Room Temperature NH3 Selective Gas Sensors Based on Double-Shell Hierarchical SnO2@polyaniline Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of D-SnO2@PANI Composites
2.2.1. Synthesis of D-SnO2 Microspheres
2.2.2. Synthesis of D-SnO2@PANI Composite
2.3. Material Characterization
2.4. NH3-Sensing Measurement
3. Results and Discussion
3.1. Structural and Morphological Characteristics
3.2. Gas-Sensing Properties
3.3. Gas-Sensing Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Su, Y.; Li, W.; Cheng, X.; Zhou, Y.; Yang, S.; Zhang, X.; Chen, C.; Yang, T.; Pan, H.; Xie, G.; et al. High-performance piezoelectric composites via β phase programming. Nat. Commun 2022, 13, 4867. [Google Scholar] [CrossRef]
- Xianghong, L.; Wei, Z.; Rahul, K.; Mahesh, K.; Jun, Z. Conducting polymer-based nanostructures for gas sensors. Coord. Chem. Rev. 2022, 462, 214517. [Google Scholar] [CrossRef]
- Kroutil, J.; Laposa, A.; Povolny, V.; Klimsa, L.; Husak, M. Gas sensor with different morphology of pani layer. Sensors 2023, 23, 1106. [Google Scholar] [CrossRef]
- Matsuguchi, M.; Nakamae, T.; Fujisada, R.; Shiba, S. Highly sensitive ammonia gas sensor using micrometer-sized core–shell-type spherical polyaniline particles. Sensors 2021, 21, 7522. [Google Scholar] [CrossRef]
- Zhou, T.; Zhang, T. Recent progress of nanostructured sensing materials from 0D to 3D: Overview of structure–property-application relationship for gas sensors. Small Methods 2021, 5, 2100515. [Google Scholar] [CrossRef]
- Tajik, S.; Beitollahi, H.; Nejad, F.G.; Dourandish, Z.; Khalilzadeh, M.A.; Jang, H.W.; Venditti, R.A.; Varma, R.S.; Shokouhimehr, M. Recent developments in polymer nanocomposite-based electrochemical sensors for detecting environmental pollutants. Ind. Eng. Chem. Res. 2021, 60, 1112–1136. [Google Scholar] [CrossRef]
- Li, S.; Liu, A.; Yang, Z.; Zhao, L.; Wang, J.; Liu, F.; You, R.; He, J.; Wang, C.; Yan, X.; et al. Design and preparation of the WO3 Hollow @ PANI conducting films for room temperature flexible NH3 sensing device. Sens. Actuators B Chem. 2019, 289, 252–259. [Google Scholar] [CrossRef]
- Zhu, C.; Xu, Y.; Zhou, T.; Liu, L.; Chen, Q.; Gao, B.; Zhang, T. Self-assembly polyaniline films for the high-performance ammonia gas sensor. Sens. Actuators B Chem. 2022, 365, 131928. [Google Scholar] [CrossRef]
- Xiangyu, W.; Yang, C.; Xiaolong, N.; Jinlong, X.; Yuwei, W.; Haoran, S.; Zhuo, L.; Yongming, S.; Changping, L. PSS-doped pani nanoparticle/Ti3C2TX composites for conductometric flexible ammonia gas sensors operated at room temperature. Sens. Actuators B Chem. 2022, 374, 132788. [Google Scholar] [CrossRef]
- Dan, H.; Xiaomei, H.; Xiaoru, L.; Junzhao, Z.; Li, Z.; Xiuli, H.; Weidong, W.; Bingshe, X.; Shengbo, S. Conductometric gas sensor based on p-type gan hexagonal pits /pani for trace-level NH3 detection at room temperature. Sens. Actuators B Chem. 2023, 385, 133688. [Google Scholar] [CrossRef]
- Yi, L.; Weixiong, L.; Ziyang, J.; Xiaolan, L.; Guangzhong, X.; Huiling, T.; Yadong, J.; Yajie, Y.; Yuanjie, S. Ternary ordered assembled piezoelectric composite for self-powered ammonia detection. Nano Energy 2024, 122, 109291. [Google Scholar] [CrossRef]
- Saravanan, K.K.; Karthik, P.S.; Mirtha, P.R.; Balaji, J.; Rajeshkanna, B. A one-pot hydrothermal-induced PANI/SnO2 and PANI/SnO2/rGO ternary composites for high-performance chemiresistive-based H2S and NH3 gas sensors. J. Mater. Sci. Mater. Electron. 2020, 31, 8825–8836. [Google Scholar] [CrossRef]
- Alharthy, R.D.; Saleh, A. A novel trace-level ammonia gas sensing based on flexible PANI-CoFe2O4 nanocomposite film at room temperature. Polymers 2021, 13, 3077. [Google Scholar] [CrossRef]
- Hong, S.-Z.; Huang, Q.-Y.; Wu, T.-M. Facile synthesis of polyaniline/carbon-coated hollow indium oxide nanofiber composite with highly sensitive ammonia gas sensor at the room temperature. Sensors 2022, 22, 1570. [Google Scholar] [CrossRef]
- Xiaohui, D.; Zaihua, D.; Yajie, Z.; Bohao, L.; Xian, L.; Qiuni, Z.; Zhen, Y.; Yadong, J.; Huiling, T. Enhanced NH3 sensing performance of polyaniline via a facile morphology modification strategy. Sens. Actuators B Chem. 2022, 369, 132302. [Google Scholar] [CrossRef]
- Faricha, A.; Yoshida, S.; Chakraborty, P.; Okamoto, K.; Chang, T.-F.M.; Sone, M.; Nakamoto, T. Array of miniaturized amperometric gas sensors using atomic gold decorated Pt/PANI electrodes in room temperature ionic liquid films. Sensors 2023, 23, 4132. [Google Scholar] [CrossRef]
- Li, S.; Diao, Y.; Yang, Z.; He, J.; Wang, J.; Liu, C.; Liu, F.; Lu, H.; Yan, X.; Sun, P.; et al. Enhanced room temperature gas sensor based on au-loaded mesoporous In2O3 @ core-shell nanohybrid assembled on flexible pet substrate for NH3 detection. Sens. Actuators B Chem. 2018, 276, 526–533. [Google Scholar] [CrossRef]
- Jia, A.; Liu, B.; Liu, H.; Li, Q.; Yun, Y. Interface design of SnO2@PANI nanotube with enhanced sensing performance for ammonia detection at room temperature. Front. Chem. 2020, 8, 338. [Google Scholar] [CrossRef]
- Li, S.; Liu, A.; Yang, Z.; He, J.; Wang, J.; Liu, F.; Lu, H.; Yan, X.; Sun, P.; Liang, X.; et al. Room temperature gas sensor based on tin @ polyaniline nanocomposite assembled on flexible substrate: Ppb-level detection of NH3. Sens. Actuators B Chem. 2019, 299, 126970. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, S.; Du, K. Chemiresistive gas sensors based on hollow heterojunction: A review. Adv. Mater. Interfaces 2021, 8, 2002122. [Google Scholar] [CrossRef]
- Yi, S.; Shi, W.; Yang, X.; Yao, Z. Engineering sensitive gas sensor based on mof-derived hollow metal-oxide semiconductor heterostructures. Talanta 2023, 258, 124442. [Google Scholar] [CrossRef]
- Chunxu, C.; Guangzhong, X.; Jing, D.; Weixiong, L.; Yulin, C.; Jing, L.; Qiuping, Z.; Huiling, T.; Yadong, J.; Yuanjie, S. Integrated core-shell structured smart textiles for active NO2 concentration and pressure monitoring. Nano Energy 2023, 116, 108788. [Google Scholar] [CrossRef]
- Zhicheng, C.; Sunghoon, P. Improved SnO2 nanowire acetone sensor with uniform Co3O4 nanoparticle decoration. J. Environ. Chem. Eng. 2023, 11, 111504. [Google Scholar] [CrossRef]
- Shan, W.; Yang, Y.; Xin, L.; Tiantian, W.; Jiaxian, L.; Gaofeng, S.; Guoying, W. Room temperature solid electrolyte ozone sensor based on ag-doped SnO2. Sens. Actuators A Phys. 2023, 365, 114915. [Google Scholar] [CrossRef]
- Songlin, Z.; Xin, L.; Ruibo, X.; Long, P.; Zhenya, L.; Xinhua, H.; Junning, G. Size-dependent response of hydrothermally grown SnO2 for a high-performance NO2 sensor and the impact of oxygen. ACS Sens. 2024, 9, 195–205. [Google Scholar] [CrossRef]
- Jae, Y.D.; Wansik, O.; Ali, M.; Yoon, S.K.; Bi, K.E.; Min, K.H.; Sub, K.S.; Woo, K.H. Enhancement of xylene gas sensing by using Au core structures in regard to Au@SnO2 core-shell nanocomposites. Sens. Actuators B Chem. 2023, 392, 134018. [Google Scholar] [CrossRef]
- Li, S.; Qu, Y.; Lu, X.; Zhang, F.; Liu, S.; Li, B. A gas sensor with enhanced sensing properties towards butyl acetate: Vascular bundle structure Zn2SnO4 derived from maize straw. Chem. Asian J. 2023, 18, e202300505. [Google Scholar] [CrossRef]
- Li, M.; Mao, D.; Wan, J.; Wang, F.; Zhai, T.; Wang, D. Hollow multi-shell structured SnO2 with enhanced performance for ultraviolet photodetectors. Inorg. Chem. Front. 2019, 6, 1968–1972. [Google Scholar] [CrossRef]
- Ke, X.; Ziwang, K.; Feiyu, Z.; Yuan, Q.; Siqi, L.; Song, L. Hollow multi-shelled structural SnO2 with multiple spatial confinement for ethanol gas sensing. Mater. Lett. 2023, 338, 134070. [Google Scholar] [CrossRef]
- Zhu, M.; Tang, J.; Wei, W.; Li, S. Recent progress in the syntheses and applications of multishelled hollow nanostructures. Mater. Chem. Front. 2020, 4, 1105–1149. [Google Scholar] [CrossRef]
- Decai, Z.; Yanze, W.; Jing, X.; Chunsheng, G.; Dan, W. Response and regulation of the microenvironment based on hollow structured drug delivery systems. Adv. Funct. Mater. 2023, 33, 2300681. [Google Scholar] [CrossRef]
- Parvin, N.; Nallapureddy, R.R.; Mandal, T.K.; Joo, S.W. Construction of bimetallic hybrid multishell hollow spheres via sequential template approach for less cytotoxic antimicrobial effect. IEEE Trans. NanoBiosci. 2022, 22, 447–452. [Google Scholar] [CrossRef]
- Zhenkai, Z.; Dandan, Z.; Chen, Y.; Zhenyue, L.; Yang, M.; Zhiguo, Y.; Davoud, D.; Xinfang, Z.; Xi-Tao, Y.; Xiaoguang, M. High sensitivity and surface mechanism of mofs-derived metal oxide Co3O4-SnO2 hollow spheres to ethanol. J. Alloys Compd. 2023, 962, 171182. [Google Scholar] [CrossRef]
- Zhang, D.; Wu, Z.; Li, P.; Zong, X.; Dong, G.; Zhang, Y. Facile fabrication of polyaniline/multi-walled carbon nanotubes/molybdenum disulfide ternary nanocomposite and its high-performance ammonia-sensing at room temperature. Sens. Actuators B Chem. 2017, 258, 895–905. [Google Scholar] [CrossRef]
- Zhang, T.; Cheng, Q.; Jiang, B.; Huang, Y. Design of the novel polyaniline/polysiloxane flexible nanocomposite film and its application in gas sensor. Compos. Part B Eng. 2020, 196, 108131. [Google Scholar] [CrossRef]
- Mohammad, A.H.; Ali, K.A.; Yadollah, M.; Nader, L.M. Novel SnO2/PANI nanocomposites for selective detection of ammonia at room temperature. Appl. Surf. Sci. 2023, 615, 156381. [Google Scholar] [CrossRef]
- Feng, Q.; Zhang, H.; Shi, Y.; Yu, X.; Lan, G. Preparation and gas sensing properties of PANI/SnO2 hybrid material. Polymers 2021, 13, 1360. [Google Scholar] [CrossRef]
- Zhang, D.; Wu, Z.; Zong, X. Flexible and highly sensitive H2S gas sensor based on in-situ polymerized SnO2/rGO/PANI ternary nanocomposite with application in halitosis diagnosis. Sens. Actuators B Chem. 2019, 289, 32–41. [Google Scholar] [CrossRef]
- Li, S.; Lin, P.; Zhao, L.; Wang, C.; Liu, D.; Liu, F.; Sun, P.; Liang, X.; Liu, F.; Yan, X.; et al. The room temperature gas sensor based on @ WO3 nanocomposites and flexible pet substrate for NH3 detection. Sens. Actuators B Chem. 2017, 259, 505–513. [Google Scholar] [CrossRef]
- Sen, T.; Mishra, S.; Shimpi, N.G. Synthesis and sensing applications of polyaniline nanocomposites: A review. RSC Adv. 2016, 6, 42196–42222. [Google Scholar] [CrossRef]
- Yang, J.; Han, W.; Ma, J.; Wang, C.; Shimanoe, K.; Zhang, S.; Sun, Y.; Cheng, P.; Wang, Y.; Zhang, H.; et al. Sn doping effect on NiO hollow nanofibers based gas sensors about the humidity dependence for triethylamine detection. Sens. Actuators B Chem. 2021, 340, 129971. [Google Scholar] [CrossRef]
- Zhu, C.; Dong, X.; Guo, C.; Huo, L.; Gao, S.; Zheng, Z.; Cheng, X.; Xu, Y. Template-free synthesis of a wafer-sized polyaniline nanoscale film with high electrical conductivity for trace ammonia gas sensing. J. Mater. Chem. A 2022, 10, 12150–12156. [Google Scholar] [CrossRef]
- Narayan, K.; Shilpa, J.; Rohan, F.; Akshara, S.; Uday, P.; Navinchandra, S.; Dushyant, K. Enhanced sensing performance of an ammonia gas sensor based on Ag-decorated ZnO nanorods/polyaniline nanocomposite. ChemistrySelect 2023, 8, e202204284. [Google Scholar] [CrossRef]
- Pengfei, Z.; Wei, Z.; Wenyi, W.; Peng, D.; Guoqiang, Z.; Kun, D.; Chuntai, L.; Changyu, S. Stretchable strain sensor with high sensitivity, large workable range and excellent breathability for wearable electronic skins. Compos. Sci. Technol. 2022, 229, 109720. [Google Scholar] [CrossRef]
- He, M.; Xie, L.; Luo, G.; Li, Z.; Wright, J.; Zhu, Z. Flexible fabric gas sensors based on PANI/WO3 p−n heterojunction for high performance NH3 detection at room temperature. Sci. China Mater. 2020, 63, 2028–2039. [Google Scholar] [CrossRef]
- Liu, A.; Lv, S.; Jiang, L.; Liu, F.; Zhao, L.; Wang, J.; Hu, X.; Yang, Z.; He, J.; Wang, C.; et al. The gas sensor utilizing polyaniline/ MoS2 nanosheets/ SnO2 nanotubes for the room temperature detection of ammonia. Sens. Actuators B Chem. 2021, 332, 129444. [Google Scholar] [CrossRef]
Materials | Temperature | Target Gas | Sensitivity | Detection Limit | References |
---|---|---|---|---|---|
PANI | RT | NH3 | 19.46–100 ppm | 2 ppb | [42] |
PANI | RT | NH3 | 5.4–40 ppm | 0.1 ppm | [8] |
Ag-ZnO/PANI | RT | NH3 | 50%–100 ppm | 5 ppm | [43] |
rGO/PANI/TPU | RT | NH3 | 1.08–100 ppm | 5 ppm | [44] |
SnO2@PANI | RT | NH3 | 1.018–100 ppm | 0.4 ppm | [37] |
PANI/WO3 | RT | NH3 | 1.25–3 ppm | 192 ppb | [45] |
PANI/MoS2/SnO2 | RT | NH3 | 10.9–100 ppm | 200 ppb | [46] |
DSP20 | RT | NH3 | 37.92–100 ppm | 268 ppb | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, Y.; Zheng, H.; Lei, Y.; Ding, Z.; Li, S.; Liu, S.; Ji, W. Room Temperature NH3 Selective Gas Sensors Based on Double-Shell Hierarchical SnO2@polyaniline Composites. Sensors 2024, 24, 1824. https://doi.org/10.3390/s24061824
Qu Y, Zheng H, Lei Y, Ding Z, Li S, Liu S, Ji W. Room Temperature NH3 Selective Gas Sensors Based on Double-Shell Hierarchical SnO2@polyaniline Composites. Sensors. 2024; 24(6):1824. https://doi.org/10.3390/s24061824
Chicago/Turabian StyleQu, Yuan, Haotian Zheng, Yuhua Lei, Ziwen Ding, Siqi Li, Song Liu, and Wei Ji. 2024. "Room Temperature NH3 Selective Gas Sensors Based on Double-Shell Hierarchical SnO2@polyaniline Composites" Sensors 24, no. 6: 1824. https://doi.org/10.3390/s24061824
APA StyleQu, Y., Zheng, H., Lei, Y., Ding, Z., Li, S., Liu, S., & Ji, W. (2024). Room Temperature NH3 Selective Gas Sensors Based on Double-Shell Hierarchical SnO2@polyaniline Composites. Sensors, 24(6), 1824. https://doi.org/10.3390/s24061824