Combination ATR-FTIR with Multiple Classification Algorithms for Authentication of the Four Medicinal Plants from Curcuma L. in Rhizomes and Tuberous Roots
Abstract
:1. Introduction
2. Experimental
2.1. Sample Collection
2.2. Instruments and Software
2.3. FTIR Spectral Acquisition Experiment
2.4. Data Analysis
2.4.1. Spectral Data Preprocessing
2.4.2. T-Distributed Stochastic Neighbor Embedding (t-SNE)
2.4.3. Classification Algorithms
2.5. Chromatographic Conditions and Method Validation
2.5.1. Sample Preparation
2.5.2. Chromatographic Conditions
2.5.3. Method Validation
3. Results and Discussions
3.1. Interpretation of ATR-FTIR Spectrum Features
3.2. Exploratory Analysis by t-SNE
3.3. Selection of the Best Pretreatment Methods
3.4. Comparison of Different Model Classification Algorithms
3.5. Validation of SVM Model with HPLC Fingerprints
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lyu, M.; Fan, G.; Xiao, G.; Wang, T.; Xu, D.; Gao, J.; Ge, S.; Li, Q.; Ma, Y.; Zhang, H.; et al. Traditional Chinese medicine in COVID-19. Acta Pharm. Sin. B 2021, 11, 3337–3363. [Google Scholar] [CrossRef]
- Ni, L.; Chen, L.; Huang, X.; Han, C.; Xu, J.; Zhang, H.; Luan, X.; Zhao, Y.; Xu, J.; Yuan, W.; et al. Combating COVID-19 with integrated traditional Chinese and Western medicine in China. Acta Pharm. Sin. B 2020, 10, 1149–1162. [Google Scholar] [CrossRef]
- Li, L.; Yang, L.; Yang, L.; He, C.; He, Y.; Chen, L.; Dong, Q.; Zhang, H.; Chen, S.; Li, P. Network pharmacology: A bright guiding light on the way to explore the personalized precise medication of traditional Chinese medicine. Chin. Med. 2023, 18, 146. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.; Meng, X. Highly efficient authentication of edible oils by FTIR spectroscopy coupled with chemometrics. Food Chem. 2022, 385, 132661. [Google Scholar] [CrossRef]
- Weng, S. Fourier Transform Infrared Spectroscopy, 2nd ed.; Chemical Industry Press: Beijing, China, 2010; pp. 78–90+155–163. [Google Scholar]
- Cebi, N.; Yilmaz, M.T.; Sagdic, O. A rapid ATR-FTIR spectroscopic method for detection of sibutramine adulteration in tea and coffee based on hierarchical cluster and principal component analyses. Food Chem. 2017, 229, 517–526. [Google Scholar] [CrossRef]
- Jiang, W.; Sun, Y.; Liu, X.; Su, M.; Zang, H.; Zeng, Y.; Liu, H.; Nie, L. Rapid quality evaluation of Shenzhiling oral liquid by attenuated total reflectance-infrared spectroscopy with chemometrics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 223, 117324. [Google Scholar] [CrossRef] [PubMed]
- Sitnikova, V.E.; Kotkova, M.A.; Nosenko, T.N.; Kotkova, T.N.; Martynova, D.M.; Uspenskaya, M.V. Breast cancer detection by ATR-FTIR spectroscopy of blood serum and multivariate data-analysis. Talanta 2020, 214, 120857. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Deng, J.; Tong, S.; Zhang, Z.; Yang, R. Research Progress on the Systemic Relationship of Curcuma Plants in China, Molecular Plant Breeding. Mol. Plant Breed. 2019, 17, 3695–3702. [Google Scholar] [CrossRef]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; China Medical Science Press: Beijing, China, 2020; Volume I, p. 276. [Google Scholar]
- Zhu, X.; Quan, Y.-Y.; Yin, Z.-J.; Li, M.; Wang, T.; Zheng, L.-Y.; Feng, S.-Q.; Zhao, J.-N.; Li, L. Sources, morphology, phytochemistry, pharmacology of Curcumae Longae Rhizoma, Curcumae Radix, and Curcumae Rhizoma: A review of the literature. Front. Pharmacol. 2023, 14, 1229963. [Google Scholar] [CrossRef] [PubMed]
- Ao, M.; Li, X.; Liao, Y.; Zhang, C.; Fan, S.; Hu, C.; Chen, Z.; Yu, L. Curcumae Radix: A review of its botany, traditional uses, phytochemistry, pharmacology and toxicology. J. Pharm. Pharmacol. 2022, 74, 779–792. [Google Scholar] [CrossRef]
- Sun, X.; Yang, B.; Li, Y. Research progress on quality evaluation of multi-source traditional Chinese medicine. Chin. Tradit. Herb. Drug 2024, 55, 4214–4224. [Google Scholar]
- Su, B.; Shi, D.; Zhang, J.; Dai, Y. Study on the Improvement of Quality Standard Based on Common Pharmacodynamic Effect of Four Kinds of Curcumae Radix. Lishizhen Med. Mater. Medica Res. 2021, 32, 272–275. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Liu, X.; Wang, Y.; Ren, X.; Dong, Y.; Song, R.; Ma, J.; Fan, Q.; Wei, J.; et al. Fast discrimination and quantification analysis of Curcumae Radix from four botanical origins using NIR spectroscopy coupled with chemometrics tools. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 254, 119626. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ren, X.; Wang, Y.; Liu, X.; Dong, Y.; Ma, J.; Song, R.; Yu, A.; Wei, J.; Fan, Q.; et al. HPLC fingerprint and UV–Vis spectroscopy coupled with chemometrics for Curcumae radix species discrimination and three bioactive compounds prediction. Microchem. J. 2021, 166, 106254. [Google Scholar] [CrossRef]
- Lan, Z.; Yang, X.; Meng, J.; De, J.; Lu, T.; Wang, S. Identification of characteristic components and quality evaluation of four kinds of Curcumae Radix based on multi-component quantification and chemometrics. Chin. Tradit. Herb. Drug 2024, 55, 622–629. [Google Scholar] [CrossRef]
- Zhao, X.-S.; Zeng, Y.-X.; Zhou, Y.-K.; Li, R.-T.; Yang, M.-H. Gas Chromatography–Mass Spectrometry for Quantitative and Qualitative Analysis of Essential Oil from Curcuma wenyujin Rhizomes. World J. Tradit. Chin. Med. 2021, 7, 138–145. [Google Scholar] [CrossRef]
- Liu, Y.; Kim, H.-J. Attenuated Total Reflection Fourier Transform Infrared Spectroscopy with Soft Independent Modeling of Class Analogy–Principal Component Analysis for Classifying Cotton Fiber Maturity Phenotypes of Cotton Population Composed of Various Genotypes. Appl. Spectrosc. 2023, 78, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wu, Z.; Su, R.; Ruan, G.; Du, F.; Li, G. Current application of chemometrics in traditional Chinese herbal medicine research. J. Chromatogr. B 2016, 1026, 27–35. [Google Scholar] [CrossRef]
- Roger, J.-M.; Boulet, J.-C.; Zeaiter, M.; Rutledge, D.N. Comprehensive Chemometrics, Chemical and Biochemical Data Analysis, 2nd ed.; Steven, B., Romà, T., Beata, W., Eds.; Elsevier: Oxford, UK, 2020; pp. 1–75. [Google Scholar]
- Kennard, R.W.; Stone, L.A. Computer Aided Design of Experiments. Technometrics 1969, 11, 137–148. [Google Scholar] [CrossRef]
- Wu, X.; Xu, B.; Ma, R.; Niu, Y.; Gao, S.; Liu, H.; Zhang, Y. Identification and quantification of adulterated honey by Raman spectroscopy combined with convolutional neural network and chemometrics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 274, 121133. [Google Scholar] [CrossRef] [PubMed]
- Lan, Z.; Zhang, Y.; Sun, Y.; Ji, D.; Wang, S.; Lu, T.; Cao, H.; Meng, J. Rapid quantitative detection of the discrepant compounds in differently processed Curcumae Rhizoma products by FT-NIR combined with VCPA-GA technology. J. Pharm. Biomed. Anal. 2021, 195, 113837. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, B.; Kohler, A. Optimizing Savitzky–Golay Parameters for Improving Spectral Resolution and Quantification in Infrared Spectroscopy. Appl. Spectrosc. 2013, 67, 892–902. [Google Scholar] [CrossRef]
- Bi, Y.; Yuan, K.; Xiao, W.; Wu, J.; Shi, C.; Xia, J.; Chu, G.; Zhang, G.; Zhou, G. A local pre-processing method for near-infrared spectra, combined with spectral segmentation and standard normal variate transformation. Anal. Chim. Acta 2016, 909, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.C.; Liong, C.-Y.; Jemain, A.A. A contemporary review on Data Preprocessing (DP) practice strategy in ATR-FTIR spectrum. Chemom. Intell. Lab. Syst. 2017, 163, 64–75. [Google Scholar] [CrossRef]
- Xu, X.; Xie, Z.; Yang, Z.; Li, D.; Xu, X. A t-SNE Based Classification Approach to Compositional Microbiome Data. Front. Genet. 2020, 11, 620143. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.-T.; You, J.-L.; Weng, S.-K.; Jian, S.-Y.; Lee, J.C.-L.; Chiang, T.-L. Enhancing forensic investigations: Identifying bloodstains on various substrates through ATR-FTIR spectroscopy combined with machine learning algorithms. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 308, 123755. [Google Scholar] [CrossRef]
- Zhang, L.; Li, G.; Sun, M.; Li, H.; Wang, Z.; Li, Y.; Lin, L. Kennard-Stone combined with least square support vector machine method for noncontact discriminating human blood species. Infrared Phys. Technol. 2017, 86, 116–119. [Google Scholar] [CrossRef]
- Ballante, E.; Galvani, M.; Uberti, P.; Figini, S. Polarized Classification Tree Models: Theory and Computational Aspects. J. Classif. 2021, 38, 481–499. [Google Scholar] [CrossRef]
- Morais, C.L.M.; Lima, K.M.G.; Singh, M.; Martin, F.L. Tutorial: Multivariate classification for vibrational spectroscopy in biological samples. Nat. Protoc. 2020, 15, 2143–2162. [Google Scholar] [CrossRef] [PubMed]
- Wan, H.; Wang, H.; Guo, G.; Wei, X. Separability-Oriented Subclass Discriminant Analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 409–422. [Google Scholar] [CrossRef] [PubMed]
- Sueyoshi, T. DEA-Discriminant Analysis: Methodological comparison among eight discriminant analysis approaches. Eur. J. Oper. Res. 2006, 169, 247–272. [Google Scholar] [CrossRef]
- Bai, L.; Wang, Z.; Shao, Y.-H.; Li, C.-N. Reversible Discriminant Analysis. IEEE Access 2018, 6, 72551–72562. [Google Scholar] [CrossRef]
- Huynh, P.H.; Quach, L.D.; Le, L.T.T.; Doan, T.N. Fine-Tuning Deep Neural Networks and SVM to improve Vietnamese Herbal Medicine Classification. In Proceedings of the 2023 8th International Conference on Intelligent Information Technology, Da Nang, Vietnam, 24–26 February 2023; pp. 199–202. [Google Scholar]
- Qiao, L.-S.; Zhang, X.-B.; Jiang, L.-D.; Zhang, Y.-L.; Li, G.-Y. Identification of potential ACAT-2 selective inhibitors using pharmacophore, SVM and SVR from Chinese herbs. Mol. Divers. 2016, 20, 933–944. [Google Scholar] [CrossRef] [PubMed]
- Cong, C.; Zhang, X.; Li, L. Prediction of potential targets of traditional Chinese medicine based on machine learning. In Proceedings of the International Symposium on the Frontiers of Biotechnology and Bioengineering (FBB 2019), Hangzhou, China, 20–21 April 2019; p. 020022. [Google Scholar]
- Dong, X.; Yu, Z.; Cao, W.; Shi, Y.; Ma, Q. A survey on ensemble learning. Front. Comput. Sci. 2019, 14, 241–258. [Google Scholar] [CrossRef]
- Luo, S.; Xu, J.; Jiang, Z.; Liu, L.; Wu, Q.; Leung, E.L.-H.; Leung, A.P. Artificial intelligence-based collaborative filtering method with ensemble learning for personalized lung cancer medicine without genetic sequencing. Pharmacol. Res. 2020, 160, 105037. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z. Naïve Bayes classification in R. Ann. Transl. Med. 2016, 4, 241. [Google Scholar] [CrossRef]
- Mai, D.S.; Hai, P.H.; Khoi, B.H. Optimal model choice using AIC Method and Naive Bayes Classification. IOP Conf. Series Mater. Sci. Eng. 2021, 1088, 012001. [Google Scholar] [CrossRef]
- Miazzi, M.M.; Pasqualone, A.; Zammit-Mangion, M.; Savoia, M.A.; Fanelli, V.; Procino, S.; Gadaleta, S.; Aurelio, F.L.; Montemurro, C. A Glimpse into the Genetic Heritage of the Olive Tree in Malta. Agriculture 2024, 14, 495. [Google Scholar] [CrossRef]
- Zukotynski, K.; Gaudet, V.; Uribe, C.F.; Mathotaarachchi, S.; Smith, K.C.; Rosa-Neto, P.; Bénard, F.; Black, S.E. Machine Learning in Nuclear Medicine: Part 2—Neural Networks and Clinical Aspects. J. Nucl. Med. 2020, 62, 22–29. [Google Scholar] [CrossRef]
- Zanuttigh, B.; Formentin, S.M.; Briganti, R. A neural network for the prediction of wave reflection from coastal and harbor structures. Coast. Eng. 2013, 80, 49–67. [Google Scholar] [CrossRef]
- Wang, L.; Li, X.; Wang, Y.; Ren, X.; Liu, X.; Dong, Y.; Ma, J.; Song, R.; Wei, J.; Yu, A.; et al. Rapid discrimination and screening of volatile markers for varietal recognition of Curcumae Radix using ATR-FTIR and HS-GC-MS combined with chemometrics. J. Ethnopharmacol. 2021, 280, 114422. [Google Scholar] [CrossRef] [PubMed]
- Kusumadewi, A.P.; Martien, R.; Pramono, S.; Setyawan, A.A.; Windarsih, A.; Rohman, A. Application of FTIR spectroscopy and chemometrics for correlation of antioxidant activities, phenolics and flavonoid contents of Indonesian Curcuma xanthorrhiza. Int. J. Food Prop. 2022, 25, 2364–2372. [Google Scholar] [CrossRef]
- Dhakal, S.; Schmidt, W.F.; Kim, M.; Tang, X.; Peng, Y.; Chao, K. Detection of Additives and Chemical Contaminants in Turmeric Powder Using FT-IR Spectroscopy. Foods 2019, 8, 143. [Google Scholar] [CrossRef] [PubMed]
- Deepa, S.; Madhu, S.; Devasenan, S.; Murali, G.; Pancharatna, P.D.; Maaza, M.; Kaviyarasu, K.; Jeyaram, S. Extraction of Natural Pigment Curcumin from Curcuma Longa: Spectral, DFT, Third-order Nonlinear Optical and Optical Limiting Study. J. Fluoresc. 2023, 34, 1885–1892. [Google Scholar] [CrossRef] [PubMed]
- Reid, C.E.; Jerrett, M.; Petersen, M.L.; Pfister, G.G.; Morefield, P.E.; Tager, I.B.; Raffuse, S.M.; Balmes, J.R. Spatiotemporal Prediction of Fine Particulate Matter During the 2008 Northern California Wildfires Using Machine Learning. Environ. Sci. Technol. 2015, 49, 3887–3896. [Google Scholar] [CrossRef]
- Mishra, P.; Biancolillo, A.; Roger, J.M.; Marini, F.; Rutledge, D.N. New data preprocessing trends based on ensemble of multiple preprocessing techniques. TrAC Trends Anal. Chem. 2020, 132, 116045. [Google Scholar] [CrossRef]
- Engel, J.; Gerretzen, J.; Szymańska, E.; Jansen, J.J.; Downey, G.; Blanchet, L.; Buydens, L.M. Breaking with trends in pre-processing? TrAC Trends Anal. Chem. 2013, 50, 96–106. [Google Scholar] [CrossRef]
- Wang, X.; Jin, Y.; Schmitt, S.; Olhofer, M. Recent Advances in Bayesian Optimization. ACM Comput. Surv. 2023, 55, 1–36. [Google Scholar] [CrossRef]
- Zhang, C.; Zheng, X.; Ni, H.; Li, P.; Li, H.-J. Discovery of quality control markers from traditional Chinese medicines by fingerprint-efficacy modeling: Current status and future perspectives. J. Pharm. Biomed. Anal. 2018, 159, 296–304. [Google Scholar] [CrossRef]
- Li, Y.; Shen, Y.; Yao, C.-L.; Guo, D.-A. Quality assessment of herbal medicines based on chemical fingerprints combined with chemometrics approach: A review. J. Pharm. Biomed. Anal. 2020, 185, 113215. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Tan, C.; Lin, Z. Non-destructive identification of native egg by near-infrared spectroscopy and data driven-based class-modeling. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 206, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Li, J.; Liu, H.; Wang, Y. Application of ATR-FTIR and FT-NIR spectroscopy coupled with chemometrics for species identification and quality prediction of boletes. Food Chem. X 2024, 23, 101661. [Google Scholar] [CrossRef] [PubMed]
NO. | Samples | Botanical Origins | Name | Area | Number | Collection Time |
---|---|---|---|---|---|---|
1 | CKRh | C. kwangsiensis | Curcumae Rhizoma | Guangxi | 7 | 2023.02–2023.09 |
2 | CKRa | Curcumae Radix | Guangxi | 18 | 2023.02–2023.11 | |
Others | 8 | 2023.07 | ||||
3 | CWRh | C. wenyujin | Curcumae Rhizoma | Zhejiang | 16 | 2023.01–2023.11 |
4 | CWRa | Curcumae Radix | Zhejiang | 16 | 2023.01–2023.09 | |
5 | CPRh | C. phaeocaulis | Curcumae Rhizoma | Sichuan | 15 | 2023.03–2023.11 |
6 | CPRa | Curcumae Radix | Sichuan | 14 | 2023.03–2023.09 | |
7 | CLRh | C. longa | Curcumae Longae Rhizoma | Sichuan | 31 | 2022.07–2023.07 |
8 | CLRa | Curcumae Radix | Sichuan | 8 | 2023.03–2023.09 |
Modes | Training Set Acc (%) | Test Set Acc (%) | Prediction Speed (obs/s) | Training Time (s) |
---|---|---|---|---|
Raw | 99.7 | 98 | 720 | 167.69 |
1D + MSC + 9S | 99.7 | 96 | 540 | 227.78 |
1D + MSC + 11S | 100 | 96 | 580 | 180.39 |
1D + MSC + 13S | 100 | 100 | 690 | 127.76 |
1D + MSC + 15S | 100 | 97 | 530 | 197.84 |
2D + MSC + 9S | 98.7 | 96 | 450 | 178.84 |
2D + MSC + 11S | 99.3 | 94.9 | 400 | 200.31 |
2D + MSC + 13S | 99.3 | 94.9 | 320 | 346.8 |
2D + MSC + 15S | 99.7 | 100 | 700 | 144.64 |
1D + SNV + 9S | 100 | 100 | 690 | 354.8 |
1D + SNV + 11S | 100 | 97 | 570 | 363.04 |
1D + SNV + 13S | 100 | 97 | 530 | 413.46 |
1D + SNV + 15S | 100 | 100 | 730 | 399.28 |
2D + SNV + 9S | 97.7 | 97 | 400 | 538.38 |
2D + SNV + 11S | 98.7 | 97 | 380 | 440.78 |
2D + SNV + 13S | 99.7 | 100 | 700 | 205.46 |
2D + SNV + 15S | 99.3 | 100 | 660 | 457.67 |
Models | Training Set Acc (%) | Test Set Acc (%) | Prediction Speed (obs/s) | Training Time (s) |
---|---|---|---|---|
Trees | 98.7 | 98 | 370 | 114.07 |
DA | 100 | 97 | 360 | 156.66 |
KNN | 99 | 90.9 | 230 | 164.44 |
SVM | 100 | 100 | 690 | 127.76 |
NB | 99.7 | 97 | 14 | 3629.5 |
EL | 99.3 | 100 | 460 | 380.3 |
NN | 100 | 96 | 610 | 1470.4 |
Samp | Predicted Class Label | HPLC | Samp | Predicted Class Label | HPLC | Samp | Predicted Class Label | HPLC |
---|---|---|---|---|---|---|---|---|
S-1 | 3 | 3 | S-19 | 7 | 7 | S-36 | 2 | 2 |
S-2 | 3 | 3 | S-20 | 7 | 7 | S-37 | 2 | 2 |
S-3 | 3 | 3 | S-21 | 7 | 7 | S-38 | 2 | 2 |
S-4 | 4 | 4 | S-22 | 7 | 7 | S-39 | 2 | 2 |
S-5 | 4 | 4 | S-23 | 7 | 7 | S-40 | 2 | 2 |
S-6 | 4 | 4 | S-24 | 8 | 8 | S-41 | 2 | 2 |
S-7 | 4 | 4 | S-25 | 8 | 8 | S-42 | 2 | 2 |
S-8 | 5 | 5 | S-26 | 8 | 8 | S-43 | 2 | 2 |
S-9 | 5 | 5 | S-27 | 7 | 7 | Acc | 100% | |
S-10 | 5 | 5 | S-27 | 7 | 7 | |||
S-11 | 6 | 6 | S-28 | 5 | 5 | |||
S-12 | 6 | 6 | S-29 | 7 | 7 | |||
S-13 | 6 | 6 | S-30 | 7 | 7 | |||
S-14 | 7 | 7 | S-31 | 7 | 7 | |||
S-15 | 7 | 7 | S-32 | 7 | 7 | |||
S-16 | 7 | 7 | S-33 | 2 | 2 | |||
S-17 | 7 | 7 | S-34 | 2 | 2 | |||
S-18 | 7 | 7 | S-35 | 2 | 2 |
Chromatography | Traditional NIR/ATR-FTIR | 1D + MSC + 13S and SVM | |
---|---|---|---|
Advantages | Can separate target compounds, wide suitability, high resolution, selectivity, sensitivity, and fully automatable operation; the related active substances or quality control markers screening | Rapid, applicable to both raw materials and processed samples, less consumption (chemical solvents and reagents), non-destructive, environmentally friendly, enables online analysis | Rapid, high accuracy, non-destructive and non-invasive, better tolerance, environmentally friendly, minimum sample preparation and more convenient |
Disadvantages | Time-consuming (for sample preparation, injection, and data processing), standardize operations, high cost for reagents and sophisticated instruments | Signal overlapping, no separation capacity, needs to be supported by chemometrics methods | For other medicinal materials, another model needs to be built according to the process, otherwise the output will be incorrect |
Reference | [54,55] | [15,56,57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, Q.; Wei, W.; Li, Y.; Chen, D.; Zhang, J.; Li, Z.; Guo, D.-a. Combination ATR-FTIR with Multiple Classification Algorithms for Authentication of the Four Medicinal Plants from Curcuma L. in Rhizomes and Tuberous Roots. Sensors 2025, 25, 50. https://doi.org/10.3390/s25010050
Wen Q, Wei W, Li Y, Chen D, Zhang J, Li Z, Guo D-a. Combination ATR-FTIR with Multiple Classification Algorithms for Authentication of the Four Medicinal Plants from Curcuma L. in Rhizomes and Tuberous Roots. Sensors. 2025; 25(1):50. https://doi.org/10.3390/s25010050
Chicago/Turabian StyleWen, Qiuyi, Wenlong Wei, Yun Li, Dan Chen, Jianqing Zhang, Zhenwei Li, and De-an Guo. 2025. "Combination ATR-FTIR with Multiple Classification Algorithms for Authentication of the Four Medicinal Plants from Curcuma L. in Rhizomes and Tuberous Roots" Sensors 25, no. 1: 50. https://doi.org/10.3390/s25010050
APA StyleWen, Q., Wei, W., Li, Y., Chen, D., Zhang, J., Li, Z., & Guo, D. -a. (2025). Combination ATR-FTIR with Multiple Classification Algorithms for Authentication of the Four Medicinal Plants from Curcuma L. in Rhizomes and Tuberous Roots. Sensors, 25(1), 50. https://doi.org/10.3390/s25010050