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Abstract: With the increasing complexity of urban roads and rising traffic flow, traffic safety
has become a critical societal concern. Current research primarily addresses drivers’ atten-
tion, reaction speed, and perceptual abilities, but comprehensive assessments of cognitive
abilities in complex traffic environments are lacking. This study, grounded in cognitive
science and neuropsychology, identifies and quantitatively evaluates ten cognitive compo-
nents related to driving decision-making, execution, and psychological states by analyzing
video footage of drivers’ actions. Physiological data (e.g., Electrocardiogram (ECG), Electro-
dermal Activity (EDA)) and non-physiological data (e.g., Eye Tracking (ET)) are collected
from simulated driving scenarios. A dual-branch Transformer network model is developed
to extract temporal features from multimodal data, integrating these features through
a weight adjustment strategy to predict driving-related cognitive abilities. Experiments
on a multimodal driving dataset from the Computational Physiology Laboratory at the
University of Houston, USA, yield an Accuracy (ACC) of 0.9908 and an F1-score of 0.9832,
confirming the model’s effectiveness. This method effectively combines scale measure-
ments and driving behavior under secondary tasks to assess cognitive abilities, providing a
novel approach for driving risk assessment and traffic safety strategy development.

Keywords: biosignals; driving-related cognitive abilities; multimodal; driving safety

1. Introduction
In modern society, driving has become an integral part of daily life. According to a

survey, 94% of traffic accidents are caused by driver-related factors [1]. Beyond mastering
vehicle operation skills, drivers must also possess a wide range of complex cognitive
abilities to handle various traffic situations and emergencies [2–5]. Therefore, gaining a
comprehensive understanding of the cognitive abilities involved in driving has significant
theoretical and practical value. This knowledge is critical for assessing whether drivers are
capable of safely operating vehicles, helping them understand their driving performance,
and enabling governments to conduct more scientific medical examinations.

In recent years, cognitive science and neuropsychology have been introduced into
driving research [6–8]. By studying cognitive processes such as perception, response, and
memory in driving, researchers like Moran et al. [9] have proposed a theoretical framework
that divides driving behavior into several interrelated cognitive sub-capacities, including
attention allocation, rapid response, processing speed, working memory (WM) capacity,
reaction ability, judgment, anticipatory ability, and perceptual skills. A deficiency in any
of these abilities can lead to serious traffic accidents and heightened driving risks. Young
drivers (aged 17–25) and older drivers (aged 60 and above) are particularly considered
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high-risk groups [10]. Younger drivers, especially those newly licensed, may encounter
unfamiliar driving challenges and exhibit impulsivity, leading to relatively weaker cognitive
driving abilities [11,12]. In older adults, cognitive abilities tend to decline with age [13,14].

Most current studies on driving-related cognitive abilities assessments focus on spe-
cific cognitive components such as attention [15–18], reaction speed [19–21], working
memory (WM) capacity [22–24], or perceptual ability [9,25,26]. For example, Zatmeh-Kanj
and Toledo [16] proposed the Gipps’ Model (GM) for car-following based on vehicle data,
a classical model used to assess driving attention. In this study, participants were tasked
with following a lead vehicle that randomly changed speeds while maintaining a consis-
tent distance. Data including average speed, speed variability, acceleration, deceleration
times, and distance to the lead vehicle were used as inputs for the GM model to evaluate
driver attention levels. Similarly, Chen et al. [17] analyzed behaviors that distract atten-
tion while driving, examining four secondary tasks: answering math questions, solving
problems, texting, and normal driving. By observing changes in drivers’ behavior and phys-
iological data during these tasks, they developed a neural architecture search network to
perform detailed analyses of attention-diverting activities. Mohammed et al. [18] proposed
a semi-supervised lightweight vision transformer method based on pseudo-labeling, which
effectively detects driver distraction behaviors in natural driving environments by utilizing
both unlabeled and a small amount of labeled data for model training. This approach
achieved an average accuracy of 95.43% on the StateFarm dataset. Stanisław et al. [20]
examined reaction time by measuring dynamic vehicle parameters such as response time
for the accelerator, brake, and steering inputs, presenting the data as a Time-To-Collision
(TTC) function. Their study demonstrated that these parameters effectively evaluated
driver reaction ability under various conditions, providing a scientific basis for enhancing
driving safety. Additionally, Hajinoroozi et al. [21] integrated Electroencephalogram (EEG)
data with reaction times to assess drivers’ states. Their findings suggested that a reaction
time (RT) of ≤0.7 s indicates good driving performance, whereas an RT of ≥2.1 s reflects
poor performance. EEG signals helped distinguish between drivers with strong and weak
driving capabilities. Broadbent et al. [24] found that by setting tasks with varying levels of
working memory (WM) demands and employing biometric methods such as Functional
Near-Infrared Spectroscopy (FNIRS) and eye-tracking, it is possible to effectively evaluate
drivers’ WM capacity and its impact on driving performance. Their findings indicate
that WM capacity significantly influences drivers’ reaction times and overall performance,
particularly under high-load tasks. In a study analyzing the effect of perceptual abilities
on driving, Moran et al. [9] employed newly developed testing methods that included the
accuracy of recognizing potential hazards, the reaction time required to anticipate these
hazards, and the time needed to take action to avoid them. They recommended incorpo-
rating cognitive function assessments into graduated licensing systems to help identify
young drivers whose cognitive skills may be insufficient for safe driving. Moghaddam
and Ayati [27] found that Type A drivers, characterized by competitiveness and a sense
of urgency, are more prone to high-risk driving behaviors and have higher accident rates.
In contrast, Type B drivers, who tend to exhibit more relaxed and patient driving styles,
are generally safer. Therefore, when developing traffic safety strategies and interventions,
personality traits should be considered.

These studies primarily analyze driver distraction, reaction capabilities, and other
factors by combining secondary tasks with subjective and objective data measurement
methods. However, they focus on individual components of cognitive driving abilities
without fully considering the complexity of the driving process and the multifaceted nature
of cognitive abilities.
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Some subsequent studies have attempted to analyze the effects of driving-related
cognitive abilities holistically and comprehensively, for example, Depestele et al. [28] set
up various driving scenarios to assess cognitive abilities and conduct driving simulator
tests. They found that cognitive capabilities are significantly positively correlated with
driving performance, both in elderly and young individuals. Ledger et al. [29] targeted two
groups with a higher risk of collisions, namely young and elderly drivers, using various
cognitive measurement tools such as the Rey Complex Figure Test (CFT), Trail Making
Test (TMT), and Mini-Mental State Examination (MMSE). Through statistical analysis,
they observed the relationship between drivers’ cognitive abilities and driving perfor-
mance. They found that, regardless of age, drivers’ cognitive abilities are a crucial factor
in assessing driving performance. Mullen et al. [30] recorded the performance of elderly
drivers in driving behaviors such as turning, braking, and accelerating using a driving
simulator and statistical analysis methods. Additionally, they employed a series of cog-
nitive measurement scales to assess the cognitive abilities of elderly drivers, including
short-term memory, spatial working capacity, processing speed, and attention. The study
results indicate that driving-related cognitive abilities are an important basis for assess-
ing the driving performance of elderly drivers. However, Stolwyk et al. [31] found that
the correlation between on-road driving performance and standard neuropsychological
tests was not significant, especially for healthy individuals without significant cognitive
impairment. The studies mentioned above demonstrate that evaluating driving-related
cognitive abilities through various scales, task scenarios, and driving simulators to observe
driver performance in behaviors such as steering, braking, and acceleration is effective.
Regardless of age, there is a significant positive correlation between cognitive abilities and
driving performance. However, these studies mainly use statistical methods to analyze
data relationships, which perform inadequately when handling high-dimensional data and
fail to fully extract common features.

Based on the research surveyed above, it is found that current studies mostly inves-
tigate the correlation between a single element of driving-related cognitive abilities and
driving performance. Even when some studies attempt to integrate these driving-related
cognitive abilities, they have only used scales or have not comprehensively synthesized all
aspects of driving-related cognitive abilities. In addition, most of the methods analyzed
in these studies use machine learning or statistical models, although machine learning
has advantages in speed and efficiency, its performance is heavily dependent on the re-
searcher’s expertise and the selection of data features. In the processing of high-dimensional
and complex data, feature selection and data preprocessing require extensive specialized
knowledge. Therefore, it is necessary to further utilize advanced modeling algorithms
to comprehensively explore the integrated impact of different driving-related cognitive
abilities on driving behavior.

In recent years, with the continuous emergence of big data and the improvement of
computational capabilities, sensor technology has also been evolving rapidly. Sensors used
for driving behavior analysis include physiological and non-physiological measurement
sensors. Physiological or neurophysiological measurements include ECG, EEG, EDA,
galvanic skin response (GSR), and respiratory rate [32]. Non-physiological measurement
sensors include vehicle signals such as speed, acceleration, lane deviation, and braking
force, eye trackers measuring eye displacement in the X/Y directions, and depth cameras
for capturing facial emotional signals [33–36]. The continuous advancement of these sensor
technologies has led to a more comprehensive acquisition of driving behavior data, which
provides a richer source of information for assessing a driver’s cognitive ability to drive. At
the same time, this poses a challenge to the processing of such multi-source data. The large
amount of multi-source data makes it challenging to obtain high-dimensional features.
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Therefore, the distributed and hierarchical feature characteristics of deep learning have
emerged as effective methods for processing these data and have found wide application
in driving behavior assessment. For this purpose, Mou et al. [32] proposed a novel dual-
channel feature extraction model CNN (Convolutional Neural Network) -Trans-SA based
on CNN and Transformer. This model takes the eye, vehicle, and physiological data as input
features to perform fine-grained classification of driver distraction levels, including normal
driving, cognitive distraction, emotional distraction, and sensory-motor distraction. The
classification ACC of the model reached 99.802%. Arvin et al. [33] employed the concept
of volatility by integrating a Data Acquisition System (DAS) with various sensors such as
front and in-car cameras, front sensors, and accelerometers to collect vehicle motion, cabin
video, and surrounding environment data streams. They utilized a combination of a one-
dimensional 1D-Convolutional Neural Network (1D-CNN) and Long Short-Term Memory
(LSTM) to build a 1DCNN-LSTM model for processing these data. This model extracts
local dependencies and volatility from time-series data to achieve distraction classification
of drivers, achieving the model classification ACC of 95.45% in their study. Mou et al. [34]
proposed an attention-based framework for multimodal fusion of driver stress detection.
The framework utilizes an attention-based CNN and LSTM model to fuse non-invasive data,
including eye data, vehicle data, and environmental data. With this model, features can be
automatically extracted from each modality and features from different modalities can be
weighted through a self-attention mechanism to increase attention to important features.
The method achieves the model average classification ACC of 95.5%. Arefnezhad et al. [35]
proposed a combined CNN and Recurrent Neural Network (RNN) based method for driver
sleepiness detection. The method takes five vehicle-based measurements as inputs to the
network, including lateral deviation from the road centerline, lateral acceleration, traverse
angular velocity, steering wheel angle, and steering wheel speed. In the RNN layer, LSTM
and Gated Recurrent Unit (GRU) are used. By combining with CNN (CNN-LSTM), the
method achieved the highest model classification ACC of 96.0%. Vyas et al. [36] proposed a
transformer-based end-to-end driver behavior classification framework called Trans-DBC
that aims to classify unsafe driving behaviors. The framework enables the analysis of driver
behavior by effectively using accelerometer, gyroscope, and GPS multivariate time-series
data combined with learning short-term and long-term time dependencies. The results of
the study show that the framework can achieve 95.38% classification ACC.

The above research indicates that multimodal data provides rich feature information.
To effectively predict driving-related cognitive abilities, it is essential to maximally extract
the common features from these data. This requires designing an appropriate network
model to reduce the interference caused by different distribution characteristics at the data
source level, mapping the features into a high-dimensional space, and maximally integrat-
ing the common features across all data to effectively predict driving-related cognitive
abilities. Table 1. presents a summary table form of the current state of research related to
the assessment of driving behavior mentioned above, which includes the research subjects,
the signals used, the assessment methods, and the experimental results.

Table 1. Relevant studies on driving behavior assessment.

Reference Subject of Study Data Assessment Method Performance
(ACC)

Stanisław, et al. [20] Reaction Speed Accelerator Pedal,
Brakes, Steering Wheel Statistical Analysis -

Broadbent, et al. [24] Working Memory
Capacity

FNIRS,
Eye Tracker Statistical Analysis -
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Table 1. Cont.

Reference Subject of Study Data Assessment Method Performance
(ACC)

Moran, et al. [9] Hazard Perception
Ability

Cognitive Tests, Hazard
Perception Test (HPT) Statistical Analysis -

Chen, et al. [17] Distraction Eye, Vehicle,
Physiological Deep-CNN 99.78%

Mohammed, et al. [18] Distraction Driving Image Data Semi-supervised
Lightweight Hybrid VIT 95.43%

Mou, et al. [32] Distraction Eye, Vehicle,
Physiological CNN-Trans-SA 99.80%

Arvin, et al. [33] Distraction Vehicle Motion, Cabin
Video, Environment 1DCNN-LSTM 95.45%

Mou, et al. [34] Stress Eye Data, Vehicle Data,
Environmental Data CNN-LSTM 95.5%

Arefnezhad, et al. [35] Drowsiness Vehicle CNN-LSTM 96.0%

Vyas, et al. [36] Driving Safety Accelerometer,
Gyroscope, and GPS Trans-DBC 95.38%

In summary, although existing research has explored various cognitive factors re-
lated to driving performance in different driving scenarios, most studies are limited to the
analysis of a single cognitive element, which leads to an incomplete understanding of the
factors influencing driving behavior. This study systematically analyzes the components
of driving-related cognitive abilities and their interactions with driving behavior from
three dimensions: cognitive decision-making, vehicle control, and psychological state.
By improving the model, we are able to extract key common features from multimodal
sensor data, allowing for a more accurate and comprehensive evaluation of driving-related
cognitive abilities. Therefore, this study proposes a method for assessing driving-related
cognitive abilities based on multimodal data. This method initially introduces a compre-
hensive way to quantify driving-related cognitive abilities. By utilizing driving behavior
data across different scenarios, it extracts ten fundamental cognitive elements comprising
driving-related cognitive abilities: attention allocation, processing speed, working memory
capacity, reaction ability, judgment, anticipation, perception, stress resistance, anxiety level,
and Type A/B personality traits, further refining the characterization of driving-related
cognitive abilities. Concurrently, a predictive method for driving-related cognitive abilities
based on multimodal driving data is proposed. This approach aims to identify relationships
between sensor data and driver cognitive abilities, utilizing the Transformer self-attention
mechanism and multimodal fusion techniques to predict drivers’ cognitive capabilities.
The proposed method in this paper contains the following main contributions:

• Introduction of a Multidimensional Cognitive Ability Evaluation System: This study
defines and quantifies cognitive factors affecting driving safety from three dimensions—
cognitive decision-making, vehicle control, and psychological state. It extracts and
quantifies multiple cognitive ability indicators related to driving, thereby providing
a comprehensive assessment of drivers’ cognitive capabilities and addressing the
limitations of previous studies that focused solely on single cognitive dimensions.

• Development of a Multimodal Data Feature Extraction Model: To address the chal-
lenge of effectively extracting common features between multimodal data in tradi-
tional models, this study proposes a dual-branch Transformer network. The dual-
branch structure eliminates interference between input data and effectively learns
high-dimensional features of the data. Additionally, for different data sources, a dy-
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namic weight allocation-based feature fusion mechanism is introduced, enhancing the
feature representation ability and predictive performance of the final model.

2. Materials and Methods
2.1. The Datasets

This study utilizes the multimodal driving dataset published by Salah Taamneh
et al. [37], which comprises 68 participants, including 34 young participants (aged
18–27 years, mean = 22.41 ± 1.7 years) and 34 elderly participants (aged 61–86 years,
mean = 69.97 ± 6.6 years). The dataset was collected using a driving simulator manu-
factured by Realtime Technologies, Inc. (located in Royal Oak, MI, USA). During the
simulated driving task, participants were required to drive along a 10.9 km straight section
of a four-lane highway with a speed limit of 70 km/h. There were two dedicated lanes in
each direction, with participants driving in the right lane (R), while the opposite lane had
heavy traffic (more than 12 vehicles per kilometer). The left lane (L) was under construction,
and traffic signposts were located on both sides of the right lane (R). During this task,
participants had to complete various driving tasks, including secondary and failure-driving
tasks, which involved distracted driving scenarios such as answering questions, texting,
etc., while also facing challenges like construction zone crossings and speed limit signs. In
the failure-driving task phase, a vehicle malfunction caused an unintended acceleration
event before the traffic light at an intersection turned green, propelling the car forward and
causing a collision with another vehicle entering the intersection. Throughout these simu-
lated driving tasks, a range of sensors recorded both physiological and non-physiological
data of the drivers for analysis.

1. Physiological sensors include the following:

• Skin galvanic response signals were collected using the Shimmer3 GSR sensor (Shim-
mer, Dublin, Ireland) with a sampling frequency of 25 Hz to record the driver’s
physiological arousal state.

• Heart rate and respiratory rate were collected using the Zephyr BioHarness 3.0 (Zephyr
Technology, Annapolis, Maryland) with a sampling frequency of 1 Hz.

• The Tau 640 long-wave infrared (LWIR) camera (FLIR Commercial Systems, Goleta,
California) with a frame rate of 7.5 fps was used to capture perspiration signals around
the nose area.

2. Non-physiological sensors include the following:

• Eye movement parameters, such as gaze position and pupil diameter, were recorded
using the faceLAB system (Seeing Machines, Canberra, Australia) with a sampling
frequency of 25 Hz to analyze the driver’s attention state.

• Data on vehicle speed, acceleration, braking, steering, lane deviation, and lane position
were collected using the driving simulator manufactured by Realtime Technologies,
Inc. (Royal Oak, Michigan) with a sampling frequency of 58.8 Hz to analyze vehicle
control state.

• Emotional state data were recorded using the HD Pro Webcam C920 (Logitech,
Newark, CA, USA) monochrome zoom camera with a frame rate of 15 fps. The data
were pre-processed and analyzed to assess changes in the driver’s emotional state.

2.2. General Structure of the Framework

In this study, a Transformer-based Dual-branch multimodal feature fusion network
model is proposed for realizing the prediction of a driver’s driving-related cognitive
abilities. Figure 1. shows the general technical framework of this paper.
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this study proposes a Dual-branch transformer network in the Driving-Related Cognitive 
Abilities Prediction Network Model, based on the VIT network, the input features are sent 
to different branches for feature extraction, and the extracted features are fused with the 
AFF network, which enhances the feature extraction capability of the model. The overall 
technical framework of this paper consists of the following four main modules.

• Data Preprocessing Module: Due to the complexity and diversity of the data con-
tained in multimodal driving data, the raw data need to be preprocessed before fea-
ture extraction. This module initially removes unstable data recorded before the start 
of the experiment and addresses any missing data. It also eliminates motion artifacts 
caused by actions such as blinking and selects an appropriate sliding window to pro-
vide sufficient samples for training.

• Driving-Related Cognitive Abilities Extraction Module: This module is designed to 
assess the performance of drivers during various secondary tasks and malfunction 
handling tasks. It extracts and quantitatively represents the components of driving 
cognitive-related abilities based on this performance.

• Driving-Related Cognitive Abilities Label Generation Module: This module assigns 
weights to the quantified components of driving-related cognitive abilities based on 
their importance and performs a weighted sum. Labels for driving-related cognitive 
abilities are then generated based on the weighted scores.

• Driving-Related Cognitive Abilities Prediction Network Model: After the above 
modules, clean driving data and labels for driving-related cognitive abilities were 
obtained. At this point, an appropriate network model is required to extract and fuse 
features from the processed data, enabling precise prediction of driving-related cog-
nitive abilities.

In this paper, the above four modules are described in detail in Sections 2.3–2.5.
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Before performing the prediction task, the 15-dimensional multimodal driving data 
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ensure ACC and completeness. Consider the input 𝑋 is an n-dimensional time-series sig-
nal, and using Min–Max normalization, 𝑋 is normalized between 0 and 1 to obtain 𝑋ᇱ. 
The normalization formula is as follows:𝑋ᇱ ൌ 𝑋 − 𝑋𝑋௫ − 𝑋 (1)

Figure 1. Overall technical framework.

In Figure 1, the shaded blocks are the main innovations of this study. In this study,
the components of driving-related cognitive ability are extracted and quantified by the
Driving-Related Cognitive Abilities Extraction Module, and the driving-related cognitive
ability labels are generated by the Driving-Related Cognitive Abilities Label Generation
Module by assigning weights to each component to generate weighted scores. Meanwhile,
this study proposes a Dual-branch transformer network in the Driving-Related Cognitive
Abilities Prediction Network Model, based on the VIT network, the input features are sent
to different branches for feature extraction, and the extracted features are fused with the
AFF network, which enhances the feature extraction capability of the model. The overall
technical framework of this paper consists of the following four main modules.

• Data Preprocessing Module: Due to the complexity and diversity of the data contained
in multimodal driving data, the raw data need to be preprocessed before feature
extraction. This module initially removes unstable data recorded before the start of the
experiment and addresses any missing data. It also eliminates motion artifacts caused
by actions such as blinking and selects an appropriate sliding window to provide
sufficient samples for training.

• Driving-Related Cognitive Abilities Extraction Module: This module is designed to
assess the performance of drivers during various secondary tasks and malfunction
handling tasks. It extracts and quantitatively represents the components of driving
cognitive-related abilities based on this performance.

• Driving-Related Cognitive Abilities Label Generation Module: This module assigns
weights to the quantified components of driving-related cognitive abilities based on
their importance and performs a weighted sum. Labels for driving-related cognitive
abilities are then generated based on the weighted scores.

• Driving-Related Cognitive Abilities Prediction Network Model: After the above mod-
ules, clean driving data and labels for driving-related cognitive abilities were obtained.
At this point, an appropriate network model is required to extract and fuse features from
the processed data, enabling precise prediction of driving-related cognitive abilities.

In this paper, the above four modules are described in detail in Sections 2.3–2.5.

2.3. Data Preprocessing Module

Before performing the prediction task, the 15-dimensional multimodal driving data
needs to be preprocessed to eliminate noise, missing values, and outliers from the data
to ensure ACC and completeness. Consider the input X is an n-dimensional time-series
signal, and using Min–Max normalization, X is normalized between 0 and 1 to obtain X′.
The normalization formula is as follows:

X′ =
X − Xmin

Xmax − Xmin
(1)



Sensors 2025, 25, 174 8 of 23

In this study, a sliding window approach with overlap was used to partition the
normalized multimodal driving data into appropriate sizes. These sliding window sizes
and step sizes were chosen based on the results of previous studies on multimodal driving
behavior analysis [17,21,32,33]. Time series of fixed length and width were generated
through the sliding window approach. These sequences were designed to overlap between
neighboring windows to maintain continuity in the window sequences and provide enough
samples for training, enabling the network to better acquire features. The sequences
generated through the windowing method are upscaled into uniformly sized 2D image
data, which are aligned with the original labels and used as data for model training.

To address the issue of missing data in multimodal driving datasets, particularly the
asynchrony observed among multiple sensors during the initial recording phase (i.e., the
first 1–10 s), this study initially excluded these asynchronous data records. Subsequently,
linear interpolation was employed to impute the missing values for the synchronized data,
thereby ensuring the dataset’s high quality and completeness. This ensures that the data
can be effectively utilized for network training.

2.4. Driving-Related Cognitive Abilities Label Setting

Driving is a process that involves the brain’s rapid recognition of external informa-
tion, decision-making, and vehicle control through actions such as steering or braking.
This process is also influenced by the driver’s psychological state. To deeply investigate
and quantify the key factors affecting the driving process, this study designed a set of
driving-related cognitive abilities assessment methods, aiming to quantitatively assess the
performance of drivers in various aspects of thinking decision-making, vehicle maneuver-
ing, and changes in psychological state during driving activities.

Driving-related cognitive abilities refer to the driver’s ability to process information
and make decisions, precisely control the vehicle, and effectively regulate psychological
states during the driving process. Driving-related cognitive abilities can reflect the driver’s
reception and processing of information, rapid execution of decision-making, and changes
in psychological state. This study comprehensively examined the changes in driving
behavior and classified driving-related cognitive abilities into three dimensions based on
the different needs of driving tasks: thinking decision-making, vehicle manipulation, and
psychological regulation, which contain ten basic elements that make up driving-related
cognitive abilities. The specific details are as follows:

• Cognitive decision-making dimension: This explores how drivers process received
traffic information and quickly make decisions based on this information. It includes the
assessment of drivers’ attention allocation, working memory, and anticipation abilities.

• Vehicle control dimension: This directly reflects how drivers translate decisions into ve-
hicle operations, covering assessments of drivers’ processing speed, reaction capability,
judgment, and perceptual skills.

• Psychological regulation dimension: This examines how drivers influence decision-
making and action execution through the regulation of their psychological state,
assessing drivers’ stress resilience, anxiety levels, and Type A/B personality traits.

To quantitatively assess these components of driving-related cognitive abilities, this
study integrates subjective measures (e.g., questionnaires) with objective measures (e.g.,
behavioral analysis). Subjective measures reflect the self-assessed abilities of the driver,
while objective measures provide data on the actual driving performance of the driver. This
study describes in detail how to extract and quantify the components of driving-related
cognitive abilities based on the video data in Section 2.4.1. In Section 2.4.2, a systematic
assessment method is designed to assign weights to the quantified indicators and weight
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the scores, and the driving-related cognitive ability is finally graded as “Insufficient”, “Fair”,
“Good “ and “Excellent”.

2.4.1. Driving-Related Cognitive Abilities Extraction Module

This study analyzes the performance of drivers in various tasks recorded in driving
videos, observing their performance in tasks that require focused attention, rapid response,
accurate decision-making, and handling complex situations to extract the components of
driving-related cognitive abilities. In driving cognitive ability assessment, elements such
as attention allocation and perception ability do not exist in isolation, and there may be
differences in cognitive abilities involved in normal driving and dangerous situations [38].
Additionally, these driving-related cognitive abilities have varying priorities in different
task scenarios, emphasizing different aspects. The key cognitive abilities involved in driving
can be extracted through different task scenarios. For example, multiple studies [6,39,40]
have pointed out that while both reaction ability and processing speed involve reaction
time, reaction ability mainly refers to the driver’s braking time in emergencies, while
processing speed refers to the driver’s information processing efficiency when faced with
complex road conditions. Perception ability involves the driver’s awareness of traffic
signs, vehicles, and the relative position of the surrounding environment. These reflect
different cognitive processes in emergencies and when handling secondary tasks. The
specific methods for extracting the ten elements of driving-related cognitive abilities within
the three dimensions are presented in Table 2.

Table 2. Driving-related cognitive abilities extraction method.

Dimension Driving-Related
Cognitive Abilities Task Scenario Data Sources and Extraction

Method

Cognitive
decision-making

Attention Allocation
Ability Completing secondary tasks Record the number of times

secondary tasks were avoided
Working Memory Capacity Completing secondary tasks ACC of completing secondary tasks

Anticipatory Ability Passing through an
intersection

Accurate anticipation of traffic
signals

Vehicle Control

Reaction Ability Vehicle malfunction
acceleration, a car suddenly
entering the road from the

left

Time from recognizing an
emergency to execution (e.g.,

braking or evading)

Judgment Ability Record evasion strategies and
extent of vehicle collision

Processing Speed Completing secondary tasks Reaction time to complete
secondary tasks

Perception Ability Passing through an
intersection

Whether the line is crossed during
red light waiting

Psychological
regulation

Stress Resistance Before and after simulated
driving tasks

NASA scale score
Anxiety Level Anxiety scale score

Type A/B Personality Type A/B personality scale score

Table 2 lists the foundational data sources for each driving-related cognitive ability.
The dimension features corresponding to each data source are extracted through specific
driving task scenarios. For example, reaction ability is evaluated through a simulated
emergency braking task, while processing speed is assessed by the completion time of
secondary tasks in complex road conditions. By analyzing task performance across different
scenarios, we effectively extract the driver’s performance across various cognitive ability
dimensions. Due to the difference in the experimental setup, members of group A in
the faulty driving task needed to complete additional tasks, thus creating a bias in the
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calculation of reaction time. To eliminate this effect, the study used the method of time
compensation [20]. It standardized the reaction time data for the two subject groups. This
was achieved by using the difference between the average reaction times of groups A and B
as compensation. The method of reaction time compensation is calculated by Equation (2).

CRT =
(RTA − RTB)

N
(2)

where CRT denotes compensated reaction time, RTA denotes the group a reaction time,
RTB denotes the group’s reaction time, and N denotes the total number of people.

To accurately quantify driving-related cognitive abilities, this study follows these
steps:

• First, directly quantifiable indicators such as reaction times and scale scores are kept
in their original values for standardization.

• Second, qualitative behavioral performances, such as the degree of collision, are
numerically processed. For example, ’no collision’ is marked as 0, and ’collision’ is
marked as 1. This step completes the numerical transformation of all data.

• Finally, the formula Z = (X−µ)
σ is applied to standardize the numerically trans-

formed data.

where Z denotes normalization, X denotes indicator value, µ denotes sample mean,
and σ denotes sample standard deviation.

These steps produce quantified driving-related cognitive abilities, which are then used
for generating labels in Section 2.4.2.

2.4.2. Driving-Related Cognitive Abilities Label Generation Module

To map driving-related cognitive abilities to different levels, the data were first pro-
cessed using the G-Rules-IQR (Gaussian-Rules Interquartile Range, abbreviated as G-Rules-
IQR) method [41] to adjust the distribution closer to a normal distribution. Then, based on
the first quartile (Q1), the second quartile (Q2, median), and the third quartile (Q3) of the
data, all scores were mapped into four ranges. These four ranges represent different levels
of driving abilities: Excellent (above Q3), Good (between Q2 and Q3), Fair (between Q1
and Q2), and Insufficient (below Q1). Converting the quantified driving-related cognitive
abilities into a driving-related cognitive abilities label may be accomplished by steps 1–3.

• Analysis of the Importance of Components of Driving-Related Cognitive Abilities:
Anstey et al. [42] found that thought decision-making directly reflects the driver’s
response to environmental changes and decision-making efficiency, hence it is of
the highest importance. Vehicle control reflects the driver’s actual execution ability
in controlling the vehicle and responding to road conditions, making it the second
most important. Psychological adjustment, while having a non-negligible impact
on driving safety, has the least influence compared to thought decision-making and
vehicle control abilities that directly determine driving response and vehicle control,
thus it is of the lowest importance.

• Generation of Weighted Scores for Components of Driving-Related Cognitive Abilities:
Based on step 1, the importance of three dimensions of driving-related cognitive abili-
ties from high to low are: Cognitive decision-making (dim.1), vehicle control (dim.2),
and psychological regulation (dim.3). The weights for each cognitive ability dimen-
sion were determined using the Principal Component Analysis (PCA) method [43].
Specifically, PCA was applied to the indicators extracted in Table 2 to identify their
linear combination coefficients in each principal component. Based on the variance
contribution rate of each principal component, the weights W1, W2, W3 were calculated
and assigned to dim.1, dim.2, and dim.3, respectively. The driving-related cognitive
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abilities score (Score for short) is obtained through weighting. Wi and Score can be
calculated using Equations (3) and (4). The distribution of driving-related cognitive
abilities weights is shown in Table 3.

Wi = ∑K
k=1 Lik · Vk (3)

Score = ∑3
i=1 Wi · dim.i (4)

where Lik denotes the loading of the ith variable on the kth principal component, Vk denotes
the ratio of variance explained by the kth principal component, and K denotes the number
of principal components selected.

Table 3. Driving-related cognitive abilities weight distribution table.

Driving-Related Cognitive Abilities
Dimensions Importance Weight Wi Weighting

Thinking Decision Making W1 0.3898
Vehicle Handling W2 0.3182

Mental State W3 0.2920

• Generation of Driving Cognitive-Related Ability Labels: Driving-related cognitive
abilities labels are divided into four levels, 0–3, representing four levels of driving-
related cognitive abilities: Insufficient, Fair, Good, and Excellent. These four levels
are determined based on the Score derived from Equation (4). The calculation of the
Score incorporates the weighted values of ten components of driving-related cognitive
abilities, reflecting the comprehensive level of driving-related cognitive abilities. Since
these components of driving-related cognitive abilities have different distribution
characteristics in terms of centrality and dispersion, the weighted Score results in
a multivariate composite distribution. To effectively categorize Scores into levels,
this study employs the G-Rules-IQR method. This method does not rely on the
normal distribution properties of the data and can determine the score thresholds
Qi for “Score” by calculating the interquartile range (IQR). This method maps the
continuous “Score” to four discrete intervals {[Scoremin, Q1), [Q1, Q2), [Q2, Q3), [Q3,
Scoremax]}, achieving the classification of driving-related cognitive abilities levels and
thus generating driving-related cognitive abilities labels. The Qi can be calculated
using Equation (5).

Qi = µ +
(
σ × zpi

)
(i = 1, 2, 3) (5)

where Qi corresponds to the index of the quartile (Q1 denotes the first quartile, Q2 denotes
the second quartile, Q3 denotes the third quartile), µ denotes the mean of the sample
Score, σ denotes the standard deviation of the sample Score, and zpi denotes the different
percentiles of Score.

The mapping relationship between the driving-related cognitive abilities labels and
Score is calculated by Equation (6).

Mscore =


0, Scoremin ≤ Score < Q1
1, Q1 ≤ Score < Q2
2, Q2 ≤ Score < Q3
3, Q3 ≤ Score ≤ Scoremax

(6)

where 0–3 denotes the driving-related cognitive abilities labels corresponding to the four
levels of driving-related cognitive abilities: Insufficient, Fair, Good, and Excellent, respec-
tively. Scoremin and Scoremax denotes the minimum and maximum values, respectively,
and Q1–Q3 denotes the Score thresholds.
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Driving-related cognitive abilities labels were obtained through the processing of the
above two modules. The subjects were regrouped according to the labels and the labeled
data were fed into the Section 2.5 Driving-related cognitive abilities Prediction Network
Module for final driving-related cognitive abilities prediction.

2.5. Driving-Related Cognitive Abilities Prediction Network Model

In the field of driving behavior analysis, effectively extracting and fusing multimodal
data from different sensors presents a challenge. The common practice in current research
is to directly concatenate the time-series data of different modalities, such as respiratory
rate, eye movement coordinates, and vehicle dynamics, without considering the inherent
differences in feature expression and diversity among the input data. This approach can
easily lead to confusion of information and loss of key features. Furthermore, when dealing
with complex driving behavior data, traditional data processing and feature extraction
methods based on rules or manually designed features struggle to effectively capture
the high-dimensional nonlinear characteristics of the data, thereby affecting the ACC
of predictions.

To address the above problems, this study proposes an improved Dual-branch Trans-
former network structure. It aims to effectively extract and fuse temporal features from
heterogeneous data from multiple sources, such as physiological and non-physiological, to
adapt to the needs of driving-related cognitive abilities prediction. The structure addresses
the differences in the feature expression and feature diversity of multi-source heterogeneous
data by employing two parallel encoders, each dedicated to the extraction of physiological
and non-physiological features, respectively. This approach resolves the issue of consis-
tency in the feature expression of input data. Moreover, to further weigh the relative
importance of the features extracted by physiological and non-physiological encoders, the
Attentional Feature Fusion (AFF) algorithm [44] is introduced in the feature fusion stage
of this study. This algorithm optimizes the fusion of physiological and non-physiological
features through a dynamic weight allocation mechanism and precisely adjusts the rela-
tive contribution of these two features in the information representation process, thereby
effectively enhancing the ACC of the model in predicting driving-related cognitive abilities.
The network model structure proposed in this study is illustrated in Figure 2 and is based
on the ViT [45] design. It comprises three main components: a Multi-source Heterogeneous
Feature Conversion Module, a Dual-branch Transformer Encoder Module, and an AFF
module based on dynamic weight assignment.
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• Multi-source Heterogeneous Feature Conversion Module: This module is responsible
for separating physiological data from non-physiological data from multi-modal
driving time-series data, and converting them from the original 2D time-series data
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to 2D image data, which meets the needs of the dual-branch Transformer encoder
module for feature extraction from the input data.

• Dual-branch Transformer Encoder Module: This module adopts an improved dual-
branch structure, which allows physiological and non-physiological data to be feature
extracted by independent transformer encoders. This dual-branch structure allows
the physiological branch to focus on capturing changes in the detailed features of the
physiological signals in the short term, and the non-physiological branch to focus on
capturing changes in the long-term features such as vehicle operating modes. A self-
attention mechanism is used within each branch to optimize the capture of dynamic
time-series data features and enhance the feature extraction capability of the model
for multimodal driving time-series data.

• AFF module based on dynamic weight assignment: after physiological and non-
physiological features are extracted by the Dual-branch Transformer encoder module,
the attention weights of global and local feature channels are extracted by the AFF
module using global pooling and point-by-point convolution, where global pooling is
in charge of capturing the global feature information and point-by-point convolution
is used for extracting and strengthening local feature details. Finally, the performance
of the prediction model is further optimized by feature fusion.

2.5.1. Multi-Source Heterogeneous Feature Conversion Module

This module processes the input multimodal driving time-series data, which are
categorized into physiological and non-physiological data according to their physiological
properties. The input data are in the form of X ∈ RH×W , where H and W represent the
height and width of the data, respectively. By splitting and reshaping operations, X is split
into physiological data Xp ∈ RH×W×C and non-physiological data Xnp ∈ RH×W×C, where
C is the number of channels. The processed data are converted into 2D image format for
feature extraction by the Dual-branch Transformer encoder module.

In order to adequately represent the temporal characteristics of the time-series data,
the sliding window method is used to generate the set of temporal windows D. Each
temporal window Xi ∈ RH×W(1 ≤ i ≤ m) denotes the ith window. For physiological data
Xp there are timing windows Dp denoted as:

Dp =
{(

XP
1 , yp

1

)
,
(

XP
2 , yp

2

)
, . . . ,

(
XP

i , yp
i

)}
, 1 < i < m (7)

where XP
i denotes the ith window, and yp

i is the corresponding category label for the
temporal window. The set of temporal windows Dp contains m windows and all temporal
windows will be used as model inputs for further feature extraction.

2.5.2. Dual-Branch Transformer Encoder Module

For nonlinear time-series feature extraction of multimodal driving time-series data,
this study proposes a Dual-branch Transformer encoder module, which adopts two parallel
Transformer encoder structures for feature extraction of physiological data Xp and non-
physiological data Xnp processed by a multi-source heterogeneous feature transformation
module, respectively, so that the module not only focuses effectively on the changes of
the detailed features of the physiological parameters, such as heart rate, EDA, and other
physiological parameters but also captures the changes of the long-term dynamic features
of the non-physiological data regarding the operating modes of the vehicle.

First, the physiological data Dp undergoes a linear projection layer, which maps the
raw data containing four dimensions, including skin EDA, heart rate, respiratory rate,
and nasal sweating signals, into a high-dimensional feature space, effectively capturing
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the complex high-dimensional features of the physiological data. Then, to preserve the
temporal and label information of each window, we apply position encoding by adding
sinusoidal and cosine functions with a fixed frequency. The position encoding introduces
an additional positional marker vector Epos for each temporal window, helping the model
recognize the positional information of the sequential data. The label information is
incorporated by adding a classification marker vector Zcls to each window. Finally, the
temporal branch feature vector set X0

p is generated. The specific implementation of the
linear projection and position encoding can be referred to in Equation (8).

X0
P =

[
Zp

cls; dp
1 Ep; dp

2 Ep; . . . ; dp
mEp

]
+ Ep

pos (8)

where X0
p denotes the initial features after linear projection and positional coding process,

where Ep is the linear projection matrix, dp
1 , dp

2 . . ., dp
m are the temporal slice vectors.

After processing, the initial features X0
P are fed into a Transformer encoder composed

of a multi-head self-attention (MSA) mechanism and a feed-forward network (FFN). Each
feed-forward network consists of two fully connected layers, with a dropout layer applied
after each layer. The dropout rate is set to 0.2.

The encoded features X0
p were obtained and next X0

p is fed into a Transformer encoder
consisting of a Multi-head Self-Attention (MSA) Mechanism and a Feedforward network
(FFN). The MSA allows the model to encode a feature at one position taking into account
the features at all the other positions in the sequence, enhancing the feature representation
by learning the dependencies between the different positions. Each head processes the
input independently in MSA, focusing on different parts of the sequence. While the FFN
performs further nonlinear transformations on the output of the MSA.

For the encoding process of each Transformer encoder layer L, it can be expressed as:

X′l
p = MSA

(
LN

(
Xl−1

p

))
+ Xl−1

p , l = 1, 2, . . . , L (9)

Xl
p = FFN

(
LN

(
X′l

p

))
+ X′l

p (10)

where LN denotes the layer normalization operation, which is used to normalize the
distribution of input features before self-attention and FFN at each layer, stabilizing the
training process and improving the generalization ability of the model. X′l

p and Xl
p represent

the output features after MSA and FFN, respectively.
Moreover, in the process of physiological feature extraction by the encoder, to solve

the problem of gradient vanishing in the deep network training, residual connections
are added to ensure that the gradient can be better propagated to the shallower layers
during backpropagation, thus helping the network to learn the feature representation
more effectively.

For non-physiological data Xnp, the process is the same as the physiological branch
feature extraction process, whereas the inputs to the non-physiological branch are non-
physiological data containing 11 dimensions of eye tracking (gaze point X and Y coordinates,
pupil diameters of the left and right eyes), vehicle status (speed, acceleration, braking,
lane offset, lane position, distance), and facial mood changes. These data are analyzed by
Transformer’s MSA and FFN, and the learning process is enhanced by residual linkage
to capture the long-term feature changes in the non-physiological data. After the above
process, the final output features of the non-physiological branch are Xl

np.
After processing in this module, physiological and non-physiological features can

be extracted, providing key feature representations for subsequent feature fusion and
prediction tasks.
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2.5.3. AFF Module Based on Dynamic Weight Assignment

The input data Xp and Xnp after going through the Dual-branch Transformer encoder
module, the obtained Xl

p and Xl
np features containing complex timing dependencies and

rich feature information. To effectively integrate these features for driving-related cognitive
abilities prediction, an efficient fusion strategy needs to be designed to effectively integrate
the key features contained in Xl

p and Xl
np.

Traditional feature fusion methods, such as simple splicing or weighted averaging,
which are simple to design, usually ignore the interrelationships between different fea-
tures and their relative contribution to the final prediction task. This approach cannot
fully utilize all the available information features, especially in scenarios with complex
interactions between features, which can easily lead to the omission of critical informa-
tion or overemphasis on redundant features, which in turn affects the ACC of prediction.
Therefore, this study introduces the AFF feature fusion module based on dynamic weight
assignment, which optimizes the fusion process of different modal features and enhances
the prediction capability of the model. In contrast, AFF adopts an approach based on the
attention mechanism to dynamically adjust the contribution of different feature sources, to
capture the complementary information between modalities more effectively and retain
the key features. The AFF network model is shown in Figure 3.
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In Figure 3, where Xl
p and Xl

np denotes the physiological and non-physiological
features of the input, these two features go through the global extraction channel and the
local extraction channel to obtain the attention weights, and then the obtained attention
weights are multiplied with the input features, and finally aggregated to obtain the output
Z, ⊗ denotes multiplication and ⊕ denotes addition.

In the AFF module based on dynamic weight assignment, the physiological features
Xl

p and non-physiological features Xl
np output from the last layer of the Dual-branch

transformer encoder is first split into two streams, the first stream initially integrates the
physiological and non-physiological features through the summation operation and passes
the summed features through the point-wise convolution layer. In this layer, the feature
channels are optimized by linear transformations to adjust the relative importance between
features and enhance their nonlinear representations to extract key global information
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features. The second stream multiplies Xl
p and Xl

np to extract key local information features.
It uses a channel attention mechanism to dynamically weigh these features, adjusting
their importance based on their relevance to the prediction task. Finally, the global and
local features extracted by the two streams of addition and multiplication are fused to
generate a comprehensive feature representation. The AFF process can be represented
by Equation (10).

Ff usion = Attention
(

Xl
p, Xl

np

)
·
(

Xl
p ⊕ Xl

np

)
(11)

where “Attention” denotes the weight assignment function computed by the attention
mechanism, ⊕ denotes the fusion operation of the features, and Ff usion is the final fused
feature representation.

After processing in the above modules, a feature vector incorporating key information
Ff usion is finally generated, which is used for driving-related cognitive abilities prediction
after the FC layer.

3. Experimental Results and Analysis
In this section, the effectiveness of the proposed driving-related cognitive abilities pre-

diction model is evaluated through a series of experiments. Additionally, the methodology
of this study is compared with existing machine learning algorithms and deep learning
algorithms. Ablation experiments were also conducted to validate the effectiveness of the
proposed method in this paper. The computer equipment used for the experiments in this
study has the following configurations: an Intel(R) Core (TM) i7-8750H @ 2.20GHz, an
NVIDIA GeForce GTX 3090 graphics card, Python 3.6.0 (64-bit), and PyTorch 1.5.0. The
version of Tensorflow used for the environment is 2.6.0.

Under the computation power of a GTX 3090 GPU, with a batch size of 128, embedding
dimension of 128, 12 layers, and 8 attention heads, the dual-branch Transformer feature
fusion network used in this study (Baseline + Dual-Branch + AFF) has patch sizes of 4 × 4
and 11 × 4, with a parameter count of 7.90 MB, a computational cost of 25.72 GFLOPS, and
an inference speed of 312 FPS. The baseline ViT model, with a patch size of 15 × 15, has a
parameter count of 3.97 MB, a computational cost of 5.23 GFLOPS, and an inference speed
of 344 FPS.

3.1. Data Set Segmentation

This study conducted a series of validation experiments using large-scale multimodal
driving datasets. This dataset is described in detail in Section 2.1. In this section, the
construction of the training–testing dataset will be described.

To further validate the stability and generalization ability of the model, this study
employed subject-based cross-validation. In this approach, each subject was treated as an
independent test set, with the remaining subjects’ data used for training. This process was
repeated, and model evaluations were obtained for each sample. The overall performance
of the model was then assessed by averaging the evaluation results across all samples. The
specific implementation of this method follows the description in [46].

During the experiments, the parameters were set to 0.9 and 0.999 using the Adam
optimizer, and the learning rate was corrected using StepLR, with the step size set to 1,
gamma set to 0.5, initial learning rate set to 6e-4, and the batch size to 128. Based on
our experience with different window lengths, we considered the length of 60 s, and a
continuous window with a step size of 5 s was chosen for sample acquisition eventually
generating a total of 31,187 samples, of which the sample sizes for each category were 6649,
7747, 12,134, and 4657, respectively.
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3.2. Evaluation Metrics

The performance of the proposed network is evaluated using ACC, Confusion Matrix,
and F1-score as evaluation metrics.

The ACC is calculated as follows: where False Positives (FP) and False Negatives (FN)
are the negative and positive samples that are incorrectly predicted, while True Positives
(TP) and True Negatives (TN) are the positive and negative samples that are correctly
predicted, respectively.

ACC =
TP + TN

TP + TN + FP + FN
(12)

The confusion matrix, also known as the error matrix, is a standard format for repre-
senting ACC evaluations in the form of an n-row, n-column matrix. Each column of the
confusion matrix represents the predicted category, and the total number of each column
indicates the number of data predicted to be in that category; each row represents the true
category to which the data belongs, and the total number of data in each row indicates
the number of data instances in that category. The value in each column represents the
number of real data predicted to be in that category. As can be seen, the confusion matrix
portrays the combined effect of the model and gives a clear picture of the number of correct
or incorrect predictions for each category.

The F1-score is calculated by balancing precision (P) and recall (R) using the following
formula.

F1 = 2 × P × R
P + R

(13)

Through the evaluation of the model using the above metrics, the F1-score, which
takes into account both precision and recall, effectively assesses the model’s performance in
handling class imbalance issues. Compared to ACC alone, it provides more detailed perfor-
mance information. The confusion matrix presents a detailed classification of the model’s
predictions, revealing the model’s performance and biases across different categories, thus
helping us identify and improve deficiencies in certain categories.

3.3. Comparison Experiment

The comparison models chosen for this study are Support Vector Machine (SVM) [47],
Random Forest (RF) [48], LSTM [49], VGG-16 [50], ResNet [51], CNN-LSTM [35]. These
models achieve excellent prediction results in the literature related to driving behavior
assessment mentioned above. Therefore, these six algorithms are chosen in this study as
the comparison algorithms for this experiment.

In this experiment, all comparison algorithms used the same dataset processing meth-
ods as in this paper, i.e., the same missing data padding, data normalization, etc.

Table 4 shows the experimental results of all the algorithms using the ACC and F1-
score metrics, and Figure 4 shows the experimental results of all the algorithms using the
confusion matrix.

Table 4. ACC and F1-score experimental results for all compared algorithms.

Comparison Algorithm Epoch ACC F1-Score

SVM - 0.6295 0.6001
RF - 0.8583 0.8504

LSTM 100 0.6561 0.6368
VGG-16 100 0.6699 0.4932
ResNet 100 0.9471 0.9264

CNN-LSTM 100 0.9597 0.9302
Our 100 0.9908 0.9832
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Figure 4. Confusion matrix results for SVM (a), RF (b), LSTM (c), VGG-16 (d), ResNet (e), CNN-
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From the results of the comparison tests in the table, it can be observed that the model
proposed in this study achieves high performance in terms of accuracy (Accuracy) and
F1-score. Specifically, the model proposed in this study achieved an ACC rate of 0.9908 and
an F1-score of 0.9832. Compared to SVM, RF, LSTM, VGG-16, ResNet, and CNN-LSTM,
our model showed improvements in ACC of 36.13%, 13.25%, 33.47%, 32.09%, 4.37%, 3.11%,
respectively, and improvements in F1-score of 38.31%, 13.28%, 34.64%, 49.00%, 5.68%,
5.30%, respectively. This demonstrates the superiority of the proposed model in predicting
driving-related cognitive abilities. Both the CNN-LSTM and ResNet models achieved ACC
rates exceeding 0.90. These models are frequently used for processing time-series data and
effectively capture long-term and short-term features in the data. Specifically, CNN excels
at extracting local features, while LSTM focuses on the temporal dependencies of sequential
data, making CNN-LSTM highly effective in capturing complex temporal features. ResNet,
based on deep residual networks, effectively addresses the vanishing gradient problem in
deep networks through skip connections, thus demonstrating high predictive performance
when processing multimodal data of driving behavior. In contrast, the RF model achieved
an ACC and F1 score of 0.8583 and 0.8504, respectively. Although RF performs well with
time-series data, it is less effective than our proposed model in predicting the cognitive
abilities of drivers in tasks involving complex temporal features. The SVM, LSTM, and
VGG-16 models demonstrated relatively lower performance, with ACC rates of 0.6295,
0.6561, and 0.6699, respectively. While SVM excels in handling high-dimensional data, it
is limited in fusing multimodal and nonlinear data features. Although LSTM can handle
temporal dependency data, it struggles to comprehensively capture spatial features in
multimodal data when used alone. VGG-16, being primarily an image recognition model,
lacks adaptability in handling multimodal time-series features, resulting in lower predictive
ACC. In comparison, the dual-branch transformer network proposed in this study effec-
tively divides multimodal driving data into physiological and non-physiological data and
uses a dynamic weight-based feature fusion module to extract common features, thereby
achieving effective prediction of driving-related cognitive abilities.

Figure 4 shows the confusion matrix experimental results of each algorithm in the
driving-related cognitive abilities prediction task. From the results of the confusion matrix,
it can be seen that the Dual-branch multimodal feature fusion network model proposed in
this study has the best prediction results, with prediction ACC of 0.98, 0.98, 0.97, and 1.00
for each of the four categories, and more than 0.97 for each of the categories. Categorical
performance on a few categories in particular (inadequate driving-related cognitive abilities
and excellent driving-related cognitive abilities) also maintained a high level of stability. In
contrast, the VGG-16 performed the worst in terms of driving-related cognitive abilities
prediction. In particular, the prediction ACC for the categories of poor and excellent driving-
related cognitive abilities were only 0.48 and 0.01, respectively. The VGG-16 predicted
almost all the samples with excellent driving-related cognitive abilities into the category of
average driving-related cognitive abilities, while the prediction ACC for the samples with
poor driving-related cognitive abilities was only 0.48. This is mainly due to the imbalance
of the distribution of driving-related cognitive abilities in reality, where the majority of
the drivers have a moderate level of cognitive ability, with relatively few drivers at the
extremes (highest and lowest). However, these minority groups, especially drivers with
poor driving-related cognitive abilities, are at higher risk and require special attention.
Therefore, this requires the model to have a high predictive power even when the sample
is unbalanced. Results indicate that the proposed model, by effectively leveraging the
Transformer architecture, can better capture and analyze the nuanced features of such data,
thereby significantly improving prediction ACC.
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3.4. Ablation Experiments

To verify the effect of the algorithm proposed in this study on the prediction ACC of
driving-related cognitive abilities, ablation experiments will be conducted in this study
and the results of the ablation experiments are shown in Table 5.

Table 5. Ablation experiments.

Experiments Epoch ACC F1-Score

Baseline 100 0.9310 0.9225
Baseline + Dual-Branch 100 0.9609 0.9520

Baseline + Dual-Branch + AFF (our) 100 0.9908 0.9832

Table 5 shows the results of the ablation experiments performed in this study based
on the Baseline. From the results of the ablation experiments, it can be seen that
compared to the Baseline, the Dual-branch multimodal feature fusion network model
(Baseline + Dual-Branch + AFF) proposed in this study achieved 0.9908 and 0.9832 in the
metrics ACC and F1-Score, respectively, marking an improvement of 5.98% and 6.07%
over the Baseline model, and an increase of 2.99% and 3.12% relative to using only the
Baseline + Dual-Branch structure. This indicates that the dual-branch multimodal feature
fusion model proposed in this study effectively enhanced the model’s ability to extract
features from different modalities. Additionally, introducing the AFF module further opti-
mized the integration process of features from different modalities, thereby improving the
model’s prediction ACC. This improvement is attributed to the proposed dual-branch mul-
timodal feature fusion network’s ability to adapt to the temporal distribution characteristics
of different modal input data, reduce interference between different data sources, and fuse
the output features of the dual-branch encoders at both local and global levels, effectively
extracting the nonlinear time-series features of physiological and non-physiological data,
and enhancing the model’s predictive precision.

Figure 5 shows a comparison of the experimental results in terms of Accuracy and
F1-score, highlighting the improvements of our model over the baseline and comparison
models. The results demonstrate that our model outperforms the baseline model as well as
other comparison models, exhibiting superior performance.
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4. Conclusions
Driving relies on multiple cognitive abilities. To address the relationships between

these abilities and driving performance, as well as to reduce potential information loss or
redundancy in multimodal data processing, this study proposes a high-precision frame-
work for predicting driver cognitive abilities. The framework consists of four modules:
data preprocessing, cognitive ability extraction, label generation, and a cognitive ability
network model. The extraction and label generation modules analyze driving videos to
identify ten cognitive components critical for decision-making, vehicle control, and psycho-
logical regulation. These components are quantified and weighted to generate cognitive
ability labels.

In the cognitive ability network model, this study innovatively applies a Transformer
structure to extract both physiological and non-physiological multimodal features, en-
hancing the model’s capacity for feature extraction and improving prediction accuracy
(ACC). The experimental results demonstrate that the proposed framework achieves ACC
and F1-scores of 0.9908 and 0.9832, respectively, outperforming RF, SVM, LSTM, ResNet,
CNN-LSTM, and VGG-16 models. This prediction model could be applied in driving
assessments for licensing, training programs to address individual weaknesses, and per-
sonalized driving assistance systems to offer real-time support and warnings. It provides a
novel approach to driving risk assessment.

While this study successfully constructs a multimodal-based framework for predicting
driving-related cognitive abilities, several limitations remain. The use of video-based anal-
ysis for driver behavior introduces the potential for human error, which could affect the
objectivity and accuracy of the data. Future work could focus on automating key indicator
extraction to enhance reliability. Additionally, factors such as driver experience (e.g., years
licensed) may impact ability assessments and should be considered in future studies. The
study’s limited focus on younger and older drivers restricts its applicability across all age
groups, with insufficient data on middle-aged drivers (aged 27 to 60). Furthermore, the
complexity of multimodal data collection may make device usage cumbersome, affect-
ing the framework’s practical feasibility. Future research could focus on optimizing data
acquisition devices by selecting a small number of high-precision sensors to reduce unnec-
essary hardware requirements, thus simplifying the data collection process and enhancing
the system’s operability and practicality. Additionally, the introduction of lightweight
deep learning models could reduce the number of model parameters and computational
complexity, decreasing reliance on computational resources, and improving the system’s
real-time responsiveness, computational efficiency, and deployability.
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