Application of Residual Structure Time Convolutional Network Based on Attention Mechanism in Remaining Useful Life Interval Prediction of Bearings
Abstract
:1. Introduction
2. Theoretical Background
2.1. Temporal Convolutional Network
2.2. Attention Mechanism
2.3. Gaussian Process Regression
2.4. Gaussian Process Regression
3. Methodology
4. Experiment Data
4.1. Databases
4.2. Evaluation Metric for Experimental Results
4.2.1. Point Prediction Evaluation Metrics
4.2.2. Interval Probability Prediction Evaluation Metrics
4.3. Comparison Methods
5. Experiment and Analysis
5.1. Experimental Environment
5.2. Model Parameter Settings
5.3. Analysis of Experimental Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Z.; Gryllias, K.; Li, W. Mechanical fault diagnosis using convolutional neural networks and extreme learning machine. Mech. Syst. Signal Process. 2019, 133, 106272. [Google Scholar] [CrossRef]
- Li, G.; Wu, J.; Deng, C.; Chen, Z. Parallel multi-fusion convolutional neural networks based fault diagnosis of rotating machinery under noisy environments. ISA Trans. 2022, 128, 545–555. [Google Scholar] [CrossRef]
- Che, C.; Wang, H.; Fu, Q.; Ni, X. Deep transfer learning for rolling bearing fault diagnosis under variable operating conditions. Adv. Mech. Eng. 2019, 11, 1687814019897212. [Google Scholar] [CrossRef]
- Xu, H.; Tian, Y.; Ren, H.; Liu, X. A Lightweight Channel and Time Attention Enhanced 1D CNN Model for Environmental Sound Classification. Expert Syst. Appl. 2024, 249, 123768. [Google Scholar] [CrossRef]
- Zhu, Q.; Xiong, Q.; Yang, Z.; Yu, Y. A novel feature-fusion-based end-to-end approach for remaining useful life prediction. J. Intell. Manuf. 2023, 34, 3495–3505. [Google Scholar] [CrossRef]
- Yan, M.; Wang, X.; Wang, B.; Chang, M.; Muhammad, I. Bearing remaining useful life prediction using support vector machine and hybrid degradation tracking model. ISA Trans. 2020, 98, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Li, Y.; Zhao, Y.; Song, Y. Dual Channel Feature-Attention-based Approach for RUL Prediction Considering the Spatiotemporal Difference of Multisensor Data. IEEE Sens. J. 2023, 23, 8514–8525. [Google Scholar] [CrossRef]
- Wan, S.; Li, X.; Zhang, Y.; Liu, S.; Hong, J.; Wang, D. Bearing remaining useful life prediction with convolutional long short-term memory fusion networks. Reliab. Eng. Syst. Saf. 2022, 224, 108528. [Google Scholar] [CrossRef]
- Niazi, S.G.; Huang, T.; Zhou, H.; Bai, S.; Huang, H.Z. Multi-scale time series analysis using TT-ConvLSTM technique for bearing remaining useful life prediction. Mech. Syst. Signal Process. 2024, 206, 110888. [Google Scholar] [CrossRef]
- Cui, J.; Cao, L.; Zhang, T. A two-stage Gaussian process regression model for remaining useful prediction of bearings. Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 2024, 238, 333–348. [Google Scholar] [CrossRef]
- Tian, Q.; Wang, H. Predicting remaining useful life of rolling bearings based on reliable degradation indicator and temporal convolution network with the quantile regression. Appl. Sci. 2021, 11, 4773. [Google Scholar] [CrossRef]
- Shi, H.; Kang, H.; Zhang, Z.; Sun, X.; Gu, F. Remaining Useful Life Prediction of Kernel Density Estimation Based on Adaptive Window Width. In International Conference on Maintenance Engineering; Springer International Publishing: Cham, Switzerland, 2020; pp. 665–682. [Google Scholar]
- Torres, J.F.; Hadjout, D.; Sebaa, A.; Martínez-Álvarez, F.; Troncoso, A. Deep learning for time series forecasting: A survey. Big Data 2021, 9, 3–21. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, X. Remaining useful life prediction of bearings based on temporal convolutional networks with residual separable blocks. J. Braz. Soc. Mech. Sci. Eng. 2022, 44, 527. [Google Scholar] [CrossRef]
- Wei, H.; Zhang, Q.; Gu, Y. Remaining useful life prediction of bearings based on self-attention mechanism, multi-scale dilated causal convolution, and temporal convolution network. Meas. Sci. Technol. 2023, 34, 045107. [Google Scholar] [CrossRef]
- Ayoub, I. Multimodal Affective Computing Using Temporal Convolutional Neural Network and Deep Convolutional Neural Networks. Doctoral Dissertation, Université d’Ottawa/University of Ottawa, Ottawa, ON, Canada, 2019. [Google Scholar]
- Zhen, Y.; Fang, J.; Zhao, X.; Ge, J.; Xiao, Y. Temporal convolution network based on attention mechanism for well production prediction. J. Pet. Sci. Eng. 2022, 218, 111043. [Google Scholar] [CrossRef]
- Hasan, U.; Hossain, E.; Gani, M.O. A Survey on Causal Discovery Methods for I.I.D. and Time Series Data. Trans. Mach. Learn. Res. 2023, 2835–8856. [Google Scholar]
- Liang, H.; Zhao, X. Rolling bearing fault diagnosis based on one-dimensional dilated convolution network with residual connection. IEEE Access 2021, 9, 31078–31091. [Google Scholar] [CrossRef]
- Cao, Y.; Ding, Y.; Jia, M.; Tian, R. A novel temporal convolutional network with residual self-attention mechanism for remaining useful life prediction of rolling bearings. Reliab. Eng. Syst. Saf. 2021, 215, 107813. [Google Scholar] [CrossRef]
- Yang, B.; Wang, L.; Wong, D.F.; Shi, S.; Tu, Z. Context-aware self-attention networks for natural language processing. Neurocomputing 2021, 458, 157–169. [Google Scholar] [CrossRef]
- Li, X.; Yi, X.; Liu, Z.; Liu, H.; Chen, T.; Niu, G.; Ying, G. Application of novel hybrid deep leaning model for cleaner production in a paper industrial wastewater treatment system. J. Clean. Prod. 2021, 294, 126343. [Google Scholar] [CrossRef]
- Li, X.; Dong, J.; Niu, G.; Chen, Z.; Huang, M. Application of deep learning model based on transfer learning in activated sludge process for wastewater purification. J. Water Process Eng. 2024, 59, 104902. [Google Scholar] [CrossRef]
- Ding, S.; Chen, R.; Liu, H.; Liu, F.; Zhang, J. IRMSwin-T: A lightweight shifted windows transformer based on inverted residual structure and residual multi-layer perceptron for rolling bearing fault diagnosis. Rev. Sci. Instrum. 2023, 94, 095116. [Google Scholar] [CrossRef]
- Yang, T.; Li, G.; Li, K.; Li, X.; Han, Q. The LPST-Net: A new deep interval health monitoring and prediction framework for bearing-rotor systems under complex operating conditions. Adv. Eng. Inform. 2024, 62, 102558. [Google Scholar] [CrossRef]
- Wan, X.; Li, X.; Wang, X.; Yi, X.; Zhao, Y.; He, X.; Huang, M. Water quality prediction model using Gaussian process regression based on deep learning for carbon neutrality in papermaking wastewater treatment system. Environ. Res. 2022, 211, 112942. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Huang, B.; Feng, J.; Cai, H.; Lee, J. A review of PHM Data Competitions from 2008 to 2017: Methodologies and Analytics. In Proceedings of the Annual Conference of the Prognostics and Health Management Society, Philadelphia, PA, USA, 24–27 September 2018; pp. 1–10. [Google Scholar]
- Huang, C.G.; Huang, H.Z.; Li, Y.F.; Peng, W. A novel deep convolutional neural network-bootstrap integrated method for RUL prediction of rolling bearing. J. Manuf. Syst. 2021, 61, 757–772. [Google Scholar] [CrossRef]
- Zhang, Z.; Ye, L.; Qin, H.; Liu, Y.; Wang, C.; Yu, X.; Li, J. Wind speed prediction method using shared weight long short-term memory network and Gaussian process regression. Appl. Energy 2019, 247, 270–284. [Google Scholar] [CrossRef]
- Liu, J.; Shao, H.; Jiang, Y.; Deng, X. CNN-based hidden-layer topological structure design and optimization methods for image classification. Neural Process. Lett. 2022, 54, 2831–2842. [Google Scholar] [CrossRef]
- Wei, J.; Liao, J.; Yang, Z.; Wang, S.; Zhao, Q. BiLSTM with multi-polarity orthogonal attention for implicit sentiment analysis. Neurocomputing 2020, 383, 165–173. [Google Scholar] [CrossRef]
- Ogundokun, R.O.; Maskeliunas, R.; Misra, S.; Damaševičius, R. Improved CNN based on batch normalization and adam optimizer. In Proceedings of the International Conference on Computational Science and Its Applications, Malaga, Spain, 4–7 July 2022; Springer International Publishing: Cham, Switzerland, 2022; pp. 593–604. [Google Scholar]
- Mao, W.; He, J.; Sun, B.; Wang, L. Prediction of bearings remaining useful life across working conditions based on transfer learning and time series clustering. IEEE Access 2021, 9, 135285–135303. [Google Scholar] [CrossRef]
Dataset | Working Condition 1 | Working Condition 2 | Working Condition 3 |
---|---|---|---|
Training set | Bearing1_1 | Bearing2_1 | Bearing3_1 |
Bearing1_2 | Bearing2_2 | Bearing3_2 | |
Testing set | Bearing1_3 | Bearing2_3 | Bearing3_3 |
Bearing1_4 | Bearing2_4 | - | |
Bearing1_5 | Bearing2_5 | - | |
Bearing1_6 | Bearing2_6 | ||
Bearing1_7 | Bearing2_7 | - |
Model | MAE | RMSE | R2 | CP | MWP | MC |
---|---|---|---|---|---|---|
CNN | 0.0911 | 0.1101 | 0.7532 | 0.8233 | 0.5621 | 0.6827 |
LSTM | 0.1081 | 0.1237 | 0.7088 | 0.8412 | 0.5731 | 0.6813 |
CLSTM | 0.0745 | 0.0824 | 0.7893 | 0.8730 | 0.5108 | 0.5851 |
GPR | 0.0978 | 0.1147 | 0.7401 | 0.8843 | 0.5438 | 0.6149 |
TCN | 0.0665 | 0.0853 | 0.7937 | 0.9487 | 0.5507 | 0.5805 |
TCN-ATT | 0.0621 | 0.0817 | 0.8109 | 0.8571 | 0.4144 | 0.4834 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Zeng, M.; Fan, J.; Li, X. Application of Residual Structure Time Convolutional Network Based on Attention Mechanism in Remaining Useful Life Interval Prediction of Bearings. Sensors 2024, 24, 4132. https://doi.org/10.3390/s24134132
Zhang C, Zeng M, Fan J, Li X. Application of Residual Structure Time Convolutional Network Based on Attention Mechanism in Remaining Useful Life Interval Prediction of Bearings. Sensors. 2024; 24(13):4132. https://doi.org/10.3390/s24134132
Chicago/Turabian StyleZhang, Chunsheng, Mengxin Zeng, Jingjin Fan, and Xiaoyong Li. 2024. "Application of Residual Structure Time Convolutional Network Based on Attention Mechanism in Remaining Useful Life Interval Prediction of Bearings" Sensors 24, no. 13: 4132. https://doi.org/10.3390/s24134132
APA StyleZhang, C., Zeng, M., Fan, J., & Li, X. (2024). Application of Residual Structure Time Convolutional Network Based on Attention Mechanism in Remaining Useful Life Interval Prediction of Bearings. Sensors, 24(13), 4132. https://doi.org/10.3390/s24134132