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Abstract: Human hands have over 20 degrees of freedom, enabled by a complex system
of bones, muscles, and joints. Hand differences can significantly impair dexterity and
independence in daily activities. Accurate assessment of hand function, particularly digit
movement, is vital for effective intervention and rehabilitation. However, current clinical
methods rely on subjective observations and limited tests. Smart gloves with inertial
measurement unit (IMU) sensors have emerged as tools for capturing digit movements,
yet their sensor accuracy remains underexplored. This study developed and validated
an IMU-based smart glove system for measuring finger joint movements in individuals
with hand differences. The glove measured 3D digit rotations and was evaluated against
an industrial robotic arm. Tests included rotations around three axes at 1◦, 10◦, and 90◦,
simulating extension/flexion, supination/pronation, and abduction/adduction. The IMU
sensors demonstrated high accuracy and reliability, with minimal systematic bias and
strong positive correlations (p > 0.95 across all tests). Agreement matrices revealed high
agreement (<1◦) in 24 trials, moderate (1–10◦) in 12 trials, and low (>10◦) in only 4 trials.
The Root Mean Square Error (RMSE) ranged from 1.357 to 5.262 for the 90◦ tests, 0.094
to 0.538 for the 10◦ tests, and 0.129 to 0.36 for the 1◦ tests. Likewise, mean absolute error
(MAE) ranged from 0.967 to 4.679 for the 90◦ tests, 0.073 to 0.386 for the 10◦ tests, and 0.102
to 0.309 for the 1◦ tests. The sensor provided precise measurements of digit angles across
0–90◦ in multiple directions, enabling reliable clinical assessment, remote monitoring, and
improved diagnosis, treatment, and rehabilitation for individuals with hand differences.

Keywords: smart glove; remote monitoring; hand differences; inertial measurement unit;
hand function assessment; finger joint; range of motion; telehealth; wearable technology;
upper limb

1. Introduction
Human hands are highly complex actuators, consisting of a total of 27 bones, 18 joints,

and 39 muscles, which afford over 20 degrees of freedom (DOF) [1]. They allow humans to
communicate, as well as explore and modify the environment. Hand function is required for
many activities of daily living (ADLs) such as eating and self-care but also for participation
in work and leisure activities. The role of the digits in hand function is especially critical, as
they facilitate fine motor skills, object manipulation, and precision grip, all of which are
key components of performing daily activities and complex tasks.

Hand differences, whether congenital or acquired, can lead to partial or total loss
of hand function [2]. Congenital hand differences include syndactyly (fused digits) and
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polydactyly (extra digits) and can be due to developmental disorders such as cerebral
palsy [3]. Hand differences can also be acquired through overuse, injury (e.g., hand
fractures), or medical conditions such as stroke, arthritis, Parkinson’s disease, cancer, and
diabetes mellitus [2]. Consequently, these hand differences can negatively impact patients’
quality of life and their ability to independently perform ADLs [2,4–7]. This can undermine
not only the patients’ physical health but also their psychological, social, and economic
well-being [2,8].

In many cases, surgical and non-surgical interventions are needed to treat and manage
hand differences, as well as their underlying medical conditions [2]. Moreover, digit-specific
rehabilitation or reconstructive techniques have been shown to restore function effectively
in cases of trauma or degenerative diseases. The ability to both accurately and reliably
measure hand function, particularly the digits, is fundamental for the evaluation of these in-
terventions and successful rehabilitation [9]. However, currently, clinicians predominantly
rely on their own observations to evaluate the effectiveness of these interventions, as well
as to monitor the progression or regression of hand function over time. To this aim, several
questionnaires, and assessment tests have been developed; however, these do not capture
the complexity of hand movements in three-dimensional (3D) space. They are often limited
to metrics such as the time required to complete a set of functional tasks and the assessors’
scores of task completion [10,11].

Digit-Tracking Technological Solutions

The current technological solutions for tracking the digits can generally be grouped
as either vision-based or sensor-based [12]. Vision-based solutions typically make use
of RGB cameras; RGB-D (depth) cameras and infrared cameras have been demonstrated
for a variety of applications [12,13]. For example, they have been shown to enable hand
gesture detection, allowing deaf-mute participants to communicate and enabling clinicians
to control medical devices, examine medical images, and interact with patients with mini-
mal contact, thereby reducing the risk of cross-contamination [13–15]. In the automotive
industry, vision-based gesture systems have been demonstrated to allow gesture-controlled
interaction with a vehicle’s multimedia system, allowing drivers to focus on the road and
potentially reducing the risk of accidents [15]. However, factors such as occlusion are well-
documented issues with vision-based solutions, restricting their deployment to real-life
applications. Hands need to be in the foreground, in view of the cameras to allow hand
segmentation to work, which may not always be possible for complex hand movements
performed by patients with hand differences [12,15–17]. Further, current vision-based
solutions need to be trained on computer algorithms trained on images with simple, well-
defined background environments, which can be challenging when deploying them into
real life where the background is often complex, along with the simultaneous movement of
all digits [15,18].

Addressing the limitations of vision-based solutions, the recent decade has witnessed
a significant increase in interest in the development of sensor-based smart glove systems,
typically based on Inertial Measurement Units (IMUs), flex sensors, and strain sensors [17].
IMU sensors are microelectromechanical systems (MEMS) that employ a combination of
triaxial accelerometers, gyroscopes, and magnetometers to measure linear acceleration,
angular velocity, and magnetic heading. They allow the capture of 3D movement data by
converting inertial signals into precise positional and orientation outputs. Flex sensors use
piezo-resistive elements that change their resistance as they are bent or flexed. For optimal
performance, they need to be placed precisely at joint locations to allow an accurate one-to-
one correspondence between joint bending and sensor reading [17]. This poses challenges
when measuring finger abduction and adduction [17,19]. In addition to this, the continuous
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bending of the flex sensors causes them to break rapidly, leading to a short lifespan. Strain
sensors rely on capacitive/resistance elements that change signals as they stretch.

Sensor-based glove systems have been used in many fields including extended reality,
gaming, and entertainment, as well as training, simulation, and rehabilitation for capturing
the 3D movements of hands over time [16,17]. Gloves have been developed for captur-
ing digit movements and gestural analysis for the translation of sign language and the
recreation of virtual characters (together with whole-body suits) for the film and television
field [20,21]. When coupled with tactile information, smart gloves have been demonstrated
to allow an accurate perception of the shapes and weights of virtual objects in a simulation
environment, with potential applications in simulating real-world physiotherapy scenarios
and clinical diagnoses [16,20,21].

The application of sensor-based to-hand differences will enable a more direct, quan-
titative comparison between interventions and monitoring of hand function. The data
captured from these glove systems can allow for more informed clinical decisions and
thus improve functional outcomes and quality of life. Further, they can enable remote
monitoring of hand function, which can provide savings in clinic and clinician’s time, as
well as the number of visits to specialists’ units.

Despite the recent development of sensor-based solutions, there is a lack of information
on the glove sensors’ accuracy and reliability when measuring the motion range (joint
rotations), especially in IMU-based gloves [17]. Systematic characterisation of the glove
sensors’ accuracy and reliability in measuring the range of motions (ROMs) would help
determine their tracking and positioning capabilities and thus their suitability for assessing
hand differences.

We developed an IMU-based smart glove dedicated to application in hand differences
that allowed for the measurement of 3D joint rotations at all five digits. The aim of
this study was to systematically evaluate the accuracy and reliability of IMU sensors in
measuring the 3D range of motion of the digits against an industrial robotic arm. To achieve
this, 3D rotations of the glove sensor were performed, simulating the extension-flexion,
supination-pronation, and abduction-adduction of digits.

2. Materials and Methods
2.1. Hardware Design

The key electronic architecture of the data acquisition glove comprised a bespoke
printed circuit board (PCB), six microelectromechanical systems (MEMS) based inertial
measurement units (IMUs), I2C multiplexer, and a 32-bit ARM Cortex-M4 microcontroller
(Teensy® 3.2, PJRC LLC, Sherwood, OR, USA). The PCB featured a designated space for a
Teensy® microcontroller (180 MHz, 256 KB RAM) and a port for a PCA9548 multiplexer
operating on the I2C protocol. The Teensy® microcontroller was selected owing to its supe-
rior clock frequencies and comprehensive integrated development environment (IDE) with
advanced debugging capabilities, compared to analogous microcontrollers of comparable
dimensions. Six IMUs (BNO055, Bosch Sensortec GmbH, Reutlingen, Germany), each
incorporating a 3-axis gyroscope, 3-axis accelerometer, and 3-axis magnetometer, were
interfaced with the multiplexer via connectors utilising I2C communication protocol. The
system’s power management was facilitated through an onboard power connector, with
operational power supplied by AA cells, providing the requisite voltage and current for
sustained data acquisition.

IMU sensor drift presents a critical challenge in maintaining precision for biomedi-
cal motion tracking applications, with gyroscopic bias instability serving as the primary
factor leading to cumulative errors in angular velocity measurements. A range of envi-
ronmental conditions substantially influences the drift behaviour of these sensors. Our
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analysis demonstrated that electromagnetic interference (EMI) from surrounding electronic
devices introduces considerable measurement uncertainties. Through strategic sensor
positioning, we successfully minimised these EMI-induced errors in our system. Operating
temperature fluctuations within the 12–20 ◦C range were found to influence both bias
stability and sensor scale factor, which we effectively controlled through implemented
compensation algorithms.

In our system architecture, individual IMUs interface with the microcontroller via
a multiplexer, enabling sequential data acquisition from each sensor at a sampling rate
of 200 Hz (Figure 1). Raw measurements from each IMU are captured and stored inde-
pendently in dedicated columns within a CSV file format. This approach ensures direct
access to unprocessed sensor data, facilitating individual analysis of each IMU’s perfor-
mance characteristics. The system’s data acquisition timing is governed by the multiplexer
switching frequency, which has been optimised to maintain the 200 Hz sampling rate
consistently across all sensors. We implemented a robust data collection protocol that
maintains temporal synchronisation whilst preserving the independence of each sensor’s
measurements.
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Figure 1. System architecture showing the data acquisition pathway.

As for the mechanical design, a spandex compression glove was modified by cutting
along its width at the knuckles, to allow for customisability needed for accommodating
the diverse range of hand differences (Figure 2). Five compartments to house IMUs for
the five digits and a main compartment to house the remaining electronic componentry,
including the PCB and the microcontroller, were manufactured. All these compartments
were additively manufactured (fused deposition modelling) with PLA+ filament. Nylon
webbing (25.4 mm wide) was used to secure the main compartment to the wrist, with
both sides of the webbing threaded through designated areas of the compartment. During
donning, the webbing was secured around the wrist with a hook-and-loop fastener patch
(25.4 × 250.8 mm). The IMU compartments were secured to the dorsal side of the fingertips
in a similar fashion, using hook-and-loop fasteners. A battery compartment holding two AA
batteries was secured to the top of the main compartment using adhesive. An additional
(sixth) IMU was secured to the back of the hand.
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Main PCB

Six BNO055 IMUs

Teensy® Microcontroller

PCA9548 Multiplexer

Main Compartment

Figure 2. Overview of the glove system, showing key components: PCB, IMUs, microcontroller,
and multiplexer.

2.2. Software Design

The embedded firmware was developed in C++ programming language to facilitate
high-frequency data acquisition, concurrent multi-sensor sampling, and asynchronous
serial data transmission requisite for Universal Serial Bus (USB) communication betwixt
the data acquisition glove and a personal computer (Figure 3). Upon receipt of a data
request command, the glove would transmit a structured data packet comprising three-
dimensional Euler angles (pitch, roll, and yaw) and temporal measurements from all
six MEMS-based inertial measurement units simultaneously at a sampling frequency of
200 Hz. Data transmission transpired when prompted by a connected PC via the virtual
COM port operating at 115,200 baud rate, whereupon the streamed kinematic data from the
glove would be stored in a comma-separated values (CSV) file, with each row containing a
timestamp and 18 degrees of freedom (3 angles × 6 sensors) of motion data, facilitating
subsequent visualisation of 3D hand movement (Figure 4).
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2.3. Testing

To allow systematic evaluation of the IMU, it is important that the tests are both precise
and reliable. While the evaluation of glove systems on human users is closer to real life, it
has limitations such as inter-subject variability and difficulty in providing repeatable and
precise movements, all of which prevent a more systematic evaluation. Instead, we adopted
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a robotic-arm-based testing approach which allowed us to perform precise, repeatable
movements, without concerns for inter-subject variability and testing fatigue.

Hand differences are one of the most heterogenous medical conditions, manifesting in
many forms [2]. A smart glove must be adaptable to a wide range of hand conditions and
anatomies. Despite this, in its most fundamental form, the glove must be able to measure
orientation between an IMU placed in the region of interest against a reference. Thus, in
this study, we focused on evaluating the performance of an individual IMU sensor. To
contextualise this, the rotations performed in these tests represented digit movements,
particularly given the dominance of digits in hand movements, and the severe impact
their impairment can have on overall hand function [1,2]. It is hoped that these robotic
arm-based systematic tests on individual IMU sensors in isolation will truly discern their
performance, allowing for more holistic evaluations of the glove system in the future.

To systematically evaluate the IMU sensor’s accuracy and reliability in measuring
the three-dimensional range of motion of the digits, as compared to an industrial robotic
arm, nine distinct tests were undertaken. Each trial commenced with mounting one of the
glove’s IMU sensors (sensor A) onto a static surface of an industrial robotic arm (UR5e,
Universal Robots, Novi, MI, USA). This sensor served as the reference point and represented
a stationary wrist. A second IMU sensor was secured within the robotic arm’s gripper
(2F-85, Robotiq, Lévis, QC, Canada), simulating the moving digit. Throughout all nine
trials, it was this second, mobile IMU sensor (sensor B) that was manipulated by the robotic
arm, whilst the first IMU sensor (sensor A) remained static (Figure 5).
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The nine tests involved three movements, which are as follows:

• Rotation of the sensor around the x-axis. This represented the medial/lateral abduction
and adduction of the finger.

• Rotation of the sensor around the y-axis. This represented the extension, flexion, and
hyperextension of the finger.

• Rotation of the sensor around the z-axis. This represented the supination and pronation
of the finger.
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• Each of these three movements was performed at three ranges: 90◦ to −90◦, 10◦

to −10◦, and 1◦ to −1◦, resulting in a total of nine tests (Figure 6). Each test was
performed twelve times to allow for statistical analysis.

Custom housings were designed and manufactured to host the two IMU sensors.
The housing for the stationary sensor A allowed the sensor to be firmly rested on the
robotic arm, with the use of hook-and-loop strips wrapped around the robotic arm. To
further ensure that sensor A does not slide during tests, textured padding was placed
in the housing for better grip. For sensor B, the housing allowed the gripper to hold the
sensor perpendicular to the tool’s pinching direction and it prevented pressure from being
imparted onto the sensor. This way, damage to sensor B was avoided.

The nine tests began with sensor B held at a neutral position (0◦) by the robotic arm
gripper. During the tests, the arm moved along programmed paths and stopped at set
angles, using the RoboDK software (version 5.6.8, RoboDK Inc., Montreal, QC, Canada) via
a local network connection. Targets were set using RoboDK and added to a program as
pure joint rotations with no pathing active. The speed for the 90◦ to −90◦ and 10◦ to −10◦

tests was set to 10◦/s tests, while for the 1◦ to −10◦ tests, it was set to 1◦/s. For all nine
tests, sensor B rotated in the following order: neutral position, positive extreme, negative
extreme, and neutral position. For example, for the test involving 90 to −90◦ rotation
around x-axis, the order of rotations was as follows: 0◦ (neutral position), 90◦ (positive
extreme), −90◦ (negative extreme), and 0◦ (neutral position).
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A Python script was developed to record the motion of a robot arm. The program
used the difference in joint angles recorded from the robot arm to schedule requests for
data from the glove. When a significant joint movement was made (>0.01◦ at any joint), a
request for data from the glove was made and recorded in a .csv file along with the robot
joint positions. All joint data were recorded for the robot arm and the two IMU sensors.

For trials of all nine tests, Kruskal–Wallis test was performed to determine if there
was a statistically significant difference between the robot arm and the IMU sensors. The
null hypothesis (H0) for this test was that there was no statistically significant difference
between the robot arm and the IMU sensors. Then, for each trial, Root Mean Square Error
(RMSE) and Mean Absolute Error (MAE) were determined. For each test, correlation
heatmap, and agreement matrix were created to help determine the pair-wise and inter-trial
correlations. All statistical analyses were performed using Python.

3. Results
Overall, the IMU sensors showed strong concordance with the robotic arm (Figure 7),

suggesting robust measurement validity. The Kruskal–Wallis analyses yielded p-values
exceeding 0.95 throughout all trials of the nine tests, lending support to the null hypoth-
esis and demonstrating that the measurements from the IMU sensors and robotic arm
were statistically equivalent (Table 1). This high degree of statistical similarity indicates
minimal systematic bias between the two measurement systems. The agreement between
RMSE (Root Mean Square Error) and MAE (Mean Absolute Error) values suggests that
the measurement system exhibits consistent performance across the full range of motion,
with negligible outliers or systematic drift that might otherwise cause discrepancies be-
tween these error metrics (Table 2). This stability across the motion range implies that the
IMU sensors maintain their accuracy regardless of the position or velocity of movement
being measured.

The correlation heatmaps revealed that correlation values exceeded 0.91 across all trial
pairs of the ten tests, indicating strong positive correlations between the robot and IMU sen-
sors (Figure 8; see Supplementary Figures S1–S7 for correlation heatmaps for the remaining
tests). This high correlation coefficient suggests good measurement consistency between
the two systems. Moreover, the inter-trial correlations demonstrated equally robust pos-
itive relationships, also exceeding 0.91, which indicates high test-retest reliability. These
findings were corroborated by the agreement matrices (Supplementary Figures S8–S16),
which demonstrated high agreement (<1◦) for 24 trials and moderate agreement (1–10◦)
for 12 trials across all tests. A small subset of four trials exhibited low agreement (>10◦),
suggesting isolated instances where measurement discrepancies occurred. The predom-
inance of high and moderate agreement provides compelling evidence for the overall
measurement precision and reliability of the IMU sensor system relative to the robotic
reference standard.

In terms of practical implications in a clinical environment, these statistical analysis
findings imply that IMU sensors can allow the capture of fine digit movements in abduction,
adduction, extension, flexion, supination, and pronation. Thus, the IMU-based glove can
be integrated into the existing clinical hand assessments such as the Jebson–Taylor Hand
Function Test which rely heavily on tasks based on digit movements [11]. Further, given
the high agreement (<1◦) between the IMU sensor and robotic arm, the IMU-based glove
could potentially allow clinicians to discern and diagnose a wide range of hand differences.
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all twelve trials of the 90◦ (a–c), 10◦ (d–f), and 1◦ (g–i) x-axis rotation, y-axis rotation, and z-axis
rotation tests.

Table 1. p-values of all trials of the x-, y-, and z-axis rotation tests, as determined by the Kruskal–
Wallis test.

Trial
Number

x-Axis Rotation y-Axis Rotation z-Axis Rotation
90◦ 10◦ 1◦ 90◦ 10◦ 1◦ 90◦ 10◦ 1◦

1 0.939 0.880 0.406 0.880 0.959 0.959 0.979 0.899 0.632
2 0.762 0.840 0.979 0.979 0.959 0.939 0.880 0.668 0.743
3 0.841 0.939 0.546 0.979 0.979 0.919 0.979 0.762 0.537
4 0.772 0.820 0.743 0.939 0.705 0.860 0.979 0.880 0.571
5 0.772 0.919 0.724 0.899 0.801 0.979 0.979 0.939 0.496
6 1.000 0.850 0.504 0.959 0.801 0.880 0.899 0.880 0.899
7 0.909 0.899 0.562 0.860 0.801 0.959 0.880 0.949 0.899
8 0.734 0.969 0.959 0.919 0.939 0.650 0.919 0.959 0.144
9 0.588 0.830 0.724 0.860 1.000 0.762 0.939 0.959 0.413

10 0.959 0.979 0.339 0.880 0.840 0.705 0.919 1.000 0.899
11 0.909 0.959 0.743 0.959 0.929 0.969 0.979 0.959 0.979
12 0.919 0.840 0.632 0.840 0.820 0.801 0.959 0.919 0.860
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Table 2. Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), in parentheses, for all
trials of the x-, y-, and z-axis rotation tests.

Trial
Number

x-Axis Rotation y-Axis Rotation z-Axis Rotation
90◦ 10◦ 1◦ 90◦ 10◦ 1◦ 90◦ 10◦ 1◦

1 1.862
(1.570)

0.358
(0.286)

0.341
(0.221)

1.993
(1.791)

0.198
(0.158)

0.200
(0.161)

1.992
(1.839)

0.132
(0.106)

0.269
(0.187)

2 3.548
(2.905)

0.367
(0.275)

0.239
(0.184)

1.388
(0.967)

0.182
(0.156)

0.216
(0.175)

2.407
(2.071)

0.249
(0.213)

0.171
(0.141)

3 3.126
(2.470)

0.395
(0.345)

0.251
(0.151)

2.203
(1.983)

0.116
(0.091)

0.213
(0.170)

2.913
(2.603)

0.154
(0.118)

0.151
(0.116)

4 2.622
(2.147)

0.538
(0.386)

0.253
(0.191)

1.486
(1.049)

0.336
(0.301)

0.179
(0.144)

2.696
(2.370)

0.154
(0.113)

0.157
(0.118)

5 2.904
(2.373)

0.420
(0.339)

0.140
(0.109)

1.603
(1.322)

0.213
(0.164)

0.202
(0.163)

2.592
(2.270)

0.219
(0.190)

0.185
(0.143)

6 1.918
(1.635)

0.261
(0.189)

0.288
(0.204)

1.357
(1.021)

0.178
(0.139)

0.130
(0.107)

2.608
(2.278)

0.206
(0.165)

0.222
(0.174)

7 2.048
(1.736)

0.295
(0.215)

0.244
(0.199)

1.767
(1.452)

0.178
(0.139)

0.213
(0.177)

2.220
(1.965)

0.142
(0.113)

0.219
(0.16)

8 3.337
(2.647)

0.245
(0.207)

0.129
(0.107)

1.444
(1.080)

0.094
(0.073)

0.152
(0.131)

2.148
(1.807)

0.157
(0.124)

0.360
(0.309)

9 5.262
(4.679)

0.348
(0.285)

0.141
(0.110)

1.419
(1.146)

0.165
(0.146)

0.130
(0.102)

1.920
(1.609)

0.158
(0.122)

0.190
(0.150)

10 1.973
(1.672)

0.180
(0.151)

0.243
(0.203)

1.592
(1.411)

0.155
(0.118)

0.214
(0.175)

1.838
(1.591)

0.114
(0.094)

0.136
(0.108)

11 1.983
(1.698)

0.251
(0.187)

0.172
(0.141)

1.457
(1.209)

0.184
(0.139)

0.230
(0.183)

1.900
(1.739)

0.163
(0.138)

0.209
(0.163)

12 2.120
(1.705)

0.295
(0.203)

0.151
(0.119)

2.238
(2.015)

0.242
(0.201)

0.222
(0.179)

1.850
(1.654)

0.253
(0.194)

0.155
(0.135)
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4. Discussion
In recent years, there has been increased interest in monitoring 3D hand movement.

Previous studies have focused on the potential application of smart gloves for assessing
hand function but often with a focus on specific conditions such as stroke [22–24]. Infor-
mation regarding the general accuracy and reliability of these gloves in measuring joint
rotation is missing in the literature [17]. By systematically evaluating the glove sensor’s
accuracy and reliability in measuring the 3D finger joint angles against an industrial robotic
arm, we obtained a better understanding of the glove’s ability to measure rotation in three
axes (x, y, and z), simulating finger extension-flexion, supination-pronation, and abduction-
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adduction. This contributes to the current knowledge by demonstrating their effectiveness
for potential applications in assessing hand differences.

The glove sensor was able to record 90◦, 10◦, and 1◦ rotation in all three directions.
Extension-flexion, supination-pronation, and abduction-adduction of digits are fundamen-
tal movements of the human hand, and their combinations enable humans to perform
complex tasks. The glove sensor’s performance in the three directions was similar, demon-
strating that it can be used not only for measuring the finger’s extension-flexion ROM,
which is a common clinical measurement. It can also be used to measure the finger’s devia-
tions in abduction-adduction and supination-pronation. These findings, along with the fact
that relatively large angle ranges (180◦) in all three directions were evaluated in this study,
indicate that the glove sensor is versatile in its application for assessing hands with large
differences from the anatomical hand. Hand differences can both increase and decrease the
ROMs of the fingers as well as alter the resting position of the hand [2]. Thus, these sensors
allow clinicians to capture these movements in the clinic and provide more quantitative
data to supplement the current qualitative assessments and hand function tests such as the
Jebsen–Taylor Hand Function Test [11]. This additional information will allow clinicians
to make more informed clinical decisions and objectively evaluate the effectiveness of
interventions. Further, the deployment of the glove outside the clinical setting would also
enable remote monitoring of hand function. Such remote monitoring would provide a
more accurate representation of the patient’s hand function in real life. Currently, there is
no standard method for evaluating glove sensors for hand differences, with the common
approach being testing on human subjects [22–24]. In the current study, the robotic arm
provided a repeatable method for testing the sensor on multiple axes in isolation. It allowed
us to eliminate factors such as intra- and inter-subject variability, subject biases, and subject
fatigue, that are associated with human testing. Thus, we recommend the use of a robotic
arm for future studies of smart gloves.

As for the limitations of the current study, first, while the use of a robotic arm provided
a highly repeatable setup for evaluating the sensor, the glove system was not tested
on human subjects. Second, the study focused on testing the sensor’s performance for
isolated finger rotations but did not assess simultaneous movements of all five digits. The
ability to capture complex, multi-digit, multi-axial hand movements remains unexplored.
Third, the glove sensor was not evaluated on unhealthy subjects, such as individuals with
neuromuscular disorders or hand injuries, which limits the generalisability of the findings
to clinical applications. Lastly, the emphasis of this work was on real-time sensor data and
repeatability, potentially overlooking broader aspects of usability or long-term durability
under diverse conditions.

To address the aforementioned limitations, future research studies should incorpo-
rate testing on human subjects. This will enable the evaluation of the glove sensor in
realistic conditions, accounting for inter-subject variability and the complexity of natural
hand movements. Additionally, testing all five digits simultaneously could provide a
comprehensive assessment of the glove’s ability to capture intricate hand functions during
dynamic, multi-finger tasks. Such experiments should include a broader participant pool,
encompassing both healthy and unhealthy subjects, to explore the glove’s applicability for
diagnostic or therapeutic purposes. Finally, integrating assessments of usability, durability,
and long-term performance could strengthen the practical value of the glove sensor for
both research and clinical contexts. In the clinical context, the glove can potentially be
used to monitor hand function in patients with neuromuscular disorders, track recovery
progress after hand surgeries, or evaluate motor impairments in conditions such as arthri-
tis or stroke. The glove system’s integration into rehabilitation programs could provide
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real-time feedback to patients and therapists, enabling more personalised and effective
therapy interventions.

5. Conclusions
In conclusion, this study has demonstrated the accuracy and reliability of IMU sensors

in measuring three-dimensional joint rotations, with the results aligning closely with
an industrial robotic arm across various test movements. These findings indicate good
potential application of IMUs in smart gloves for tracking key digit movements during
extension-flexion, supination-pronation, and abduction-adduction. Such IMU-based smart
gloves could potentially offer clinicians more accurate and reliable digit motion data to
supplement the current clinical assessment for hand differences.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/s25010002/s1, Figure S1: Correlation heatmaps for all twelve
trials of the 90◦ z-axis rotation test; Figure S2: Correlation heatmaps for all twelve trials of the 10◦

x-axis rotation test; Figure S3: Correlation heatmaps for all twelve trials of the 10◦ y-axis rotation
test; Figure S4: Correlation heatmaps for all twelve trials of the 10◦ z-axis rotation test; Figure S5:
Correlation heatmaps for all twelve trials of the 1◦ x-axis rotation test; Figure S6: Correlation heatmaps
for all twelve trials of the 1◦ y-axis rotation test; Figure S7: Correlation heatmaps for all twelve trials
of the 1◦ z-axis rotation test; Figure S8: Agreement matrix for all twelve trials of the 90◦ x-axis rotation
test; Figure S9: Agreement matrix for all twelve trials of the 90◦ y-axis rotation test; Figure S10:
Agreement matrix for all twelve trials of the 90◦ z-axis rotation test; Figure S11: Agreement matrix for
all twelve trials of the 10◦ x-axis rotation test; Figure S12: Agreement matrix for all twelve trials of the
10◦ y-axis rotation test; Figure S13: Agreement matrix for all twelve trials of the 10◦ z-axis rotation test;
Figure S14: Agreement matrix for all twelve trials of the 1◦ x-axis rotation test; Figure S15: Agreement
matrix for all twelve trials of the 1◦ y-axis rotation test; Figure S16: Agreement matrix for all twelve
trials of the 1◦ z-axis rotation test.
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