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Abstract: As maximum power point tracking (MPPT) algorithms have developed towards multi-task
intelligent computing, processors in photovoltaic power generation control systems must be capable
of achieving a higher performance. However, the challenges posed by the complex environment
of photovoltaic fields with regard to processor reliability cannot be overlooked. To address these
issues, we proposed a novel approach. Our approach uses error rate and performance as switching
metrics and performs joint statistics to achieve efficient adaptive switching. Based on this, our
work designed a redundancy-mode switchable three-core processor system to balance performance
and reliability. Additionally, by analyzing the relationship between performance and reliability,
we proposed optimization methods to improve reliability while ensuring a high performance was
maintained. Finally, we designed an error injection method and verified the system’s reliability by
analyzing the error rate probability model in different scenarios. The results of the analysis show that
compared with the traditional MPPT controller, the redundancy mode switchable multi-core processor
system proposed in this paper exhibits a reliability approximately 5.58 times that of a non-fault-
tolerant system. Furthermore, leveraging the feature of module switching, the system’s performance
has been enhanced by 26% compared to a highly reliable triple modular redundancy systems,
significantly improving the system’s reliability while ensuring a good performance is maintained.

Keywords: adaptive switching; reliability; TMR; DMR; MPPT

1. Introduction

Multi-task intelligent computing requires processors with higher performance for
multitasking control and computation because of its task complexity and parallelism. In
photovoltaic (PV) power generation control systems, the processor is responsible for the
maximum power point tracking (MPPT) algorithm and managing the entire system [1–3].
With the advancement and updates in MPPT algorithm research, modern MPPT algorithms
are utilizing intelligent computing with increasing frequency. However, in PV fields, abun-
dant solar radiation and temperature fluctuations can lead to signal bit flips in processors,
resulting in soft errors [4]. This presents new challenges with regard to the reliability of
processors. Therefore, a processor that balances both performance and reliability is essential
in the field of PV.

Soft errors occur when external radiation or electrical interference causes temporary
faults in the system. These errors can randomly alter data bits, leading to potential system
failures or data corruption [5]. Redundant computing is a useful strategy for mitigating soft
errors. Redundant computing employs many central processing units (CPUs) to execute the
same program and uses a voting mechanism to determine the most accurate outcome. This
approach allows for quick error detection and ensures system stability by tolerating faults.
However, the use of redundant computation might impede the performance enhancement
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attained by parallelism in multi-core systems [6]. Grid-tied PV systems must continuously
compute the maximum power point to ensure optimal energy production.

We discovered performance–reliability curves, as shown in Figure 1, through an exten-
sive survey of multi-core systems [7–11]. The reliability metric used is 1 − error_rate. The
performance (the product of the maximum frequency and a 32 × 32 matrix multiplication
benchmark cycle count) is normalized. Increased reliability leads to a large decrease in
performance. From this observation, it is evident that maintaining system reliability within
a narrow range of performance deterioration is crucial to guarantee that the performance
adequately supports the regular operation of PV controller systems. Hence, it is essential to
use appropriate strategies in order to sustain performance while attaining a certain degree
of reliability.

Figure 1. The relationship between performance and reliability.

Several studies have attempted to achieve an appropriate balance between perfor-
mance and reliability by employing adaptive switching between performance mode and
reliability mode to accommodate varying circumstances [12–14]. Baharvand et al. [15]
introduced Adaptive Reliability Management by On-the-fly Redundancy in Multi-core Em-
bedded (ARMOR) Processors, ingeniously leveraging an adaptive method to assign cores
to perform critical tasks while balancing reliability and limited resources. Some of these
studies have explored implementing switching at the application level, which involves
inserting switching instructions or detecting error rates to dynamically switch between
performance mode and reliability mode [16]. However, this approach does not fully utilize
the hardware’s capability to detect errors in real time. Allocating redundant threads to
applications through software at the operating system level and dynamically building DMR
and TMR fault-tolerant modes is another potential approach. Asghari et al. [17] spotlighted
a software-based method by utilizing a task-level redundancy in the operating system to
meet the reliability requirements dynamically. A multiplexed redundant execution (MRE)
thread-based method is delineated in [18], comparing the outputs of the leading thread and
trailing thread to detect errors. However, these methods cannot effectively address transient
hardware errors such as soft errors [19]. Therefore, implementing adaptive switching at
the hardware level is more suitable for solving the problem of soft errors. For example, in
the adaptive lock-step quad-core system [20], the system switches between DMR and TMR
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systems by monitoring the number of errors occurring within a specific period. However,
this solution does not consider the system’s performance requirements.

It is common knowledge that adaptive switching methods can be used to strike a
balance between reliability and performance [21]. Nevertheless, without offering thorough
justifications for the switching metrics, the majority of efforts have concentrated on the
development of redundant processing structures and the use of mode switching. As a
result, their performance may be excellent in terms of switching and dependability but
not in terms of adapting to various situations. Furthermore, employing a single metric for
all switching purposes may result in frequent switches, which in complicated cases might
affect productivity. Since PV controller systems are ultimately application-oriented, we are
primarily concerned with creating dynamic switching techniques that are adaptive and
catered to the demands of certain scenarios.

The lock-step [22] and voting methods must be incorporated into the multi-core
framework in order to facilitate N-modular redundant (NMR) calculations and address the
previously described concerns. Lock-step is an error detection technique that uses multiple
identical cores to execute the same task synchronously and is connected to a verification
module. When the verification module detects a discrepancy, it indicates that a system
fault has occurred. Voting methods are used in systems with two or more core lock-step
systems, where the output results of the cores are compared to vote out the faulty core. For
example, in a three-core lock-step system, if the output results of core 0 and core 1 differ
from the remaining core 2, this proves that core 2 is at fault. Using these two methods
will guarantee the system’s reliability. Additionally, in order to accommodate various
application scenarios and satisfy the necessary performance and reliability standards, a
switching mechanism that can transition between different modes of the system should be
devised. Implementing pertinent technologies in high-performance mode will ensure that
programs are executed accurately. This article suggests a three-core adaptive switching
system based on TMR and DMR structures to meet these needs. The primary contributions
of this system are as follows:

• A hardware-based dynamic switching mechanism that analyzes the performance and
error rate of the system in the current scenario is used to adaptively transition between
different scenarios. This mechanism utilizes the hardware architecture to statistically
analyze the error rate and performance, which serve as the switching metrics.

• A redundancy-mode switchable multi-core(RMSM) processor system that can switch
between three modes: balanced (using DMR and single-core parallelism), high-
reliability (based on TMR), and high-performance (using three-core parallelism) is
designed and constructed.

• Checkpoint backup, pipeline rollback techniques, and fault isolation mechanisms are
optimized to rectify errors in processors that go beyond redundant fault tolerance
while also enhancing system reliability in high-performance modes.

• A soft error probability model is constructed based on the mechanism and patterns of
soft error occurrences, and soft error injection techniques are implemented to validate
system reliability, which is an efficient method for validating redundant systems.

This article is organized as follows: Section 2 analyzes the challenges associated with
designing a redundancy-mode switchable multi-core(RMSM) processor system and effec-
tively evaluating the system’s performance and reliability. Section 3 indicates the detailed
strategy of dynamic switching. The proposed RMSM processor hardware architecture and
associated optimization approaches are illustrated in detail in Section 4. Section 5 provides
evaluations and comparisons. This paper is concluded in Section 6.

2. Analysis
2.1. Challenge 1: Selection of Switching Indicators

There is no obvious way to distinguish changes in the complex scenarios that make
up the PV controller system’s real working environment. It is not feasible to switch the
redundant mode directly in accordance with scene switching. In order to guarantee that
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at least one mode among the several modes will satisfy the scenario’s performance and
reliability criteria, the scenario requirements must be precisely studied and quantified
so the system can be considered completely applicable to the application scenario. The
circumstances within the same scene are always shifting. The hypothetical situation is
shown in Figure 2; the modes involved are high-performance and balanced modes. The
performance requirements for PV controllers increase when the rate of change in irradiance
is relatively rapid. Therefore, the slope of irradiance change is used as a quantitative
metric for PV controllers’ performance. When using performance as the sole switching
metric, the mode is switched seven times. When using the error rate threshold as the sole
switching metric, the frequent fluctuations of error rates in scenarios lead to frequent mode
switching with four switches. Utilizing these two metrics as independent sole switching
metrics results in high-frequency mode switching, leading to low reliability and affecting
the performance of PV controllers. Ideally, we aim for the error rate threshold range and
performance to serve jointly as switching metrics. In this ideal state, the number of switches
would be reduced to two, achieving a balance between performance and reliability.

Figure 2. Reliability simulation of real scenarios. Impact of switching metrics on mode transitions in
PV controllers.

2.2. Challenge 2: Balance Between Reliability and Overhead

In addition to degrading performance, redundant processing increases overhead.
Hardware overhead is higher for multi-core processor systems that offer redundant com-
putation than for conventional multi-core systems. These include the following:

• Output comparison is necessary for TMR and DMR designs. TMR is capable of
identifying the origin of a mistake by means of a majority voting circuit. It then
proceeds to rectify the problem by moving forward with the recovery process, guided
by the outcome of the voting circuits. However, DMR has the capability to detect the
outcome but lacks the ability to accurately identify the proper outcome [23].

• Mistakes like branch prediction failures, aside from the impact of soft errors, cannot
be resolved by redundant computations. For error recovery, these mistakes need extra
rollback technology [24].

• The suggested adaptive dynamic switching system aims to address the issue of soft
errors by alternating between different modes. Lock-stepping several CPUs imposes
requirements on the structure.

Obviously, the continuous pursuit of computing reliability and accuracy will lead to a
continuous increase in hardware overhead.
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2.3. Challenge 3: A Method of Efficient Evaluation

During the design process, the system needs to be verified multiple times to achieve
the optimal needs of the design space. The simulator conducts modeling and evaluation
through different abstraction levels, such as instruction flow or timing, and the verification
speed is slow. There are methods that can be used to quickly verify the performance of the
system through analytical models. Still, analytical models can only find theoretical optimal
points based on modeling and cannot effectively guide actual design. The traditional
simulator verification method tests and verifies the performance and reliability of the
system after the complete actual system design, and then feeds the results back to the
system design. This full-cycle, iterative process is inefficient and costly. To explore the
design space efficiently, a more efficient verification method is needed to simultaneously
perform an evaluation and provide feedback during the design phase.

3. Dynamic Switching Strategy
3.1. Switching Metrics Based on Error Rate and Performance

In order to achieve a balance between performance and reliability, while also maintain-
ing appropriate costs for PV controller systems, it is crucial to select quantifiable metrics for
adaptation. In this research, we have chosen two metrics for evaluation: the statistical anal-
ysis of soft error rates throughout a specific time interval and performance requirements
determined by operational scenarios. The former employs adaptive fault-tolerant configu-
ration registers to guarantee the reliability of the system, enabling a customizable statistical
analysis of soft error rates within defined time intervals. This fulfills the requirements for
adaptability in various application settings. The latter utilizes performance counters to
monitor the real-time performance of the processor. The software level of the processor
determines its performance requirements by detecting system performance monitoring
registers and enables the switch to redundant modes. Redundant mode switching is not
exclusively determined by hardware soft error rates when the application’s fault tolerance
needs are low or the software already has a certain level of inherent fault tolerance. Alterna-
tively, the performance sampling function is utilized to sample the present situation. When
the mean value of the performance sampling counter is within a designated range, the
system transitions to the associated redundant mode according to its performance criteria.
On the other hand, if the application requires greater fault tolerance, the mode switching is
not based on performance sampling counters but is instead determined dynamically by the
hardware’s soft error fault detection rate.

3.2. Joint Statistical Dynamic Switching Mechanism Based on Error Rate and Performance

This paper proposes a joint statistical dynamic switching mechanism based on error
rate and performance, focused on error rate statistics, and built upon the foundation of
software-controlled mode switching, as shown in Figure 3.

This mechanism classifies applications according to their fault-tolerance requirements
and defines three tiers of fault rates. Figure 4 illustrates the process of determining the
work mode in the system. This is achieved by configuring the adaptive fault-tolerance
register with the following segments: seu0, seu1, seu2, and eccu, and the adaptive detection
interval register with the segment: Checkcycle. The system functions in a high-performance
mode to handle faults falling within the seu0 and seu1 range, a balanced mode for faults
falling within the seu1 and seu2 range, and a high-reliability mode for errors that exceed
seu2. In high-performance mode, a redundant mode transition is triggered when the error
rate in secure storage, as measured by ECC verification, surpasses the eccu threshold during
the Checkcycle interval.

A performance counter has been developed that utilizes the system’s original per-
formance monitoring counter. Redundant mode switching is based on the performance
sampling counter and the fault-tolerance register. The former is used when the application
has low fault tolerance requirements or inherently possesses a certain level of fault tolerance.
In contrast, the latter is used for applications that demand high fault tolerance requirements.
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Figure 3. Adaptive mode switching based on performance requirements and fault rate levels.

Figure 4. Adaptive fault-tolerance registers.

3.3. Dynamic Mode Switching

To smoothly transition from high-performance mode to balanced/high-reliability
mode or from balanced mode to high-reliability mode, the CPUs must synchronize their
states. This can be achieved by having the CPUs save checkpoints to their safety memory
ahead of time. The slave CPU/CPUs can then retrieve the checkpoint information from
the master CPU’s safety memory and load it into their general and control registers. This
checkpoint information includes the PC address that will be assigned to the slave CPUs,
allowing the master CPU and slave CPUs to operate in lock-step and stay in sync. When
transitioning to a higher-performance mode, there are two different scenarios to consider.
In the first scenario, after assisting the master CPU in completing the lock-step operation,
the slave CPU/CPUs will resume their previous program execution. At this point, the
slave CPU/CPUs will initiate a DMA transfer to restore their previous checkpoint into
their registers and control registers. In the second scenario, it is assumed that the slave
CPU/CPUs’ previous operational state is no longer relevant. In this case, the system only
needs to configure the control registers to enable the slave CPU/CPUs to have independent
input and output.

When operating CPUs under different modes, the Input–Output Selection Module
is required to select suitable inputs. In balanced mode, CPU1 input is bypassed to CPU2,
while CPU3 has its independent input. In high-performance mode, all three processors
have their independent inputs and outputs. In high-reliability mode, the output of CPU1,
CPU2, and CPU3 is selected by a majority voter.

3.4. Cache Mode Switching

This paper proposes an improved cache strategy that reduces the performance losses
caused by complete cache flushes. It uses a validity list and a flag list, where the flag is set
to valid when the cache line is loaded in high-reliability mode and reset to invalid when
loaded or modified in high-performance mode.
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When transitioning states, it is necessary to consider cache state consistency. The
simplest approach is to perform a complete cache flush with each transition from high-
performance mode to high-reliability mode or balanced mode. However, this method
leads to a reduction in cache utilization, resulting in performance wastage. Cache utilizes a
validity list to indicate the validity of each cache line. This paper proposes an improved
strategy by introducing a new flag list alongside the existing validity list. The flag is set
as valid if the associated cache line is loaded in a secure mode. If the processor loads or
modifies a cache line in high-performance mode, this flag is reset to invalid. Utilizing valid
cache lines in high-reliability mode can reduce performance losses caused by a complete
refresh. The operation is illustrated in Figure 5. At time T0, the system switches from
high-reliability mode to high-performance mode. In phase T1, the processor modifies line 0
and line 2 in the cache. The validity bits of these two cache lines are marked in the newly
added validity list. At time T2, when the processor switches back from high-performance
mode to high-reliability mode, the cache lines modified during the high-performance mode,
namely line 0 and line 2, are invalidated, while the remaining cache lines, line 1 and line 3,
are still considered valid. This method effectively reduces the performance losses caused
by a full cache refresh.

Figure 5. Cache mode-switching state update between different modes.

4. Redundancy Mode Switchable Multi-Core Processor System

In our work, we have designed a multi-core system that supports a redundancy
mode-switchable multi-core processor system architecture. The RMSM processor system
designed in this paper includes the RMSM processor and peripheral controller IPs such
as DDR, NandFlash, UART, and interrupts. The structure of the RMSM processor system
is illustrated in Figure 6. The processor’s external instruction and data interfaces use
the OBI (Open Bus Interface) bus. The instruction and data cache front end uses the
OBI bus, while the back end uses the AXI bus. The data cache supports configurable
write-through/no-write-allocate or write-back/write-allocate strategies. Modules such as
fault detection, fault isolation, and mode switching are added outside the core to support
lock-step redundancy and mode switchability. Inside the core, checkpoint backup register
files and hardware-dedicated DMA are added to the pipeline to support rapid checkpoint
backup and recovery.

Three redundancy mode types are defined based on different reliability and perfor-
mance requirements.

• High-reliability Mode
The high-reliability mode is a fault-tolerant system that employs TMR. In this mode,
the data stream of Processor 1 is fed into Processors 2 and 3. All three processors
execute the same program, resulting in a performance equivalent to that of a single-
core processor. TMR mode is a type of forward error correction that can mask error



Sensors 2024, 24, 7561 8 of 19

outputs caused by soft errors without requiring a checkpoint backup mechanism. It
is built on a dual-core lockstep that features triple modular redundancy and adds a
multiple-input voting circuit for correct status output.
System faults can be classified as repairable or non-repairable. If only one processor
has an error, it can be restored to normal operation. However, if two or more processors
have errors, the system will enter an unrecoverable state, necessitating a reset. The
TMR mode, with its robust architecture, offers a high degree of reliability and fault
tolerance for mission-critical applications.

• Balanced Mode
The balanced mode of operation involves Processor 1 and Processor 2 working in a
dual-core redundancy mode, while Processor 3 operates independently. This mode
of operation aims to balance reliability and performance. The input data stream of
Processor 1 is bypassed to Processor 2 after passing through mode selection logic.
The output data streams of Processor 1 and Processor 2 are synchronized through
a dual-core lock-step before being released. Processor 3 operates with independent
input and output data streams. The dual-core lock-step redundancy fault-tolerance
method typically employs fault detection and fault recovery techniques. This paper
utilizes hardware pipeline lock-step redundancy technology, which encompasses fault
detection, fault recovery, and fault isolation at the hardware level. Fault detection com-
bines processor replication with checksum circuits, while fault recovery employs fully
hardware-based checkpoint backup and pipeline rollback. Fault isolation prevents
errors from propagating to external storage.

• High-performance Mode
When operating in high-performance mode, the system foregoes fault-tolerance ca-
pabilities. Specifically, Processor 1, Processor 2, and Processor 3 operate concurrently
to process programs. All three processors maintain independent input and output
data streams, each with its own distinct bus, data storage, and instruction storage.
Communication between multiple cores is facilitated through shared RAM, allow-
ing each core to trigger an interruption for the others. This communication occurs
via data preparation and triggered interruptions, rendering processors in this mode
comparable to a standard tri-core processor.

Figure 6. RMSM Processor system structure.
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4.1. Optimizing for a System with Enhanced Reliability

Improvements have been made to the checkpoint backup mechanism and pipeline
rollback method. Compared to the traditional software checkpoint with poor real-time per-
formance and high performance overhead, real-time backup of hardware register files can
quickly recover checkpoints within short cycles. To address security concerns related to the
backup of register files, a software–hardware coordinated checkpoint-specific DMA backup
approach is proposed. This method involves the periodic generation of backup instructions
by software, which uses hardware DMA to back up checkpoints to external secure storage
without affecting normal processor execution. This significantly reduces the performance
overhead associated with checkpoint backup. Additionally, to guarantee reliability while
maintaining performance, we introduce a fault isolation method for pipeline processors
based on read–write cache flags.

4.1.1. Software-Hardware Coordinated Checkpoint Backup Method

Both regular and backup registers have the same error rates under harsh workplace
conditions. This means that if both the architectural and backup registers experience
errors at the same time during execution, the processor will be unable to function correctly,
leading to continued errors. To address this issue, a software–hardware coordinated
checkpoint backup method has been proposed. This method involves setting periodic
backup instructions at the software level to back up correct checkpoints to external memory
that is isolated from soft errors. To reduce the backup time, a dedicated checkpoint DMA
transfer unit is employed to assist in the backup process. The system architecture is
shown in Figure 7. At the software level, specialized checkpoint backup instructions are
added. In normal operating conditions, the processor continuously performs automatic
hardware checkpoint backups internally. When the processor executes the checkpoint
backup instruction, the internal DMA transfer module is activated to transfer the backed-
up register checkpoint, reg_ff, to the external safety memory for soft error isolation. At this
point, the normal pipeline checkpoint backup is paused, meaning reg_f and reg_ff are no
longer updated during the DMA transfer process until it is completed. Additionally, since
the reg_ff register files transferred by DMA do not interfere with the processor’s active
register files, the processor can continue running during the hardware checkpoint backup
process. However, during the hardware DMA checkpoint backup period, the processor
loses real-time pipeline register recovery functionality. If an error occurs during this stage,
the processor will pause and revert to the state set by the last software checkpoint. By using
the hardware-dedicated DMA and software-hardware coordinated checkpoint backup
method proposed in this paper, the performance overhead caused by software checkpoint
backup and the risk of system deadlock due to reverting to an erroneous state is reduced.

Figure 7. Software–hardware coordinated checkpoint backup.
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4.1.2. Pipeline Structure for Lock-Step Fast Rollback

There are two recovery schemes for restoring processor register states. Scheme 1
involves direct hardware connecting the backed-up register ‘reg_state_ff’ to the general
purpose registers, enabling the restoration of register states within a single clock cycle.
Scheme 2 uses an external DMA for state recovery. If the processor detects an error even
after recovering from the backup checkpoint register, it triggers the DMA to recover from
storage with soft-error isolation. See Figure 8 for an illustration of this process.

Figure 8. Pipeline rollback process.

Only CPU1 undergoes a hardware-based register checkpoint backup to minimize area
overhead. The output is restored to both CPU1 and CPU2 registers. In case of errors, CPU1
reads the correct backup from secure storage to restore the main register file of either CPU1
or CPU2.

4.1.3. Fault Isolation Method for Pipeline Processors Based on Read-Write Cache Flag

This paper introduces a novel solution that addresses the issue of read-after-write
dependency during fault isolation. As shown in Figure 9, the proposed solution involves
a cache that not only stores write requests but also caches read requests. The cache is
designed to store read and write operations initiated by the processor and is accessed by
the bus. In the event of a fault, the cache compares the first read request initiated by the
processor with the read address in the read–write cache. If the addresses match, the data
are directly retrieved from the cache to ensure accuracy.

In an in-order processor’s four-stage pipeline, when executing a memory access
instruction, the processor must wait for the external response signal before proceeding to
the next instruction. As a result, within the synchronization time of the processor fault
detection signal, at most, one write request will be initiated. To overcome the read-after-
write dependency issue mentioned earlier with regard to memory access, two address
buffers and two data buffers are set up. When the system is operating normally, in addition
to sending read and write requests to the bus, information about each read and write
request is cached in the buffers. A 1-bit read–write flag is set to represent which type of
memory access request is being processed.

After a fault, the processor checks whether the buffer’s read–write flag indicates a
read-after-write dependency. If no read-after-write dependency is detected, it means that
the processor did not read the newly written value during the synchronization period of
the fault detection signal. Subsequently, the processor checks whether the first read and
write request initiated after fault recovery is a read request. If it is a read request and the
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read address matches the read address in buffer 2, it indicates that the processor executed
this read request before the fault recovery process, and the correct data are retrieved from
data buffer 2. In all other cases, normal access to the storage is achieved, and the read–write
cache buffers are updated.

Figure 9. Fault-isolation method based on read–write cache flag for pipeline checkpointing.

This solution addresses the issue of read-after-write dependency that arises during
fault isolation. It enables normal execution on the system bus and allows for interaction with
other processors or external devices without any additional synchronization operations
required at the software level. The proposed solution is a promising approach for improving
the reliability and efficiency of memory access in complex computer systems.

5. Evaluation
5.1. Set Up

Our work involves evaluating a tri-core system consisting of three RISC-V cores.
We propose a dynamic switching strategy in Section 3 and detail a redundancy-mode
switchable multi-core processor system in Section 4. Our application scenario is designed
for the PV system controller, focusing on controlling the MPPT intelligence algorithm.
We use SPEC2017 as the test set instructions, which include integer and floating point
operations. We can simulate the event-driven procedure of the PV system, including the
real-time response and energy management control strategy of the MPPT algorithm, using
the 505.mcf_r benchmark. The search and decision-making processes of AI algorithms in
the 531.deepsjeng_r and 541.leela_r benchmarks can be compared to the process of the
MPPT algorithm finding the maximum power point. These algorithms demonstrate how
to make effective decisions in complex scenarios, similar to the objective of the MPPT
algorithm in optimizing electrical output in PV systems. We use the gem5 simulator at
the RTL level to evaluate the performance and reliability. In Section 5.2, we introduce a
high-efficiency evaluation framework, while the result of reliability evaluation is based on
error counter statistics and software calculations of the error rate. We show the resource
utilization of an FPGA development board with a multi-core processor clock set to 50 MHz
in Table 1.
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Table 1. FPGA utilization.

Resources Resources Occupation

LUT 43,115

LUTRAM 218

FF 32,155

BRAM 558

DSP 12

MMCM 3

5.2. Soft Error Injection

Soft error injection is a method used to assess the reliability of a system [25]. Soft errors
are random errors that can occur at any time or place. The randomness of these errors is
mainly caused by two factors: time randomness and spatial randomness. Time randomness
refers to the random occurrence of faults during the entire time period from reset to the
end of the simulation, when the test processor operating frequency is 500 MHz. Each time
a fault occurs, it is considered a random time-discrete point, and this point should follow
a uniform probability distribution throughout the entire time period. In order to ensure
spatial randomness, all signals inside the processor are extracted, and then a large number
of random signal flip errors are generated through a series of random events. These errors
are then injected into the system through software.

5.3. Evaluation Framework of TMR

Gem5 is a modular discrete event-driven computer system simulator platform. In its
verification environment, the verification results are reactions to parameter settings. Based
on this feature, we propose a new verification framework for redundant structures by using
a single-core system to verify its overall performance. The specific structure is shown in
Figure 10. The normal operation and abnormal states of the single core are separated and
simulated as individual events. For example, when a mode switch is required, a switch
signal is initiated, followed by pipeline flushing, processor lock-step, context copying, and
so on. Therefore, the entire mode-switching process can be considered as a combination of
multiple events. We achieve the simulation of mode switching by constructing events and
inserting them into the gem5 event queue.

Figure 10. Evaluation framework.
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In fault injection, faults that do not propagate and affect the computation results in
the hardware structure are called ineffective faults. Since ineffective faults do not affect
the CPU’s operation, the single-core verification method and the multi-core verification
method are indistinguishable. For effective faults in the multi-core verification process,
the following situations may occur: (1) the voting mechanism masks the errors caused
by effective faults in the processor; (2) the voting mechanism does not mask the errors
caused by effective faults in the processor, and the pipeline is rolled back; (3) effective
faults directly cause the CPU with the fault to be unable to operate normally, and that
CPU performs a pipeline rollback, waiting for the other CPUs to complete their execution.
Although the causes of these situations are different, the solutions after their occurrence
can all be achieved by constructing exception events. Therefore, the performance of a
multi-core redundant structure can be inferred from the single-core operation results
and the construction of multiple event models. This approach effectively utilizes the
features of the gem5 simulator, greatly reducing verification overhead and improving
verification efficiency.

5.4. Results and Analysis

In this section, we start by validating the effectiveness and computational efficiency
of the intelligent MPPT algorithm on the RMSM system. Subsequently, we compare
the reliability of our proposed architecture with a state-of-the-art Adaptive Lock-Step
System for Resilient Multiprocessing Architecture under separate operational modes to
demonstrate the superior performance and robustness of the RMSM system. Then, we
compare the recovery rates and execution times of the adaptive switching mode against
three individual modes to further substantiate the advantages of the RMSM system. To
assess the real-world performance of the RMSM system, we use a selection of SPEC2017
benchmarks that simulate practical PV system control scenarios, using an intelligent MPPT
algorithm for optimal energy tracking.

5.4.1. Validation of the Intelligent MPPT Algorithm on the RMSM System

We use MATLAB 2023b to simulate PV arrays and generate real-time output signals
fed into a VU440 FPGA board integrated with RMSM systems for MPPT calculations, as
shown in Figure 11.

This framework effectively simulates the operational efficiency of the RMSM system
when implementing the intelligent MPPT algorithm in real-world scenarios. In detail,
we use Simulink to create a PV array model that dynamically generates digital current
and voltage outputs based on irradiance and temperature. Then, current and voltage are
transmitted to the FPGA board via UART serial protocols, enabling real-time data exchange
between the MATLAB environment and the FPGA hardware. The RMSM system with a
Gray Wolf Optimizer bitstream has been loaded onto the FPAG board in advance. Therefore,
the FPGA board can accept current and voltage as input to the Gray Wolf Optimizer to
calculate and record the duty cycle, which is used to provide control signals for the DC-DC
converter. The recorded duty cycle is sent to a DC-DC boost converter to automatically
adjust to the voltage and current corresponding to the maximum power point. We evaluate
the performance of the MPPT algorithm in four operating modes, as illustrated in Figure 12.
The results demonstrate the effectiveness of the proposed RMSM system in accurately
identifying the maximum power point. Among the four modes, the adaptive switching
mode exhibits the second-highest performance, completing the algorithm execution in
0.727 s. In the following sections, we will further demonstrate the high performance and
reliability of the RMSM system in different scenarios of complex PV systems.
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Figure 11. MPPT validation platform.

Figure 12. MPPT algorithm execution result. (A) Power tracking curve under high-performance
mode. (B) Execution times of different modes.

5.4.2. Single-Mode Reliability Analysis

This paper uses the proposed soft error injection method to inject 5000 soft errors into
the mcr_ f test program. These soft error test cases are randomly generated by a script. The
reliability of the system is analyzed under different operation modes on the simulation
platform and compared with the reliability result of the Adaptive Lock-Step System for
Resilient Multiprocessing Architecture proposed by Chen et al. [20]. The statistical results of
the simulation are shown in Table 2. The invalid fault rate (IFR) is defined as the proportion
of invalid faults in relation to the total number of faults. The failure recovery rate (FRR) is
defined as the proportion of normally executed test cases to the total number of injected
soft error test cases.

IFR =
Invalid

Invalid + Success + Fail
(1)

FRR =
Success

Success + Fail
(2)
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Table 2. Statistical results of IFR and FFR in different modes.

Operation Mode Invalid Success Fail IFR FRR

Our Work

High-Performance 4114 756 130 82.28% 85.33%

Balanced 4129 864 7 85.28% 99.20%

High-Reliability 4163 834 3 83.26% 99.64%

Chen et al. [20]

Single-Core - 3843 517 - 87.08%

DCLS - 7062 938 - 88.28%

TMR - 8964 36 - 99.60%

The IFR of our proposed soft error injection method is around 82%, which is slightly
lower than that of the fault injection method proposed by Violante et al. [26]. This indicates
that our proposed approach is valid and reasonable. In high-performance mode, the system
lacks fault tolerance, so valid errors can lead to abnormal execution. In balanced mode,
the dual-core part can recover faults using checkpoint backup and rollback. However, the
independent core part has no fault tolerance but an ECC check, and failures in this mode
are mainly caused by the independent core. In high-reliability mode, the system uses TMR
to perform fault tolerance, allowing most soft errors to be tolerated. When we compare it
with the FRR associated with Chen et al.’s method, the advantages of our proposed system
become evident. In high-performance mode, the proposed system’s FRR is 1.75% lower
than that of the single-core mode, mainly due to its reliance on triple-core parallelism,
which requires coordination and task management across cores and introduces issues
related to shared resource access. In balanced mode, the FRR of our system is 10.92% higher
than in the DCLS mode. This improvement is attributed to techniques such as checkpoint
backup and rollback, pipeline structures for lock-step fast rollback, and fault isolation
methods based on read–write cache flags. The respective figure is relatively the same when
comparing the high-reliability mode with the TMR mode: around 99.0%. Due to the error
injection method used in the TMR mode injecting 3 bits per injection, additional tests are
performed to test multi-bit error injection in the high-reliability mode. The additional tests
include 2 bits and 4 bits per injection, and the injection process is repeated 5000 times,
respectively. The result of the multi-bit injections is shown in Table 3, the FFRs are all
around 99.0%.

Table 3. Statistical results of multi-bit fault injection under triple-modular redundancy.

The Bit Width per Injection Invalid Success Fail IFR FRR

Chen et al. [20] 3 - 8964 36 - 99.60%

Our Work

1 4163 834 3 83.26% 99.64%

2 3547 1450 3 70.94% 99.79%

4 784 4178 39 15.68% 99.09%

8 126 4831 43 2.52% 99.11%

5.4.3. Dynamic Switching State System Reliability and Performance Comparison

The adaptive dynamics of the recovery system are compared with three single modes,
keeping the soft error injection method unchanged. The experimental results are shown in
Figure 13. The results show that in the dynamic switching mode, the fault recovery rate
decreases compared with the single mode, but remains at a high level. The fault recovery
rate decreases compared to that of the single mode but remains at a high level. This is
due to the lower fault recovery rate of the dynamic switching mode in high-performance
scenarios, which reduces the overall system fault recovery rate. Performance comparisons
indicate that system performance remains high in the dynamic switching mode.
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Figure 13. Mode efficiency comparison: adaptive mode versus single-mode systems.

5.4.4. Benchmark-Based Simulation of PV System Control

Oriented toward the intelligent MPPT algorithm in the complex PV system under real-
world scenarios, we select a set of benchmarks from SPEC2017 to estimate the performance
of the RMSM system. Intelligent MPPT algorithms often involve intensive computations,
real-time response, optimization processes, and decision-making capabilities. To align
with the computational characteristics of intelligent MPPT algorithms, we choose 531.deep-
sjeng_r, 541.leela_r, 505.mcf_r and 519.lbm_r benchmarks from SPEC2017 to simulate the
workload characteristics of MPPT.

• 531.deepsjeng_r benchmark involves extensive use of search algorithms and decision-
making logic. Intelligent MPPT algorithms need to explore multiple scenarios to find
the maximum power point under various conditions. The search-heavy nature of
531.deepsjeng_r is analogous to the optimization process in MPPT, where it continu-
ously searches for the optimal power output.

• 541.leela_r Benchmark uses Monte Carlo Tree Search and neural network evaluations.
Intelligent MPPT algorithms take advantage of machine learning for optimization. The
decision-making and search processes in 541.leela_r mimic the MPPT algorithms’ need
to adjust to changing environmental conditions to maximize power output, making
this model suitable for evaluating AI-based MPPT algorithms.

• 505.mcf_r involves heavy integer computations and optimization algorithms. Similarly
to how 505.mcf_r optimizes transportation networks, MPPT algorithms optimize
the power output of PV systems. This model tests the system’s ability to handle
dynamic optimization and resource allocation, which aligns well with the continuous
adjustment needed in MPPT to maximize efficiency.

• 519.lbm_r benchmark requires intensive numerical computations and high memory
bandwidth. Intelligent algorithms require high-frequency numerical calculations to
adapt to rapidly changing environmental inputs (current, voltage, and irradiance). The
dense computational workload of 519.lbm_r is effective in simulating the high compu-
tational demands of MPPT algorithms, especially for evaluating the performance of
the RMSM system under high-load conditions.

Using these benchmarks, we can effectively simulate the computational, optimization,
and real-time response demands of intelligent MPPT algorithms in a PV system. The
performance of the proposed RMSM is evaluated by using the gem5 simulator at the
RTL level, under both adaptive-switching and single-mode conditions. We compared
it against single-core, dual-core, and tri-core configurations without fault tolerance. As
shown in Figure 14, the RMSM system demonstrates competitive execution times on
benchmarks designed to simulate MPPT algorithms. In particular, it outperforms the
high-reliability mode and single-core system without fault tolerance, delivering superior
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efficiency. Compared with the balanced mode and fault-tolerance-free dual-core system,
the RMSM system exhibits similar performance across all benchmarks, except for a slight
lag in the 531.deepsjeng_r benchmark. Although the high-performance mode and the
fault-tolerance-free tri-core system achieve approximately 40% faster execution times than
the RMSM system, our approach offers a significant advantage in terms of reliability, which
improves by about 5.58 times. This highlights the superior adaptability and robustness
of the RMSM system, especially under dynamic switching conditions, where it effectively
balances performance and reliability. By adaptively adjusting core usage and operating
mode, the RMSM system achieves near-high performance speeds while substantially
enhancing the system’s fault tolerance.

Figure 14. Comparison of the adaptive switching mode and other modes under different benchmarks
used to simulate the intelligent MPPT algorithms.

6. Conclusions

Current N-modular redundant adaptive switching systems for the MPPT algorithm in
PV systems face challenges when it comes to balancing performance and reliability. Specifi-
cally, relying solely on software-level reliability detection is less efficient than leveraging
hardware for real-time statistical error rate analysis. Additionally, existing approaches
often use error rates as the sole criterion for mode switching, leading to frequent transitions
that degrade overall system performance. To address these limitations, we propose a novel
joint statistical mechanism that incorporates both error rates and performance as switching
metrics, enabling efficient adaptive switching tailored to specific application scenarios. This
approach not only mitigates soft errors caused by high radiation to ensure substantial relia-
bility but also meets the high computational efficiency demands of photovoltaic systems.
Building on this adaptive switching strategy, we developed a redundancy mode-switchable
multi-core processor that is designed to dynamically balance efficiency and robustness. Fur-
thermore, optimization techniques were introduced to fine-tune the relationship between
performance and reliability, further enhancing the system’s capabilities. The proposed
system was rigorously evaluated under various conditions, including real-world scenario
simulations and benchmark-based assessments.The experimental results demonstrate an
average reliability of 99.2%, showing that our system outperformed the state-of-the-art
adaptive lock-step system by 3%. Additionally, the redundancy mode-switchable multi-
core processor achieved 1.26 times higher performance compared to TMR systems and
5.58 times higher reliability than tri-core systems. These results underline the system’s po-
tential to significantly improve both computational efficiency and fault tolerance, offering a
robust solution for practical PV applications.
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