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Abstract: The dispersion of structural waves, where wave speed varies with frequency, introduces
significant challenges in accurately localizing occupants in a building based on vibrations caused by
their movements. This study presents a novel multi-sensor vibro-localization technique that accounts
for dispersion effects, enhancing the accuracy and robustness of occupant localization. The proposed
method utilizes a model-based approach to parameterize key propagation phenomena, including wave
dispersion and attenuation, which are fitted to observed waveforms. The localization is achieved
by maximizing the joint likelihood of the occupant’s location based on sensor measurements. The
effectiveness of the proposed technique is validated using two experimental datasets: one from a
controlled environment involving an aluminum plate and the other from a building-scale experiment
conducted at Goodwin Hall, Virginia Tech. Results for the proposed algorithm demonstrates a significant
improvement in localization accuracy compared to benchmark algorithms. Specifically, in the aluminum
plate experiments, the proposed technique reduced the average localization precision from 7.77 cm to
1.97 cm, representing a ∼74% improvement. Similarly, in the Goodwin Hall experiments, the average
localization error decreased from 0.67 m to 0.3 m, with a ∼55% enhancement in accuracy. These findings
indicate that the proposed approach outperforms existing methods in accurately determining occupant
locations, even in the presence of dispersive wave propagation.

Keywords: occupant localization; sensor fusion; structural vibration; wave propagation; dispersion

1. Introduction

Vibro-localization is an occupant localization method that employs the ambient mea-
surements of structural waves generated by occupants’ activities to determine their loca-
tions in a building. Vibro-localization is particularly useful in smart buildings, where the
occupants’ locations are used to improve the safety, security, and energy efficiency of the
building. For instance, in an emergency situation, the occupants’ locations can be used to
guide them to safety, or to help the first responders to locate them. Another example is the
monitoring of the gait parameters of the occupants, which can be used to detect the early
signs of many neurodegenerative diseases such as Parkinson’s disease, Alzheimer’s disease,
and multiple sclerosis [1,2]. Various spatiotemporal characteristics of human gait, such as
symmetry [3–6] and gait variability [7–9], which can be obtained with vibro-localization
techniques, have been shown to be reliable indicators of neurodegenerative diseases.

Vibro-localization techniques are based on the premise that the structural waves
generated by the occupants’ activities propagate through the building’s structure and are
measured by a network of sensors, i.e., accelerometers. However, these waves are subject
to various propagation phenomena, such as dispersion, attenuation, and reflection, which
can transform the waveforms and introduce errors in the localization outcomes. Therefore,
each sensor’s measurement corresponds to a transformed version of the wave generated
by the occupant, making the localization problem challenging. Dispersion is a particularly
challenging phenomenon that affects the wave propagation in real-world settings, i.e.,
defined by a long propagation path, low-frequency waves, low spectral resolution, etc.
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1.1. Relevant Literature

The literature in vibro-localization considering dispersion is diverse and spans various
disciplines, including structural engineering, signal processing, and machine learning. In
their work, Mirshekari et al. [10] proposed a localization technique that employs a two-fold
strategy to mitigate the effect of dispersion on the localization outcomes: (1) wavelet-based
dispersion mitigation by narrow-band filtering; and (2) adaptive sensor selection to localize
the occupant with closer sensors to reduce the effect of dispersion on the localization
outcomes. In their later work, the authors extend their technique to accomodate the
variability among the occupants [11] and disturbances along the propagation path [12]. The
authors show that their technique outperforms the traditional Time-Difference-of-Arrival
(TDoA)-based techniques in terms of localization accuracy and robustness, as the perceived
wave velocity is automatically deduced from the floor acceleration data collected by a
sensor network.

In highly dispersive, one-dimensional wave propagation scenarios, such as those
encountered in railroad tracks and bridge structures, multimodal dispersion significantly
influences wave behavior. These environments exhibit multiple interacting wave modes
across various frequencies, complicating localization tasks. While our study focuses on
vibro-localization under weakly dispersive planar wave propagation, similar principles
could be adapted to address these challenges. For instance, research on wave propagation
and vibration behavior in railway tracks highlights the complex dynamic performance
of high-speed railway systems, emphasizing the need for specialized analysis in such
contexts [13]. Additionally, studies on ultrasonic guided-wave approaches for detecting
wire breaks in bridge cables demonstrate the application of guided-wave modes in multi-
wire bridge cables, providing insights into handling multimodal dispersion [14]. However,
the algorithms presented in these references are specifically designed for wave propagation
analysis and are not directly applicable to the vibro-localization problem discussed in
this manuscript.

The Time-of-Arrival (ToA) of flexural waves in a dispersive medium exhibits a non-
linear dependence on the distance d, specifically proportional to d4/3 [15]. The perceived
velocity of the wave, vp, at any given distance d from the source, is defined based on the
ToA of the maximum signal envelope. This relationship is mathematically expressed as
vp(d) = 1

η d−1/3, where η is a constant that depends on the boundary conditions and
material properties. This equation indicates that in a dispersive media, the flexural wave’s
perceived velocity vp is not constant, but rather decreases nonlinearly as the distance d
increases. In [15], Bahroun et al. proposed a localization technique that employs the sign of
the TDoA measurements to estimate the distance between the source and the sensor [15].

Alajlouni et al. [16] show that dispersive nature of the floor manifests itself as an
exponential relationship between the signal energy and the distance between the sensor
and the source. By exploiting this relationship, the authors propose a localization technique
that employs the signal energy measurements to estimate the distance between the source
and the sensor, rather than solving for the ToA of the waves, or the TDoA among the sensors.
In their later work, the authors extend this technique to accomodate the measurement
uncertainty. Their Maximum Likelihood Estimation (MLE)-based technique estimates the
distance between the source and the sensor by maximizing the likelihood of the observed
signal energy measurements [16]. The authors show that their technique outperforms the
traditional energy-based techniques in terms of localization accuracy and robustness.

Ambarkutuk et al. [17] propose an information-theoretic approach to mitigate the
effects of the dispersion on the localization outcomes. The authors show that measurement
uncertainty and dispersion may render some of the sensors as byzantine, i.e., their mea-
surements are not informative, or faulty, with respect to the source location. The authors
propose a sensor fusion technique that eliminates the byzantine sensors from the network,
and maximizes the joint likelihood of occupant location given the sensor measurements.

MejiaCruz et al. [18] utilize a probabilistic approach to estimate a transfer function
and force shape, thereby localizing events based on structural vibrations measurements.
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Their algorithm, called Probabilistic Force Estimation and Event Localization (PFEEL),
involves three main stages: (1) probabilistic transfer function estimation; (2) probabilistic
force estimation; and (3) event localization. It uses sensor data to measure vibration waves
and applies probabilistic methods to accurately estimate forces and locate events within a
structure. In their later work [5], the authors extend the PFEEL algorithm by representing
the transfer functions as stochastic processes. This extension allowed the authors to better
gauge the uncertainty in the estimated transfer functions and improve the accuracy of the
force estimation and event localization.

1.2. Challenges in Vibro-Localization

Several challenges exist in the current approaches to vibro-localization:

1. The sensors are not ideal. Measurement uncertainty is a crucial factor that contributes
to the localization error. The authors of [16] assume a normal distribution of the signal
energy measurements to address this. The maximum likelihood solution under the
normality assumption yields to a convex optimization landscape. However, due to
the complex nature of wave propagation in real-world settings, this assumption rarely
holds true. Therefore, the gradient-based solvers may not converge to the global
optimum, leading to suboptimal localization results.

2. The dynamics are complex. Wave propagation is a complex dynamic phenomenon
influenced by various factors, such as dispersion, attenuation, and material inho-
mogeneities. The authors of [10,19,20] assume a constant wave speed to estimate
temporal parameters of the wave, such as the ToA or the TDoA. However, reducing
the problem to a single-parameter estimation, i.e., group velocity, may not be sufficient
for capturing the complexity of wave propagation in structures. The wave speed
can vary depending on several factors, including the material properties of the floor
and the frequency of the waves, leading to potential errors in localization accuracy.
The authors of [15] assume that the wave speed is solely a function of propagation
distance. However, this assumption may oversimplify the complex nature of wave
propagation in real-world settings, where wave speed can be influenced by other
factors, such as frequency-dependent dispersion and material inhomogeneities.

3. Each footstep is different. Ground reaction forces generated by footsteps can vary
significantly depending on the individuals’ gait characteristics, such as step length,
step width, and walking speed. This variability can introduce errors in the localization
results as the technique may not accurately capture the unique characteristics of each
individual’s footsteps.

4. Forcing is unknown. Vibro-localization techniques often require the estimation of the
force shape generated by the occupant’s footsteps [5,18,21]. This force shape is used
to estimate the transfer function between forcing and sensor measurements. However,
estimating the force shape accurately can be challenging as it depends on various
factors, such as the individual’s gait characteristics, the material properties of the floor,
and the frequency of the waves. Inaccurate force estimation can lead to errors in the
localization results, as the technique may not accurately model the wave propagation
through the floor.

5. The propagation is a rapid phenomenon relative to sampling. Footsteps generate fast and
repetitive signals, leading to a situation where there are insufficient samples to fully
capture the wave characteristics at reasonable sampling rates. As a result, transfer
function estimates often suffer from low spectral resolution. For instance, [18] employs
cross- and auto-spectral density of the measurement vectors to estimate the transfer
function of the propagation phenomena. However, the limited frequency resolution
and the presence of measurement uncertainty can significantly hinder the accuracy of
these estimates and, consequently, the localization results.
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1.3. Summary of the Contributions

This paper introduces a vibro-localization technique that determines occupants’ lo-
cations in a building modeling structural vibration wave propagation, bypassing force
estimation. The method simplifies the localization process by employing a model-based
approach to represent key propagation phenomena such as dispersion and attenuation,
which are parameterized and fitted to measured waveforms. The estimated occupant
location is then derived from the joint likelihood function of all sensor measurements.

Our work builds on previous research and makes the following contributions:

• Multi-Sensor Perception (addresses challenge 1): We propose a multi-sensor technique
that aggregates information from multiple sensors, bypassing the assumption of nor-
mal distribution in signal energy measurements. The averaging during the signature
estimation does not assume anything about the underlying error distributions, making
it more robust to real-world complexities and variabilities.

• Enhanced Wave Propagation Modeling (addresses challenges 2, 3, and 4): We propose
a model-based approach that accurately captures the dispersive and attenuative
properties of structural vibration waves, focusing on key parameters like wave speed
and attenuation coefficient. This approach improves localization accuracy by avoiding
oversimplifications.

• A Parametric Approach to Modeling the Physical Properties (addresses challenge 5): We
introduce a piecewise constant velocity profile modeling the dispersion mechanism
that can be used to estimate the occupant location, even with low spectral resolution
in the transfer function estimates. In the calibration of the vibro-localizer, the wave
velocity and attenuation coefficient are estimated by fitting the transfer function to the
measured waveforms.

1.4. Organization of the Paper

The rest of the paper is organized as follows. In Section 2, we present the proposed
vibro-localization and tracking technique. In Section 3, we validate the proposed technique
through controlled experiments and field-established datasets. Section 4 presents the
results of the validation experiments, providing qualitative and quantitative analyses to
evaluate the performance of the proposed technique. Finally, our conclusions are presented
in Section 5.

2. Methodology

This section presents the proposed vibro-localization technique in greater detail. The
localization loss function is derived from the wave propagation model, and the unpropaga-
tion operator is used to recover the original waveform.

The proposed technique leverages the structural vibration waves induced by an occu-
pant’s footsteps and captured by a network of sensors distributed throughout the building.
The vibro-localization technique estimates the occupant’s location probabilistically by as-
signing a probability to a location vector, representing the likelihood of the occupant’s
presence at that location. The technique is based on our proposed wave propagation model.
The concepts of the propagation and unpropagation operators are used to model the wave
transmission and recovery processes, respectively. This technique involves estimating
the signature waveform induced by the occupant’s footsteps and comparing it with the
reconstructed waveforms at the sensors to estimate the occupant’s location.

2.1. Forward Problem: Wave Propagation

Consider a homogeneous and isotropic floor surface S ⊂ R2 of a building. When
an occupant O steps at a location xO ∈ S , they induce a distinct waveform vector
s = (s[0], . . . , s[K − 1])⊤ ∈ RK at that location, where K denotes the total number of discrete
time samples in the waveform, with each element s[k] corresponding to the recorded signal
at time step k. This waveform s is referred to as the signature, and it propagates through
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the floor and is detected by stationary sensors placed at various positions xS,i ∈ S , for
i ∈ I = {0, . . . , M − 1}.

The wave propagation process is illustrated in Figure 1. The wave generated by the
occupant’s footsteps travels through the floor and is detected by the sensors. For sensor
i, the observed waveform zi = (zi[0], . . . , zi[K − 1])⊤ ∈ RK is a transformed version of
the original waveform due to the effects of propagation. The variations in the observed
waveforms zi among different sensors arise from the different propagation paths taken by
the wave from the occupant to each sensor.

Surface S
x

y

Occupant
xO

Wavefronts at time k

Sensor i

Sensor j

Surface S
x

y

Occupant
xO

Wavefronts at time k

Sensor i

Sensor j

Signature and Measured Signals

Time

A
m
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it

ud
e
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zj
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Figure 1. This figure illustrates the wave propagation process. Left: An illustration of the geometric
layout of the floor, sensors, and the occupant location. Right: The wave propagation process from
the occupant to the sensors. As can be seen in the figure, both sensors i, j are affected by the wave
propagation process. Sensor i is further away from the occupant than sensor j, which results in a
delay and more attenuation relatively to sensor j.

The transformation in the observed waveform zi is primarily caused by three fac-
tors: dispersion, attenuation, and geometric spreading. Dispersion refers to the phe-
nomenon where the phase velocity of the wave varies with its frequency, resulting in
a frequency-dependent phase delay τ(ω) in the waveforms. This phase delay can be
expressed as follows:

τ(ω) = exp
(
−jω

d
v(ω)

)
,

where d = ∥xO − xS,i∥ represents the distance between the occupant’s location xO[k] and
the sensor location xS,i, and v(ω) is the phase velocity at frequency ω. Attenuation repre-
sents the decrease in amplitude of the wave as it travels through the medium. It can be
characterized by the following:

a = exp(−ηad) ,

where ηa is the attenuation coefficient. Geometric spreading accounts for the reduction
in amplitude due to the wave spreading over a larger area as it propagates. This effect is
expressed as follows:

g =

{
min{1, 1√

d
} if d > 3λ

1 otherwise
.

Together, attenuation a and geometric spreading g determine how the energy of the
wave is distributed and dissipated over the propagation distance d. Dispersion, on the
other hand, introduces a frequency-dependent phase delay τ(ω) in the waveforms, causing
the wave to spread out in time.
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To succinctly represent the propagation process, we define the propagation operator
P and its inverse P−1. The operator P models the forward wave transmission, while P−1

represents the process of recovering the original waveform s from the observed data zi.
These operators provide a simplified and systematic approach to analyzing waveforms in
the vibro-localization technique. The propagation operator P is defined mathematically
as follows:

zi = P(s; x, xS,i) = a gF−1{τ(ω)F{s}},

where F and F−1 represent the Fourier transform and its inverse, respectively. The
unpropagation operator P−1 is defined as follows:

P−1(zi; x, xS,i) =
1

a g
F−1

{
1

τ(ω)
F{zi}

}
,

where the inverse operation recovers the original waveform s from the observed data zi.

2.2. Inverse Problem: Vibro-Localization

The vibro-localization technique aims to estimate the occupant’s position based on the
structural vibrations generated by their footsteps and captured by the sensor network. This
method relies on reconstructing the original waveform induced by the occupant’s steps
and comparing it with the waveforms observed by the sensors.

As illustrated in Figure 2, the proposed algorithm first computes the average waveform
s̄(x) at each candidate location x using the unpropagation operator.

s̄(x) =
1
M ∑

i∈I
P−1{zi, x, xS,i} .

This average waveform s̄(x) represents the expected waveform at the candidate loca-
tion x, averaged over all sensors. Following this, the estimated waveform
ẑi(x) = P{s̄(x); x; xS,i} at each sensor location xS,i is computed by propagating the av-
erage waveform s̄(x) back to the sensor location xS,i for all sensors.

Sensor Measurements

Forcing

zj

zi

Unpropagation

s̄

P−1{zj}

P−1{zi}

Signature Estimation

Propagation

ẑj = P{s̄}

zj

Similarity Assessment

Figure 2. This figure illustrates the process of transforming sensor measurements, zi and zj, into
estimated signatures and assessing their similarity. The shorthand P denotes the propagation oper-
ator, which is used to convert sensor data into meaningful signatures. Initially, the unpropagation
step transforms the measurements into estimated signatures P−1{zi} and P−1{zj}, producing the
estimated signature s̄. Subsequently, the similarity between the propagated signature P{s̄} and the
original measurement zj is assessed, allowing for a comparison of the sensor outputs.

Next, we employ the cosine similarity index between the measurement vector zi and
the estimated waveform ẑi(x) to quantify the temporal alignment and scale mismatch
between the observed and estimated waveforms. The similarity index, ri, which quantifies
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the agreement between the observed and estimated waveforms at sensor i, is defined
as follows:

ri(x) = zi · ẑi(x) ,

where · denotes the dot product between two waveforms. Aggregating the similarity
indices over all sensors, we obtain the similarity vector r(x) = (r0(x), . . . , rM−1(x))

⊤.
Consequently, the similarity vector r quantifies the agreement between the observed and
estimated waveforms at each sensor. One might consider the similarity vector r as a feature
vector that characterizes the likelihood of the occupant’s presence at a given location x.

An optimization algorithm can be used to solve for the location vector x that maximizes
the similarity vector r. We formulate this optimization problem as a probabilistic model,
where the similarity index ri(x) is used to compute the likelihood of the occupant’s presence
at each location. The similarity index ri(x) is evaluated for all locations in the localization
space S and then normalized using a softmax function to convert the similarity scores into
probabilities, representing the likelihood of the occupant’s presence at each location. The
likelihood function fi(x) at location x for sensor i is defined as follows:

fi(x) =
exp(ri(x))

∑x′∈S exp(ri(x′))
.

Finally, the occupant’s estimated location x̂O is determined by maximizing the product
of the likelihood functions over all sensors, i.e., the joint likelihood:

x̂O = argmax
x∈S

∏
i∈I

fi(x) .

This probabilistic approach allows the vibro-localization technique to estimate the
occupant’s location by integrating information from multiple sensors, leveraging the unique
propagation characteristics of the structural waves in the building.

3. Experiments

In this section, we present the objectives and details of the validation studies conducted.
The objective is to evaluate the performance of the proposed vibro-localization technique
accurately estimating the impact locations, i.e., the occupant locations, by employing the
waveform observed by sensors placed at different locations. We consider two datasets rep-
resenting the wave propagation relevant to the problem of vibro-localization: an aluminum
plate and a building-scale experiment. The proposed technique was tested on these datasets
to evaluate its performance in estimating the impact locations. Below are the details of the
experiments employed in this study.

In the aluminum plate experiment, sensors were strategically placed to ensure uni-
form coverage across the plate’s surface, facilitating effective calibration and validation
of the proposed localization technique. Four piezo-electric sensors were positioned at the
corners of the plate to maximize sensitivity to wave propagation patterns while minimizing
boundary effects.

In contrast, the building-scale experiment was conducted in Goodwin Hall at Virginia
Tech, where sensor distribution was adapted to the structural layout. Sensors were mounted
on steel fixtures welded to the I-beams beneath the floor, reflecting real-world constraints.
This setup ensured the reliable capture of dispersive wave propagation across a larger and
more complex structure.

The distinction between these two experimental configurations highlights two key
differences: (1) laboratory-controlled experiments and (2) real-world experiments. This
contrast underscores the adaptability and robustness of the proposed technique across
varying scales and environments.
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3.1. Plate Experiment

A 15 kg plate made of 6061 aluminum alloy with dimensions 50 × 50 × 2 cm was tested
using the baseline approach [18]. Four Piezometric PCB 333B50 sensors (PCB Piezotronics,
Depew, NY, USA) were attached to the plate. The plate was secured at the four corners with
0.40 cm diameter screws, preventing both displacement and rotation. A PCB 086C03, (PCB
Piezotronics, Depew, NY, USA), impact hammer struck the plate at eighty-one different
locations, spaced 5 cm apart, covering the entire plate area. An instrumented hammer
was used to excite the plate, thereby inducing vibrations. Each location was struck once,
and force and acceleration data were recorded at a sampling rate of 2048 Hz for 20 s.
The experimental data collected from the aluminum plate were divided into two groups.
Following the original study, forty out of eighty-one impacts were used to calibrate our
model, and the remaining forty-one impacts were used to validate the vibro-localization
technique. Figure 3 demonstrates the layout of the sensors and the impact locations on the
plate. The training (n = 40) and testing points (n = 41) were marked with squares (■) and
filled circles (•), respectively. The sensor locations were marked with green squares (■).

Figure 3. Layout of the aluminum plate experiment, showing impact locations and sensor placements.
The 6061 aluminum alloy plate (50 × 50 × 2 cm) was impacted at 81 distinct locations, spaced
5 cm apart. Training points (n = 40) are represented by squares (■), while testing points (n = 41)
are shown as filled circles (•). The positions of four Piezometric PCB 333B50 sensors are marked
with green squares (■). This configuration was used to collect vibrational data for calibrating and
validating the vibro-localization model.

3.2. Building-Scale Experiment with Dispersive Propagation

The building-scale experimental dataset used in this study was first introduced in [22]
and later used in [23,24]. The dataset was collected in the Goodwin Hall at Virginia Tech, a
five-story building with a steel frame and concrete floors. This dataset involves participants
walking along a predefined path (step length and width were set to 62 and 15 cm) in
a corridor, with sensors placed at various locations to capture the vibrations. In these
experiments, two participants walked along a predefined 16 m path, separately. Figure 4
shows the step locations—represented by black squares (■) and circles (•), respectively,
for training and testing cases—and the sensor locations—represented by green squares
(■)—superimposed on the path. We based our reference point on these studies and used
the same experimental data as in [24]; thus, it will be referred to as the benchmark in the
context of building-scale experiments.

The sensors were mounted on uniform steel mounts welded to the flanges of the
structural I-beams beneath the corridor’s concrete floor. Eleven accelerometers that are
capable of measuring dynamic out-of-plane acceleration within the frequency range of
(2–10,000) Hz and with an average sensitivity of 1000 millivolts per g (where g = 9.8 m/s2)
recorded the structural vibrations. These devices captured data from 162 steps taken by each
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participant, totaling 324 steps. Data collection was facilitated by EMX-4250 (Ametek VTI
Instruments, Irvine, CA, USA) digital signal analyzer cards, connected to the accelerometers
via coaxial cables, and equipped with anti-aliasing filters and a high-precision 24-bit ADC.
The accelerometer data were sampled at a rate of 1024 Hz. The vibro-localization technique
was evaluated using the data collected from the Goodwin Hall experiments. For parameter
estimation, the first 27 steps of Occupant A were used to calibrate the model. The model
was then tested using the remaining steps from Occupant A and all of Occupant B’s steps.
The estimated locations were compared to the ground truth locations to assess the accuracy
of the localization.

Figure 4. Layout of the experimental setup conducted in Goodwin Hall at Virginia Tech. The figure
illustrates the predefined walking path along which participants moved, with step locations marked
by black squares (■) for training and black circles (•) for testing. Green squares (■) indicate the
sensor locations distributed along the corridor to capture vibrational data. This layout, previously
utilized in studies [22,24], serves as the benchmark for building-scale experimental data collection.

The training scheme was as follows: the first 27 steps of Occupant A were used
to estimate a piecewise linear model representing the phase velocity v(ω) of the wave
propagation. The model was then used to estimate the impact locations of the remaining
steps of Occupant A and all of Occupant B’s steps.

4. Results

In this section, we present the results of the proposed technique for both the plate
and building datasets. The results are presented in terms of accuracy and precision of the
localization estimates. These results are described in detail for each dataset, including the
statistical analysis of the localization error and the empirical Probability Density Function
(PDF) and Cumulative Distribution Function (CDF) of the localization errors.

4.1. Plate Experiments

Figure 5 shows a representative result from the dataset where the impact location is
close to the sensor array.

Table 1 provides a detailed statistical descriptives of the localization error such as
mean, standard deviation, median, and Mean Absolute Deviation (MAD). The mean and
median are measures of accuracy while the standard deviation and MAD are measures
of precision, i.e., the spread. The results show that the proposed technique estimated the
impact locations with a mean localization error of 18.01 cm and a standard deviation of
1.97 cm. In contrast, the baseline technique reported in [18] exhibited a mean localization
error of 19.19 cm with a standard deviation of 7.77 cm. This difference indicates that the
proposed technique has shown improvement over the baseline without using the hammer
impact information as used in [18].



Sensors 2024, 24, 7744 10 of 16

(a) Joint likelihood of the baseline method (b) Joint likelihood of the proposed method

(c) Sensor measurements (d) Estimated signatures

Figure 5. This figure presents a comparison of the joint likelihoods and sensor data for an impact
location near the sensor array. The top left subfigure shows the joint likelihood computed using
the baseline [18] method, while the top right subfigure displays the joint likelihood obtained from
the proposed technique. The bottom left subfigure illustrates the raw sensor measurements, and
the bottom right subfigure shows the estimated signatures derived from these measurements. This
comparison highlights the performance of both methods in accurately estimating the impact location
based on vibrational data.

Table 1. Statistical analysis of localization error for the baseline method [18] and the proposed
technique. The table compares the accuracy and precision of these techniques. The proposed
technique consistently demonstrates lower mean error and variability across all metrics, indicating
improved accuracy and robustness compared to the baseline. The reduction in standard deviation
and MAD for the proposed method highlights its stability and resistance to outliers in the dataset.

Raw Winsorized (at 10 cm) Rank-Based

Mean B Mean Std. Dev. Median MAD

Baseline [18] 19.19 7.77 16.34 5.48 19.13 5.43

Proposed 18.01 1.97 17.66 1.04 17.08 0.34

The empirical PDF and CDF of the localization errors provide further insights into the
performance of the proposed technique. Comparing the CDF curves between the proposed
and baseline techniques can highlight differences in the overall error distribution. Figure 6
demonstrates the empirical PDF and CDF of the localization errors for the proposed and
baseline techniques. As can be seen in the figure, the proposed technique shows a sharper
peak in the PDF curve, indicating a higher frequency of small errors relative to the baseline
which demonstrated a broader distribution over the range of localization errors. The CDF
curve for the proposed technique exhibits a steeper incline at lower error values, suggesting
that a significant portion of the errors are small, which is desirable for high-accuracy
localization systems. In contrast, the baseline technique shows a more gradual increase in
the CDF curve.
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(a) PDF (b) CDF

Figure 6. PDF and CDF of localization error for the proposed method and the baseline approach. In
the PDF (left), the proposed method exhibits a sharp peak around 20 m, indicating a higher frequency
of lower localization errors compared to the baseline, which shows a more distributed error profile.
The CDF (right) further supports this observation, as the proposed method achieves 80% cumulative
frequency at a lower error range than the baseline, demonstrating a more consistent and accurate
performance. These results suggest that the proposed technique significantly reduces localization
error, achieving more reliable estimates than the baseline method.

4.2. Building-Scale Experiments with Dispersive Propagation

Figure 7 illustrates three representative results observed in the building dataset. The
figure shows the joint likelihood of the proposed technique as well as the estimated impact
locations. In an ideal scenario, the joint likelihood function should have a single peak at
the true impact location with minimal uncertainty. Figure 7a–c demonstrate a scenario
where an occupant is walking along the corridor, and the sensors are placed at different
locations to capture the vibrations. Figure 7a demonstrates the scenario where the occupant
is located at the leftmost end of the corridor, while Figure 7b shows the scenario where the
occupant is located at the center of the corridor. Finally, Figure 7c illustrates the scenario
where the occupant is located at the rightmost end of the corridor. The results demonstrate
that the proposed technique accurately estimated the impact locations for both occupants.

Localization accuracy was evaluated by comparing the estimated impact locations
with the ground truth locations. We employed the mean of the joint likelihood function
as the estimated impact location, which was then compared to the ground truth location
to calculate the localization error. Table 2 demonstrates the comparative analysis of the
proposed and baseline techniques in terms of localization error. The results demonstrate
that the proposed technique estimated the impact locations with a Root Mean Squared
Error (RMSE) of 0.49 and 0.71 m for Occupants A and B, respectively. On the other hand, the
baseline, which was reported in [24], exhibited an RMSE of 0.89 and 0.94 m for Occupants
A and B, respectively. This indicates that the proposed technique significantly improves
the baseline results in terms of localization accuracy.

Table 3 presents descriptive statistics of localization error for Occupant A and Occupant
B using three error estimates considering the outliers in the data: raw, Winsorized at 1 m,
and rank-based methods. For the raw data, Occupant A shows a mean localization error of
0.35 m with a standard deviation of 0.21 m, while Occupant B exhibits higher error values,
with a mean of 0.62 m and a larger standard deviation of 1.06 m. After Winsorizing at 1 m,
Occupant A’s mean error slightly decreases to 0.34 m with a reduction in standard deviation
to 0.2 m, and Occupant B’s mean error decreases to 0.48 m with a reduction in standard
deviation to 0.29 m. This suggests that extreme values had more influence on Occupant B
in the raw data. The rank-based method, which uses median and MAD, provides a more
robust central tendency, with Occupant A showing a median error of 0.31 m and an MAD
of 0.12 m, while Occupant B has a median of 0.4 m with an MAD of 0.19 m. Additionally,
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the 95% confidence interval for the mean localization error is (0.31, 0.38) m for Occupant A
and (0.44, 0.80) m for Occupant B, indicating that Occupant B consistently shows higher
localization error estimates across all metrics, although variability is reduced when outliers
are controlled.

(a)

(b)

(c)

Figure 7. Representative examples of localization results using the proposed method on the building
dataset. Each subfigure illustrates the joint likelihood calculated from the measured waveforms, with
the true occupant location marked by a red cross (×) and the estimated location by a black plus
sign (+). (a) shows the occupant at the leftmost end of the corridor, (b) at the center, and (c) at the
rightmost end. These results demonstrate the reliability and effectiveness of the proposed technique
in estimating impact locations across different occupant positions.

Table 2. Comparative analysis of localization error for Occupant A and Occupant B using the
proposed and baseline methods. The table presents the RMSE in both the x- and y-coordinates, as
well as the overall magnitude of the RMSE for each position. The proposed method demonstrates a
significant reduction in localization error across all metrics for both occupants.

Occupant A Occupant B

RMSE x RMSE y RMSE ∥ · ∥ RMSE x RMSE y RMSE ∥ · ∥

Baseline [24] 0.67 0.58 0.89 0.74 0.58 0.94

Proposed 0.3 0.31 0.49 0.67 0.24 0.71

The empirical PDF and CDF of the localization errors shown in Figure 8 provides
additional insights into the performance of the proposed technique. The empirical PDF
illustrates the distribution of localization errors, allowing us to observe the concentration
of errors around certain values. A sharp peak in the PDF indicates a high frequency of
small errors, suggesting that the proposed method consistently achieves close proximity to
the true location. Conversely, a broader distribution might indicate greater variability in
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localization accuracy. The empirical CDF, on the other hand, offers a cumulative perspective
by showing the proportion of errors that fall below a certain threshold. A steep incline
in the CDF curve at lower error values reflects that a significant portion of the errors are
small, which is desirable for high-accuracy localization systems. Comparing the CDF
curves between the proposed and baseline techniques aggregates the differences in the
overall error distribution, indicating that the proposed method consistently outperforms
the baseline across the entire range of localization errors.

Table 3. Descriptive statistics of localization error for Occupant A and Occupant B using the proposed
technique, across different data treatment methods: raw data, Winsorized data (at 1 m), and rank-
based data. The results indicate that Occupant A consistently shows lower localization error across all
methods compared to Occupant B, with smaller variability. The Winsorized and rank-based methods
further reduce the impact of outliers, particularly for Occupant B, where both the mean error and
variability are notably reduced. This suggests that the proposed technique is more robust and stable
when outliers are controlled, providing more reliable localization estimates.

Raw Winsorized (at 1 m) Rank-Based

Mean Std. Dev. Mean Std. Dev. Median MAD

Occupant A 0.35 0.21 0.34 0.2 0.31 0.12

Occupant B 0.62 1.06 0.48 0.29 0.4 0.19

(a) (b)

Figure 8. PDF and CDF of the localization error for both occupants in the Goodwin Hall dataset. The
results indicate that the error distributions for both Occupant A and Occupant B are similar, demon-
strating that the proposed technique is robust to inter-occupant differences. Despite the variations in
walking patterns and body dynamics between different individuals, the method maintains relatively
consistent performance. (a) PDF of the localization error observed in Occupant A and Occupant B
data. (b) CDF of the localization error observed in Occupant A and Occupant B data.

5. Conclusions

This paper introduces a novel method for characterizing and localizing occupants in
a building by analyzing structural vibration waves generated by their activities. The pro-
posed approach utilizes the wave equation, incorporating key properties such as dispersion
and attenuation, to propagate and unpropagate structural waves. These properties are esti-
mated from waveforms recorded by sensors placed at various locations in the experimental
structure. The experimental validation demonstrates that the proposed method accurately
captures the propagation and unpropagation of waves, enabling precise localization of
the occupants.
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This method is applied to two experimental datasets: a controlled aluminum plate
test and a building-scale experiment. The results shows that the proposed technique
outperforms existing methods by significantly reducing localization error. For example,
in the plate experiment, the proposed method achieves a mean localization error of 18.01
cm with a standard deviation of 1.97 cm, compared to the baseline technique’s mean
error of 19.19 cm and standard deviation of 7.77 cm. Similarly, in the building-scale
experiment, the proposed method estimates impact locations with an RMSE of 0.49 m for
Occupant A and 0.71 m for Occupant B—in contrast to the baseline’s RMSE of 0.89 m and
0.94 m, respectively.

An advantage of the proposed technique is that it does not require prior knowledge
of the force exerted by the occupants, and learns the dispersive nature of the floor from
the training data. This feature increases the method’s versatility and applicablity to a
wider range of scenarios where the force information is not readily available. Also, the
proposed method demonstrates its robustness to occupant differences, as similar error
distributions are observed for both occupants, underscoring the method’s adaptability to
varying walking patterns and footstep characteristics. Vibro-localization is a challenging
problem that becomes more difficult as the propagation path becomes longer due to
dispersion. With the proposed technique, we are able to accurately estimate the impact
locations even in the presence of dispersive propagation, as demonstrated in the building-
scale experiment.

In conclusion, this work advances vibro-localization by introducing a model-based
approach that accurately represents key propagation phenomena such as dispersion and
attenuation. The results demonstrate the technique’s improved accuracy and precision,
offering a significant contribution to fields such as structural health monitoring, activity
recognition, and security monitoring, where reliable localization of vibration sources
is essential.
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PFEEL Probabilistic Force Estimation and Event Localization

RMSE Root Mean Squared Error

TDoA Time-Difference-of-Arrival

ToA Time-of-Arrival
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