Energy-Efficient and Trust-Based Autonomous Underwater Vehicle Scheme for 6G-Enabled Internet of Underwater Things
Abstract
:1. Introduction
- Novel Energy-Efficient and Secure Communication Framework: We propose a 6G-enabled, energy-efficient, and trust-based Autonomous Underwater Vehicle (EETAUV) scheme for UASNs that integrates void node avoidance, localization techniques, and secure communication using normal and phantom nodes for node identification and verification.
- Enhanced Network Performance and Security: The scheme improves network stability, minimizes delay, increases packet delivery, and ensures secure data transmission with a lightweight, risk-aware strategy supported by AUVs for node discovery and verification.
- Comprehensive Evaluation: We extensively test the proposed EETAUV scheme against state-of-the-art methods using simulation metrics such as network lifetime, throughput, residual energy, packet delivery ratio, mean square error, routing overhead, path loss, network delay, trust, distance, velocity, computational cost, and data security, demonstrating superior cumulative performance.
2. Literature Review
3. Methodology
3.1. System Outlines
- Sensor Nodes SNs: A total of 500 UASN sensor nodes (SNs).
- Phantom Nodes: A total of 20 to aid in localization and routing for security and trust management.
- Key Parameters: Network lifetime (NetLT, dead nodes), throughput (TpT kbps), residual energy (RE, joules), packet delivery ratio (PDR, %), mean square error (MSE), routing overhead (RO, %), path loss (PL dB), network delay (ND ms), trust (P 0&1), distance (m), velocity (m/s), Computational Cost of Routing (CCR %), and data security (%).
3.2. Mathematical Model
3.2.1. Energy Consumption Model
3.2.2. Energy Components
- Transmission Energy
- Reception Energy
- Processing Energy
- Localization Energy
- Trust Assessment Energy
3.2.3. Distance and Velocity
3.2.4. Cost of Routing
3.3. Void Node Avoidance Model
3.4. Localization Model
3.5. Performance Metrics
- Network Lifetime (NetLTEETAUV)
- 2.
- Throughput ()
- 3.
- Residual Energy (REEETAUV)
- 4.
- Packet Delivery Ratio (PDREETAUV)
- 5.
- Mean Square Error (MSEEETAUV)
- 6.
- Routing Overhead (ROEETAUV)
- 7.
- Path Loss (PLEETAUV)
- 8.
- Network Delay (NDEETAUV)
- 9.
- Trust (TrEETAUV)
- 10.
- Distance (dEETAUV)
- 11.
- Velocity (VEETAUV)
- 12.
- Computational Cost of Routing (CCREETAUV)
Algorithm 1: Data forwarding for EETAUV scheme |
|
Algorithm 2: Trust management EETAUV scheme for 6G-enabled UASNs |
|
3.6. Trust-Based Model
4. Experiments
4.1. Results
4.1.1. Network Lifetime (NetLT Number of Dead Nodes)
4.1.2. Throughput (TpT, kbps)
4.1.3. Residual Energy (RE Joules)
4.1.4. Packet Delivery Ratio (PDR %Age)
4.1.5. Mean Square Error (MSE)
4.1.6. Routing Overhead (RO %Age)
4.1.7. Path Loss (PL, dB)
4.1.8. Network Delay (ND, ms)
4.1.9. Trust (Tr, Probability)
4.1.10. Distance (D, m)
4.1.11. Velocity (V, m/s)
4.1.12. Computational Cost of Routing (CCR %Age)
4.1.13. Data Security (%Age)
4.2. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nkenyereye, L.; Nkenyereye, L.; Ndibanje, B. Internet of Underwater Things: A Survey on Simulation Tools and 5G-Based Underwater Networks. Electronics 2024, 13, 474. [Google Scholar] [CrossRef]
- Albekairi, M. A Comprehensive Mutable Analytics Approach to Distinguish Sensor Data on the Internet of Underwater Things. IEEE Access 2024, 12, 95007–95019. [Google Scholar] [CrossRef]
- Mohamed, R.E.; Saleh, A.I.; Abdelrazzak, M.; Samra, A.S. Survey on wireless sensor network applications and energy efficient routing protocols. Wirel. Pers. Commun. 2018, 101, 1019–1055. [Google Scholar] [CrossRef]
- Consul, P.; Budhiraja, I.; Garg, D. Deep Reinforcement Learning Based Reliable Data Transmission Scheme for Internet of Underwater Things in 5G and Beyond Networks. Procedia Comput. Sci. 2024, 235, 1752–1760. [Google Scholar] [CrossRef]
- Panicker, A.K.; Ravi, P.R. High speed underwater laser communication utilizing USB based data transmission and the Internet of Underwater Things (IoUT) framework. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2024; Volume 3059. [Google Scholar]
- Massari, G.; Albani, Y.; Cavallini, F.; Marras, C.; Spaccini, D.; Petrioli, C. Enabling Underwater Internet of Things. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 5–8 May 2024; p. D011S003R004. [Google Scholar]
- Zhang, Z.; Xu, J.; Xie, G.; Wang, J.; Han, Z.; Ren, Y. Environment and Energy-Aware AUV-Assisted Data Collection for the Internet of Underwater Things. IEEE Internet Things J. 2024, 11, 26406–26418. [Google Scholar] [CrossRef]
- Chen, C.; Liu, L.; Qiu, T.; Jiang, J.; Pei, Q.; Song, H. Routing with traffic awareness and link preference in Internet of vehicles. IEEE Trans. Intell. Transp. Syst. 2020, 23, 200–214. [Google Scholar] [CrossRef]
- Pirbhulal, S.; Wu, W.; Muhammad, K.; Mehmood, I.; Li, G.; de Albuquerque, V.H.C. Mobility enabled security for optimizing IoT based intelligent applications. IEEE Netw. 2020, 34, 72–77. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Z.; Wang, J.; Han, Z.; Ren, Y. Multi-AUV Pursuit-Evasion Game in The Internet of Underwater Things: An Efficient Training Framework via Offline Reinforcement Learning. IEEE Internet Things J. 2024, 11, 31273–31286. [Google Scholar] [CrossRef]
- Zhu, R.; Boukerche, A.; Long, L.; Yang, Q. Design Guidelines on Trust Management for Underwater Wireless Sensor Networks. IEEE Commun. Surv. Tutor. 2024, 26, 2547–2576. [Google Scholar] [CrossRef]
- Jiang, B.; Zhou, R.; Luo, F.; Cui, X.; Liu, Y.; Song, H. Hybrid Trust Model for Identifying Malicious Attacks in Underwater Acoustic Sensor Network. IEEE Sens. J. 2024, 24, 26743–26754. [Google Scholar] [CrossRef]
- Jiang, B.; Feng, J.; Cui, X.; Wang, J.; Liu, Y.; Song, H. Security and Reliability of Internet of Underwater Things: Architecture, Challenges, and Opportunities. ACM Comput. Surv. 2024, 57, 1–37. [Google Scholar] [CrossRef]
- Du, J.; Han, G.; Lin, C.; Kong, X.; Shen, G. An Autonomous Underwater Vehicle-Assisted Adaptive Trust Prediction Model for UASNs. IEEE Trans. Intell. Veh 2024. [Google Scholar] [CrossRef]
- Adam, N.; Ali, M.; Naeem, F.; Ghazy, A.S.; Kaddoum, G. State-of-the-Art Security Schemes for the Internet of Underwater Things: A Holistic Survey. IEEE Open J. Commun. Soc. 2024, 5, 6561–6592. [Google Scholar] [CrossRef]
- Wang, B.; Yue, X.; Liu, Y.; Hao, K.; Li, Z.; Zhao, X. A Dynamic Trust Model for Underwater Sensor Networks Fusing Deep Reinforcement Learning and Random Forest Algorithm. Appl. Sci. 2024, 14, 3374. [Google Scholar] [CrossRef]
- Liu, C.; Ye, J.; An, F.; Jiang, W. An Adaptive Trust Evaluation Model for Detecting Abnormal Nodes in Underwater Acoustic Sensor Networks. Sensors 2024, 24, 2880. [Google Scholar] [CrossRef]
- Zhang, M.; Feng, R.; Zhang, H.; Su, Y. A recommendation management defense mechanism based on trust model in underwater acoustic sensor networks. Future Gener. Comput. Syst. 2023, 145, 466–477. [Google Scholar] [CrossRef]
- Zhang, M.; Xie, J.; Wang, Z.; Liang, L.; Gu, P.; Jin, P.; Zhou, J. MO-CBACORP: A new energy-efficient secure routing protocol for underwater monitoring wireless sensor network. J. King Saud Univ.-Comput. Inf. Sci. 2023, 35, 101786. [Google Scholar] [CrossRef]
- Saeed, K.; Khalil, W.; Ahmed, S.; Ahmad, I.; Khattak, M.N.K. SEECR: Secure energy efficient and cooperative routing protocol for underwater wireless sensor networks. IEEE Access 2020, 8, 107419–107433. [Google Scholar] [CrossRef]
- Muthukkumar, R.; Manimegalai, D. Secured transmission using trust strategy-based dynamic Bayesian game in underwater acoustic sensor networks. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 2585–2600. [Google Scholar] [CrossRef]
- Arifeen, M.M.; Bhakta, D.; Remu, S.R.H.; Islam, M.M.; Mahmud, M.; Kaiser, M.S. Hidden Markov model based trust management model for underwater wireless sensor networks. In Proceedings of the International Conference on Computing Advancements, New York, NY, USA, 10–12 January 2020; pp. 1–5. [Google Scholar]
- Jiang, J.; Zhu, X.; Han, G.; Guizani, M.; Shu, L. A dynamic trust evaluation and update mechanism based on C4. 5 decision tree in underwater wireless sensor networks. IEEE Trans. Veh. Technol. 2020, 69, 9031–9040. [Google Scholar] [CrossRef]
- Hussain, A.; Hussain, T.; Ullah, I.; Muminov, B.; Khan, M.Z.; Alfarraj, O.; Gafar, A. CR-NBEER: Cooperative-Relay Neighboring-Based Energy Efficient Routing Protocol for Marine Underwater Sensor Networks. J. Mar. Sci. Eng. 2023, 11, 1474. [Google Scholar] [CrossRef]
- Shah, S.M.; Sun, Z.; Zaman, K.; Hussain, A.; Ullah, I.; Ghadi, Y.Y.; Khan, M.A.; Nasimov, R. Advancements in neighboring-based energy-efficient routing protocol (NBEER) for underwater wireless sensor networks. Sensors 2023, 23, 6025. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Boukerche, A.; Huang, X.; Yang, Q. DESLR: Energy-efficient and secure layered routing based on channel-aware trust model for UASNs. Comput. Netw. 2023, 234, 109939. [Google Scholar] [CrossRef]
- Zhu, R.; Boukerche, A.; Yang, Q. An Efficient Secure and Adaptive Routing Protocol Based on GMM-HMM-LSTM for Internet of Underwater Things. IEEE Internet Things J. 2024, 11, 16491–16504. [Google Scholar] [CrossRef]
- Tomović, S.; Krivokapić, B.; Nađ, Đ.; Radusinović, I. BEKMP: A Blockchain-Enabled Key Management Protocol for Underwater Acoustic Sensor Networks. IEEE Access 2024, 12, 74108–74125. [Google Scholar] [CrossRef]
- Zhu, R.; Boukerche, A.; Li, P.; Yang, Q. A Traffic-Aware Trust Model Based on Edge Computing for Underwater Wireless Sensor Networks. In Proceedings of the ICC 2024-IEEE International Conference on Communications, Denver, CO, USA, 9–13 June 2024; pp. 2390–2395. [Google Scholar]
- Han, D.; Du, X.; Wang, L.; Liu, X.; Tian, X. Trust-Aware and Fuzzy Logic-Based Reliable Layering Routing Protocol for Underwater Acoustic Networks. Sensors 2023, 23, 9323. [Google Scholar] [CrossRef]
- Zhu, R.; Boukerche, A.; Feng, L.; Yang, Q. A trust management-based secure routing protocol with AUV-aided path repairing for Underwater Acoustic Sensor Networks. Ad Hoc Netw. 2023, 149, 103212. [Google Scholar] [CrossRef]
- Jha, A.V.; Appasani, B.; Khan, M.S.; Song, H.H. A Novel Clustering Protocol for Network Lifetime Maximization in Underwater Wireless Sensor Networks. IEEE Trans. Green Commun. Netw. 2024, 8, 1371–1384. [Google Scholar] [CrossRef]
- Khan, M.U.; Otero, P.; Aamir, M. An energy efficient clustering routing protocol based on arithmetic progression for underwater acoustic sensor networks. IEEE Sens. J. 2024, 24, 6964–6975. [Google Scholar] [CrossRef]
- Ali, E.S.; Saeed, R.A.; Eltahir, I.K. Depth based stable election routing protocol for heterogeneous internet of underwater things (IoUT) energy efficiency. Comput. Electr. Eng. 2024, 119, 109507. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Bandwidth | 30 KHz |
Data Bit Rate | 1000–5000 bit-rate |
Edge Devices | 15 |
Maximum Energy | 10 joules |
Nodes Deployment | Randomly |
Phantom Nodes | 20 nodes |
Sensor Nodes | 100–500 SN |
Simulation Area | 800 m × 500 m × 50 m |
Simulation Duration | 8000 Rounds |
Simulation Tool | MATLAB |
Transmission Range of Single Node | 50 m |
Parameter | DESLR | GHL -SAR | BEKMP | TECTM | TAFLRLR | T-SAPR | EECP | EECRAP | SEP-IoUT | EETUAV (Proposed) |
---|---|---|---|---|---|---|---|---|---|---|
Network Lifetime | High | High | Medium | Medium | Medium | Low | High | High | Medium | Very High |
Throughput | High | High | Medium | Medium | Low | Low | Low | Low | Medium | Very High |
Residual Energy | Medium | Medium | Low | Medium | Low | Low | Low | Very Low | Very Low | Very High |
PDR | Very High | High | High | Medium | Medium | Low | Low | Low | Low | Very High |
Mean Square Error | Medium | Medium | High | High | Medium | Medium | Medium | High | High | Very Low |
Routing Overhead | Medium | Medium | Medium | High | Medium | High | Medium | High | High | Very Low |
Path Loss | Medium | Medium | Medium | Medium | High | Medium | Medium | Medium | High | Very Low |
Network Delay | Medium | Medium | High | Medium | High | Medium | Medium | Medium | Medium | Very Low |
Trust | Medium | Medium | Medium | Medium | Medium | Medium | Low | Low | Low | Very High |
Distance | Low | Low | Medium | Medium | Medium | Medium | Medium | Medium | Medium | Very High |
Velocity | Medium | Medium | Medium | Low | Low | Low | Low | Low | Low | Very High |
Computational Cost of Routing | Medium | Medium | Medium | Medium | Medium | Medium | Medium | Medium | Medium | Very Low |
Data Security | Low | Medium | Medium | Medium | Medium | Medium | Low | Low | Low | Very High |
Metric | Very Low | Low | Medium | High | Very High |
---|---|---|---|---|---|
NetLT Rounds | <400 | 400–410 | 410–420 | 420–430 | >430 |
NetLT Nodes | <400 | 400–410 | 410–420 | 420–430 | >430 |
TpT Rounds | <1300 | 1300–1350 | 1350–1400 | 1400–1450 | >1450 |
TpT Nodes | <1300 | 1300–1350 | 1350–1400 | 1400–1450 | >1450 |
RE Rounds | <5 | 5–6 | 6–7 | 7–8 | >8 |
RE Nodes | <5 | 5–6 | 6–7 | 7–8 | >8 |
PDR Rounds | <50 | 50–60 | 60–70 | 70–80 | >80 |
PDR Nodes | <50 | 50–60 | 60–70 | 70–80 | >80 |
MSE Rounds | >1 | 0.8–1 | 0.6–0.8 | 0.4–0.6 | <0.4 |
MSE Nodes | >1 | 0.8–1 | 0.6–0.8 | 0.4–0.6 | <0.4 |
RO Rounds | <10 | 10–20 | 20–25 | 25–30 | >30 |
RO Nodes | <10 | 10–20 | 20–25 | 25–30 | >30 |
PL Rounds | >90 | 85–90 | 80–85 | 75–80 | <75 |
PL Nodes | >90 | 85–90 | 80–85 | 75–80 | <75 |
ND Rounds | <20 | 20–25 | 25–30 | 30–35 | >35 |
ND Nodes | <20 | 20–25 | 25–30 | 30–35 | >35 |
Tr Rounds | <0.5 | 0.5–0.7 | 0.7–0.8 | 0.8–0.9 | >0.9 |
Tr Nodes | <0.5 | 0.5–0.7 | 0.7–0.8 | 0.8–0.9 | >0.9 |
D Rounds | <5 | 5–6 | 6–7 | 7–8 | >8 |
D Nodes | <5 | 5–6 | 6–7 | 7–8 | >8 |
V Rounds | <30 | 30–35 | 35–40 | 40–45 | >45 |
V Nodes | <30 | 30–35 | 35–40 | 40–45 | >45 |
CCR Rounds | <30 | 30–35 | 35–40 | 40–45 | >45 |
CCR Nodes | <30 | 30–35 | 35–40 | 40–45 | >45 |
Security Rounds | <70 | 70–75 | 75–80 | 80–85 | >85 |
Security Nodes | <70 | 70–75 | 75–80 | 80–85 | >85 |
Protocol | NetLT Rounds | TpT Rounds | RE Rounds | PDR Rounds | MSE Rounds | RO Rounds | PL Rounds | ND Rounds | Tr Rounds | D Rounds | V Rounds | CCR Rounds | Security Rounds |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DESLR | 394.1 | 1460.0 | 7.94 | 77.5 | 0.364 | 20 | 84.5 | 24.6 | 0.785 | 20.0 | 7.3 | 39.39 | 94.6 |
GHL-SAR | 387.7 | 1432.5 | 6.8 | 75.1 | 0.302 | 25 | 81.4 | 23.2 | 0.758 | 21.0 | 7.5 | 37.66 | 92.8 |
BEKMP | 424.4 | 1395.0 | 5.82 | 72.1 | 0.435 | 24 | 86.2 | 25.7 | 0.775 | 22.3 | 7.5 | 36.90 | 90.0 |
TECTM | 403.2 | 1391.5 | 6.88 | 70.2 | 0.465 | 28 | 83.3 | 23.8 | 0.770 | 22.8 | 7.5 | 40.60 | 87.8 |
TAFLRLR | 410.5 | 1340.5 | 6.52 | 67.9 | 0.396 | 18 | 80.6 | 20.7 | 0.731 | 20.5 | 7.2 | 40.32 | 85.0 |
T-SAPR | 435.6 | 1319.0 | 6.77 | 65.5 | 0.440 | 24 | 84.7 | 26.7 | 0.798 | 21.0 | 7.4 | 40.02 | 82.8 |
EECP | 390.7 | 1318.0 | 6.56 | 61.8 | 0.397 | 23 | 87.2 | 27.6 | 0.743 | 22.7 | 7.5 | 37.91 | 80.8 |
EECRAP | 437.7 | 1289.5 | 5.62 | 56.8 | 0.504 | 25 | 84.3 | 24.5 | 0.80 | 21.6 | 7.6 | 37.79 | 78.0 |
SEP-IoUT | 393.8 | 1335.0 | 5.72 | 53.8 | 0.397 | 31 | 81.7 | 22.1 | 0.804 | 23.3 | 7.1 | 34.73 | 76.6 |
EETAUV | 454.7 | 1505.0 | 9.27 | 91 | 0.236 | 12.5 | 77.6 | 17.7 | 0.919 | 24.9 | 7.9 | 31.92 | 95.5 |
Protocol | NetLT Nodes | TpT Nodes | RE Nodes | PDR Nodes | MSE Node | RO Nodes | PL Nodes | ND Nodes | Tr Nodes | D Nodes | V Nodes | CCR Noes | Security Nodes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DESLR | 395.2 | 1405.0 | 7.96 | 81.7 | 0.460 | 28 | 79.1 | 20.2 | 0.754 | 19.0 | 5.65 | 40.52 | 90.9 |
GHL-SAR | 387.9 | 1456.0 | 7.49 | 75.9 | 0.404 | 32 | 78.2 | 19.5 | 0.724 | 19.9 | 5.55 | 39.40 | 89.1 |
BEKMP | 424.7 | 1495.5 | 6.59 | 74.3 | 0.522 | 30 | 80.3 | 22.0 | 0.754 | 21.4 | 5.85 | 39.51 | 87.9 |
TECTM | 402.2 | 1415.5 | 7.1 | 67.6 | 0.552 | 32.5 | 78.4 | 20.4 | 0.731 | 21.9 | 6.05 | 41.19 | 85.5 |
TAFLRLR | 421.0 | 1369.5 | 6.99 | 66.8 | 0.487 | 22 | 76.6 | 17.4 | 0.73 | 19.7 | 6.05 | 42.40 | 80.7 |
T-SAPR | 443.8 | 1414.0 | 6.94 | 61.0 | 0.546 | 30 | 81.0 | 23.0 | 0.759 | 20.0 | 6.15 | 40.51 | 78.9 |
EECP | 391.0 | 1361.0 | 6.81 | 60.9 | 0.487 | 25 | 78.0 | 23.5 | 0.712 | 21.0 | 6.35 | 39.85 | 75.3 |
EECRAP | 436.5 | 1378.5 | 6.54 | 59.7 | 0.623 | 30 | 80.2 | 21.2 | 0.773 | 19.8 | 5.65 | 39.30 | 75.6 |
SEP-IoUT | 394.9 | 1411.5 | 6.42 | 57.2 | 0.520 | 34 | 79.6 | 19.0 | 0.787 | 21.3 | 6.05 | 37.80 | 72.4 |
EETAUV | 468.3 | 1505.0 | 9.38 | 91.0 | 0.356 | 15.5 | 74.5 | 15.0 | 0.847 | 22.9 | 6.35 | 35.26 | 92.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, A.; Li, S.; Hussain, T.; Attar, R.W.; Alhomoud, A.; Alsagri, R.; Zaman, K. Energy-Efficient and Trust-Based Autonomous Underwater Vehicle Scheme for 6G-Enabled Internet of Underwater Things. Sensors 2025, 25, 286. https://doi.org/10.3390/s25010286
Hussain A, Li S, Hussain T, Attar RW, Alhomoud A, Alsagri R, Zaman K. Energy-Efficient and Trust-Based Autonomous Underwater Vehicle Scheme for 6G-Enabled Internet of Underwater Things. Sensors. 2025; 25(1):286. https://doi.org/10.3390/s25010286
Chicago/Turabian StyleHussain, Altaf, Shuaiyong Li, Tariq Hussain, Razaz Waheeb Attar, Ahmed Alhomoud, Reem Alsagri, and Khalid Zaman. 2025. "Energy-Efficient and Trust-Based Autonomous Underwater Vehicle Scheme for 6G-Enabled Internet of Underwater Things" Sensors 25, no. 1: 286. https://doi.org/10.3390/s25010286
APA StyleHussain, A., Li, S., Hussain, T., Attar, R. W., Alhomoud, A., Alsagri, R., & Zaman, K. (2025). Energy-Efficient and Trust-Based Autonomous Underwater Vehicle Scheme for 6G-Enabled Internet of Underwater Things. Sensors, 25(1), 286. https://doi.org/10.3390/s25010286