figure 1 illustrates an example of a question that participants saw on
their screens.
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Figure 1. An example of Stroop color–word task used as a stressor in the current study: (a) Welcome
screen (b) Rest phase (c) The SCWT task in which the participant had to choose the word yellow (font
color of the displayed word, i.e., BLUE) written in the cyan color box. (d) Feedback on choosing the
right option.

2.3. Experimental Paradigm

The experiments were carried out at two different times of the day, i.e., morning
and afternoon. There were 10 trials in a session of the experiment, each lasting 50 s (30 s
task period). One experimental session, known as the control phase, was conducted
in the morning, whereas three sessions were conducted in the afternoon, namely stress,
mitigation, and post-mitigation. During the afternoon experiments, participants carried out
the experiments in the stress phase (first phase) in a manner similar to that of the control
phase. Afterward, during the mitigation phase (second phase), participants performed
the SCWT tasks while simultaneously being stimulated by binaural beats. Ultimately, the
third session (post-mitigation) replicated the stress or control phase by having participants
complete multiple SCWT trials. A summary of the experimental paradigm is given in
Figure 2.

Participants sat in a comfortable chair and were instructed to move their bodies as little
as possible during the experiment. For all stimulation durations, a 20-s inter-stimulation
interval was kept, along with 20-s pre- and post-rest intervals. During the rest period, a
black screen was presented. Visual stimuli were displayed to the subjects on a computer
screen, and they were instructed to keep their eyes open throughout the experiment.
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2.4. Optode Placement

In order to record brain signals, the prefrontal cortex region was covered with seven
detectors and eight emitters. The optode configuration on the region of interest is displayed
in Figure 3. The Fpz region of the brain was chosen as the reference point to guarantee exact
placement on the prefrontal cortex. This reference point was chosen using the International
10–20 System for electrode placement to guarantee correct electrode placement.
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2.5. Data Acquisition

Brain signals was sampled at a frequency of 10.17 Hz for this study. A single-phase
continuous wave fNIRS system, NIRSport2 from NIRx Medical Technologies, Orlando,
FL, USA, was used to acquire the fNIRS signals. Two different wavelengths were used by
the system: 760 nm and 850 nm. The process of converting raw intensities into changes
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in ∆HbO and ∆HbR was carried out by utilizing the Modified Beer-Lambert Law [31].
NIRSlab was used to convert the data from the light intensity to the changes in hemoglobin.

2.6. fNIRS Preprocessing

Several pipelines have been employed by researchers to preprocess the fNIRS data [32].
After the acquisition, the data (∆HbO & ∆HbR) for the current study were preprocessed
to remove any noise contamination that could have impacted the signal quality. In order
to correct for artifacts linked with subjects’ movement, the converted ∆HbO and ∆HbR
intensities were first subjected to principal component analysis followed by temporal
derivative distribution repair [33,34]. Following motion-artifact correction, a Butterworth
bandpass filter with a low-pass cutoff frequency of 0.15 Hz and a high-pass cutoff frequency
of 0.01 Hz was applied to remove cardiac, respiratory, and low-frequency drift signals.
Lastly, the desired hemodynamic response function (dHRF) is utilized in this work to
identify neuronal activation. Two gamma functions were applied to produce the dHRF, as
explained by [35].

2.7. Statistical Analysis

The mean of ∆HbO, t-values, and p-values were utilized in the study for statistical
analysis and the identification of active channels. The degree of freedom of the trial period
was used to choose the tcrt, and a significance level for the one-tailed t-test was set at 0.05.
In order to calculate the t-values, MATLAB®’s built-in robustfit function was utilized. A
channel was considered active when the t-value was greater than tcrt, and the p-value was
less than 0.05.

2.8. Data Augmentation

For data convolution in this study, we used a deep convolutional generative adver-
sarial network (DCGAN) [36]. GANs were initially introduced for image generation. We
first explain their basic idea with reference to image generation. We follow this up with the
adaptation to our use case. A GAN consists of a discriminator and a generator network.
The generator learns the distribution of the data and creates images from random noise
inputs. Concurrently, the discriminator assesses whether an image is deemed “real” and
gives losses for generator and discriminator networks [37]. Figure 4 shows the general
architecture of GAN.

On the other hand, the DCGAN algorithm combines GAN with convolutional neural
networks (CNN). With a discriminator network and a generator network, the DCGAN
basic architecture is similar to that of GANs. The discriminator network uses convolutional
and normalization layers, capped by a dense layer, to evaluate the authenticity of images,
whereas the generator network uses transposed convolutional and normalization layers
to convert a random noise vector into images. In the competitive training dynamic, the
generator wants to produce images that are realistic, while the discriminator wants to
correctly identify generated images as fraudulent [38].

The discriminator in DCGANs consists of a sequence of convolution layers with stride
convolutions, each of which down-samples the input image. With each layer, the network
learns the complex representation of input images for classification (fake or real). The
discriminator loss is given by

Dr = log (D(x))

D f = log (1 − D(G(z)))
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where x is the input data, z is the noise vector, D(x) is the output of the discriminator for the
real image, and D(G(z)) is the output for the fake image. The main goal of the discriminator
is to minimize D(G(z)) and maximize D(x). The overall loss of discriminator is given by

Dl =
1
m ∑m

i=1( log (D(x i)) + log (1 − D(G(z i))))
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In contrast, the generator comprises convolution layers that use fractional-strided
convolutions or transpose convolutions, resulting in up-sampling of the input picture at
each convolutional layer. As the noise moves through the layers, the network gradually
increases the image size to match that of a real image. The loss function for the generator is
defined as

G = log (1 − D(G(z)))

Gl =
1
m ∑m

i=1 log (1 − D(G(z i)))

where the aim is to maximize D(G(z)). Moreover, the discriminator and the generator are
continuously optimizing themselves, which can be represented as follows:

minGmaxDV(D, G) = Ex∼pdata(x)[log D(x)] +Ez∼pz(z)[log(1 − D(G(z)))]

where pz(z) is the input noise, E represents the expectation. Table 1 summarizes the main
parameters of the DCGAN. The activation function used was the LeakyReLU function.
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Table 1. Main Parameters of DCGAN.

Parameters Values

Batch size 32
Epoch 30,000

Learning rate 0.0001
Image Channels 3

Batch Normalization 0.9
Drop-Out 0.3

Strides 2

2.9. Classification

After processing the data, the next task was to classify the data using two different
methods: classification based on temporal features and classification using images. For the
image-based classification, five different classifier types—feed-forward NN (FFNN), linear
support vector machines (LSVM), decision tree (DT), restricted Boltzmann machine (RBM),
and CNN—were employed. On the other hand, linear discriminant analysis (LDA) was
used for the classification based on temporal features. The mean, maximum (max), slope,
skewness (skew), and kurtosis (kurt) were among the temporal features that were extracted
for four distinct window sizes of 0 to 5 s, 5 to 30 s, 30 to 50 s, and 0 to 50 s. The classification
accuracy was computed using fivefold cross-validation.

The data from all trials were first converted into visual representations for image-based
analysis. In the current study, activation maps and connectivity maps were used as image
features. Activation maps were produced using a t-test, and MATLAB’s robustfit function
was used to calculate the t-values for each channel. Each trial was further divided into a
5-s window (resulting in the generation of 10 images from each trial) in order to increase
the size of the data. Functional connectivity (FC) in the brain refers to the interactions
between different brain regions, characterized by the temporal correlations observed be-
tween neurophysiological activities in spatially separated areas. These interactions are
represented on the connectome, which maps individual differences in brain organization
and highlights the potential of connectivity-based approaches for biometric applications.
In this study, Pearson’s correlation coefficients (r) were calculated using temporal data
from all channels to create connectivity matrices. These matrices detail both intra- and
inter-hemispheric connectivity. The matrix elements are the correlation coefficients between
paired channels, with the rows and columns corresponding to the channel numbers. Once
the activation maps and FC maps were acquired, CNN, FFNN, LSVM, DT, and RBM were
the classification methods used for these images. Again, fivefold cross-validation was used
to obtain the average classification accuracy.

3. Results
3.1. Comparison of Hemodynamic Responses

The hemodynamic response function (HRF) is a common pattern for any type of
activation seen in the human brain. The derived hemodynamic response function (dHRF)
was utilized to identify the trials that exhibited activation to characterize the shape of the
HRF. After extraction, the active trials were averaged for each subject. The control phase,
stress phase, mitigation phase, and post-mitigation phase were all processed using the
same procedure. In each of the four cases, visual inspection verified credible activation.
However, there was a discernible difference between the hemodynamic response seen prior
to and following the binaural beats sessions (p-value < 0.05). The averaged hemodynamic
response activation patterns for each of the four cases are shown in Figure 5. The task
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period is indicated by the green shaded area, and the rest interval is indicated by the
non-shaded area.
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T-tests were used to determine the statistical significance of the activation level in
each of the four cases. Paired t-tests were used to compare activation in stress, mitigation,
and post-mitigation sessions, and independent sample t-tests were used to compare the
average activation in the control phase with the other three cases. A difference met both
of the following requirements to be deemed statistically significant: (i) p-value < 0.05 and
(ii) t-value > critical t-value (tcrt).

A statistically significant difference was noted in the mean activation levels between
the control and stress phases (p-value < 0.001). Interestingly, during the binaural beats
session, there was no statistically significant difference in the responses between the mitiga-
tion phase and control phase (p-value = 0.377). However, a significant difference was found
when stress phase data were compared with post-mitigation phase data (p-value < 0.005).
The activation of the brain after the binaural beats session (post-mitigation) was signif-
icantly higher (p-value < 0.005) than it was during the control phase. Overall, a signif-
icant improvement was noticed in the hemodynamic response because of the binaural
beat stimulation.
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3.2. Enhancement of Classification Accuracies

Figures 6 and 7 show the averaged activation maps and connectivity maps, respectively.
As mentioned earlier, there were two different methods used in the classification process:
the first was the use of temporal features, and the second was the use of brain maps
as features. In the case of classifying using time series data, all temporal features were
extracted and subsequently utilized in pairs. The LDA-based classification was performed
for each of the four feature extraction windows. Table 2 shows the classification accuracy
obtained with each of the feature sets.
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Table 2. LDA-based classification accuracies (%) obtained for four different window sizes.

Window Size Control vs. Stress Control vs.
Mitigation

Control vs.
Post-Mitigation

0 to 5 s 58.84 59.06 59.04

5 to 30 s 59.53 59.60 60.04

30 to 50 s 58.58 59.50 59.29

0 to 50 s 59.56 59.81 59.96

Given the two-class classification, the highest achieved classification accuracy in all
comparisons was 60.69%, which could be regarded as a moderate result. Furthermore, no
statistically significant difference was found in the classification accuracies when comparing
the three different cases, i.e., control vs. stress, control vs. mitigation, and control vs. post-
mitigation. Brain activation maps and connectivity maps are widely utilized in both fMRI
and fNIRS to find the activated areas. These maps served as features in the classification
process for the current study. For a single 50-s trial, ten activation maps and ten connectivity
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maps were produced having five seconds of data each. This procedure produced a total of
100 brain activation map images and 100 connectivity map images (10 trials each, resulting
in 10 maps) for a single subject. A total of 2100 images were collected from 21 subjects
for each of the four scenarios (control, stress, mitigation, and post-mitigation). From this
dataset of 2100 images per class, five different classifiers—FFNN, LSVM, DT, RBM, and
CNN—were used to perform classification similar to the classification based on temporal
features. Table 3 shows the resulting classification accuracies obtained using the brain
activation maps. Similarly, Table 4 shows the obtained classification accuracies using the
connectivity maps.

Table 3. Classification accuracies obtained using activation (not augmented). Classifiers used: feed-
forward neural network (FFNN), linear support vector machine (LSVM), decision tree (DT), restricted
Boltzmann machine (RBM), and convolutional neural network (CNN).

Accuracy (%)

Classifiers Control vs.
Stress Control vs. Mitigation Control vs.

Post-Mitigation

CNN 72 68 73
FFNN 57 52 59

DT 64 60 63
LSVM 66 63 67
RBM 62 59 64

Table 4. Classification accuracies obtained using connectivity maps (not augmented). Classifiers
used: feed-forward neural network (FFNN), linear support vector machine (LSVM), decision tree
(DT), restricted Boltzmann machine (RBM), and convolutional neural network (CNN).

Accuracy (%)

Classifiers Control vs.
Stress Control vs. Mitigation Control vs.

Post-Mitigation

CNN 76 64 73
FFNN 61 52 65

DT 61 56 64
LSVM 68 64 69
RBM 63 56 66

In this case the maximum classification accuracy achieved was 73% for Control vs.
post-mitigation. Lastly, the acquired 2100 images per class were used as an input data
set to augment the dataset using DCGAN. After almost doubling the size of the data, the
augmented dataset was used to perform classification using the four classifiers mentioned
earlier. The classification accuracy obtained with the augmented brain activation maps is
shown in Table 5. Similarly, Table 6 shows the obtained classification accuracies obtained
using augmented connectivity maps.



Sensors 2025, 25, 428 12 of 16

Table 5. Classification accuracies obtained using augmented brain activation maps. Classifiers used:
feed-forward neural network (FFNN), linear support vector machine (LSVM), decision tree (DT),
restricted Boltzmann machine (RBM), and convolutional neural network (CNN).

Accuracy (%)

Classifiers Control vs.
Stress Control vs. Mitigation Control vs.

Post-Mitigation

CNN 91 86 94
FFNN 62 57 64

DT 88 85 89
LSVM 84 80 86
RBM 76 70 75

Table 6. Classification accuracies obtained using augmented connectivity maps. Classifiers used:
feed-forward neural network (FFNN), linear support vector machine (LSVM), decision tree (DT),
restricted Boltzmann machine (RBM), and convolutional neural network (CNN).

Accuracy (%)

Classifiers Control vs.
Stress Control vs. Mitigation Control vs.

Post-Mitigation

CNN 93 88 96
FFNN 66 61 70

DT 91 87 94
LSVM 85 82 86
RBM 74 71 77

4. Discussion
The purpose of this work was to investigate whether DCGAN can be used to augment

the data based on hemodynamic responses (i.e., ∆HbO) in the brain’s frontal cortex that
could improve classification/detection accuracy of brain state. SCWT was utilized to
activate specific brain activity during the acquisition of fNIRS signals across four distinct
brain states: control, stress, mitigation, and post-mitigation. Initially, temporal features
were utilized in pairs to facilitate the initial implementation of LDA-based classification.

Next, using brain activation maps as a feature, five classifiers were used for the
classification process: CNN, FFNN, LSVM, DT, and RBM. Lastly, DCGAN was used for
data augmentation, which aided in improving classification accuracy in stress detection
and confirmed the efficacy of the suggested technique.

The primary objective of this study is to contribute to the advancement of classification
accuracy, particularly in detecting specific brain states such as stress. One of the main
objectives of fNIRS-based brain imaging is to identify abnormal brain conditions, such as
stress, anxiety, dementia, Alzheimer’s, mild cognitive impairment, etc. The requirement
for automated procedures in accurately detecting these mental states is of importance, and
achieving higher classification accuracies leads to robust and reliable outcomes.

During the experiment, the performance of SCWT under time constraints, in addition
to the feedback they received, significantly increased the stress levels in participants. This
was reflected by noticeable changes in the participants’ behavior, as they showed signs of
increased anxiety and nervousness during the SCWT task. As the study participants were
all employed individuals, the hypothesis was that the brain states in the morning (control)
and afternoon (stress, mitigation, and post-mitigation) would differ significantly from one
another, as shown in Figure 5. Statistical analysis of the hemodynamic response during the
stress and mitigation phases showed no significant difference. Nonetheless, a statistically
significant difference (p-value < 0.001) was found in the hemodynamic response for the con-
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trol and post-mitigation phases. Furthermore, there was a statistically significant difference
in hemodynamic response between the post-mitigation and stress phases, indicating that
the brain state was enhanced by binaural beat stimulation. In Figure 5, it can be noticed that
the activation levels during the stress and post-mitigation phases are higher as compared
with the control phase. This can be due to adaptation of the task.

For the classification based on temporal features, a feature set comprising five features
was extracted using the hemodynamic responses in each of the four groups. Four different
window sizes were used to extract these features: 0–5 s, 5–30 s, 30–50 s, and 0–50 s. The
objective of using the extracted features in pairs was to distinguish the control state from
the other three brain states—stress, mitigation, and post-mitigation. LDA was employed
for this classification, given its widespread use as a classifier for temporal fNIRS data [39].
There was no significant difference obtained between the classification accuracies of the
three cases that were examined. This finding showed the limitation of relying solely on
temporal features for the detection of specific brain states, highlighting its infeasibility as a
viable option.

The prefrontal cortex plays an important role in various active-memory tasks, includ-
ing mental arithmetic, mental counting, and working-memory tasks, and is predominantly
responsive to mental training. As people age, the functional capacity of this brain area
weakens, potentially leading to devastating conditions like Alzheimer’s. The variations
in mental health associated with such changes can be effectively followed through brain
activation maps. Therefore, the impact of binaural beats was also verified by examining the
changes in activation maps.

Each trial of SCWT was divided into 5 s blocks, which were then used to make the
activation maps and connectivity maps of the prefrontal cortex area of the brain. Since
every trial lasted for 50 s, 10 images were generated from each trial. These maps were
used to perform classification using five different classifiers: CNN, FFNN, LSVM, DT, and
RBM. Out of the five classifiers, FFNN provided the lowest accuracy (52%). The statistical
findings derived from examining ∆HbO signals were supported by the classification accu-
racy of each of the five classifiers. All the classifiers demonstrated the highest classification
accuracy in the control vs. post-mitigation scenario, corresponding to a statistically signifi-
cant difference in hemodynamic responses between the two groups. Additionally, CNN
produced the highest classification accuracy, outperforming all other classifiers. Moreover,
the accuracy that was obtained was about 70%.

Lastly, DCGAN was used to augment the images of brain activations maps and con-
nectivity maps, and the five classifiers mentioned earlier were used to classify the images.
A significant increase in the classification accuracies was noticed when the augmented
data were used for classification (shown in Table 3). By using augmented data, the pre-
viously achieved classification accuracy of 73% using CNN increased to 94%. CNN gave
the best classification accuracies, which were 91%, 86%, and 94% for control vs. stress,
control vs. mitigation, and control vs. post-mitigation, respectively. Similarly, by utilizing
the augmented connectivity maps, the classification accuracy went up to 96%. DCGAN
significantly improved the classification accuracy for fNIRS-based imaging. Through uti-
lizing the proposed method, the detection of any abnormalities in brain states can be
detected efficiently.

The scope of the study was limited to prefrontal cortex only due to the small number
of fNIRS channels that were available. By adding more channels to explore different brain
regions, future studies can expand their scope of investigation. Moreover, the combination
of hybrid EEG-fNIRS neuroimaging modalities presents a promising way to obtain brain
signals, enabling whole-brain examination and verifying the study’s hypotheses [40,41]. It
is necessary to acknowledge a primary limitation of fNIRS—inter-subject and intra-subject
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variability in the hemodynamic response signal [42]. This research overcame this constraint
by combining information from several participants, which enabled a thorough evaluation
of the overall trend. Subsequent studies could examine optode placements at high densities
or in bundles, with short separation channels included, to enhance spatial resolution and
boost activation map accuracy [9]. Future research may examine neuroplasticity in the
hours or days following binaural beats therapy to determine the long-lasting effects. Future
studies will focus on systematically exploring and comparing different data augmentation
techniques, as well as investigating the impact of varying DCGAN parameters to further
enhance the robustness and generalizability of fNIRS-based classification models. A further
constraint concerns the study’s sample size, which, although comparable to earlier research,
implies the possibility of growing to a larger cohort. Furthermore, gender variability was
not investigated in this study; one possible direction is to perform independent research on
male and female participants for comparative analysis. In addition, future studies might
concentrate on applying electrical or magnetic stimulation only to particular brain regions
in order to evaluate their varying effects on different brain regions [43,44].

5. Conclusions
In conclusion, this study tackles the challenge of detecting distinct brain states with

higher accuracy, having an emphasis on the impact of stress during the Stroop color–word
task through functional near-infrared spectroscopy (fNIRS). Using a variety of classification
approaches, we encountered the frequently occurring constraint of limited participant
numbers which leads to lower accuracy. The introduction of data augmentation through
a deep convolutional generative adversarial network proved critical in increasing classi-
fication accuracy to 96%. Notably, the same classification approaches fell short with the
original data set (without augmentation), highlighting the importance of data augmenta-
tion in improving interpretability. The investigation of binaural beat stimulation adds a
stimulating element to our study, implying possible stress reduction benefits. The results
demonstrate the potential of fNIRS in detecting subtle changes in brain states, especially
when combined with bigger datasets obtained through data augmentation. This study adds
vital insights to the advancement of brain state identification and opens up a prospective
route for advanced interpretations in the field of functional brain imaging.
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