INAM-Based Image-Adaptive 3D LUTs for Underwater Image Enhancement
Abstract
:1. Introduction
1.1. Background
1.2. Related Works
1.3. Contributions
2. Materials and Methods
2.1. Three-Dimensional Lookup Table
2.2. Instance Normalization Adaptive Modulator (INAM)
2.3. INAM-Based Image-Adaptive 3D LUTs
2.4. Loss Function
2.5. Experimental Setup
2.5.1. Dataset
2.5.2. Baselines
2.5.3. Evaluation Metrics
2.5.4. Experiment Settings
3. Results
3.1. Comparison Experiments
3.2. Ablation Study
4. Conclusions
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- McGlamery, B. A computer model for underwater camera systems. Ocean Opt. VI Int. Soc. Opt. Photonics 1980, 208, 221–231. [Google Scholar] [CrossRef]
- Jaffe, J.S. Computer modeling and the design of optimal underwater imaging systems. IEEE J. Ocean. Eng. 1990, 15, 101–111. [Google Scholar] [CrossRef]
- Hou, W.; Woods, S.; Jarosz, E.; Goode, W.; Weidemann, A. Optical turbulence on underwater image degradation in natural environments. Appl. Opt. 2012, 51, 2678–2686. [Google Scholar] [CrossRef] [PubMed]
- Akkaynak, D.; Treibitz, T. A revised underwater image formation model. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6723–6732. [Google Scholar]
- Akkaynak, D.; Treibitz, T.; Shlesinger, T.; Loya, Y.; Tamir, R.; Iluz, D. What is the space of attenuation coefficients in underwater computer vision? In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4931–4940. [Google Scholar]
- Narasimhan, S.G.; Nayar, S.K. Contrast restoration of weather degraded images. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 713–724. [Google Scholar] [CrossRef] [Green Version]
- Shashar, N.; Hanlon, R.T.; Petz, A.D. Polarization vision helps detect transparent prey. Nature 1998, 393, 222–223. [Google Scholar] [CrossRef]
- Schechner, Y.Y.; Karpel, N. Clear underwater vision. In Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 27 June–2 July 2004; Volume 1, p. I. [Google Scholar]
- Schechner, Y.Y.; Karpel, N. Recovery of underwater visibility and structure by polarization analysis. IEEE J. Ocean. Eng. 2005, 30, 570–587. [Google Scholar] [CrossRef] [Green Version]
- Treibitz, T.; Schechner, Y.Y. Active polarization descattering. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 31, 385–399. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Chang, L.; Chen, Z.; Ren, P. Enhancement-Registration-Homogenization (ERH): A Comprehensive Underwater Visual Reconstruction Paradigm. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 6953–6967. [Google Scholar] [CrossRef]
- Iqbal, K.; Odetayo, M.; James, A.; Salam, R.A.; Talib, A.Z.H. Enhancing the low quality images using unsupervised colour correction method. In Proceedings of the 2010 IEEE International Conference on Systems, Man and Cybernetics, Istanbul, Turkey, 10–13 October 2010; pp. 1703–1709. [Google Scholar]
- Liu, H.; Chau, L.P. Underwater image restoration based on contrast enhancement. In Proceedings of the 2016 IEEE International Conference on Digital Signal Processing (DSP), Beijing, China, 16–18 October 2016; pp. 584–588. [Google Scholar]
- Liang, Z.; Ding, X.; Wang, Y.; Yan, X.; Fu, X. Gudcp: Generalization of underwater dark channel prior for underwater image restoration. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 4879–4884. [Google Scholar] [CrossRef]
- Razaque, A.; Ben Haj Frej, M.; Almi’ani, M.; Alotaibi, M.; Alotaibi, B. Improved support vector machine enabled radial basis function and linear variants for remote sensing image classification. Sensors 2021, 21, 4431. [Google Scholar] [CrossRef]
- Hashisho, Y.; Albadawi, M.; Krause, T.; von Lukas, U.F. Underwater color restoration using u-net denoising autoencoder. In Proceedings of the 2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA), Dubrovnik, Croatia, 23–25 September 2019; pp. 117–122. [Google Scholar]
- Hu, Y.; Wang, K.; Zhao, X.; Wang, H.; Li, Y. Underwater image restoration based on convolutional neural network. In Proceedings of the Asian Conference on Machine Learning, Beijing, China, 14–16 November 2018; pp. 296–311. [Google Scholar]
- Wang, Y.; Zhang, J.; Cao, Y.; Wang, Z. A deep CNN method for underwater image enhancement. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 1382–1386. [Google Scholar]
- Li, C.; Anwar, S.; Porikli, F. Underwater scene prior inspired deep underwater image and video enhancement. Pattern Recognit. 2020, 98, 107038. [Google Scholar] [CrossRef]
- Perez, J.; Attanasio, A.C.; Nechyporenko, N.; Sanz, P.J. A deep learning approach for underwater image enhancement. In Proceedings of the International Work-Conference on the Interplay between Natural and Artificial Computation, Corunna, Spain, 19–23 June 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 183–192. [Google Scholar]
- Islam, M.J.; Xia, Y.; Sattar, J. Fast underwater image enhancement for improved visual perception. IEEE Robot. Autom. Lett. 2020, 5, 3227–3234. [Google Scholar] [CrossRef] [Green Version]
- Fabbri, C.; Islam, M.J.; Sattar, J. Enhancing underwater imagery using generative adversarial networks. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 7159–7165. [Google Scholar]
- Chen, R.; Cai, Z.; Cao, W. MFFN: An Underwater Sensing Scene Image Enhancement Method Based on Multiscale Feature Fusion Network. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–12. [Google Scholar] [CrossRef]
- Qi, Q.; Li, K.; Zheng, H.; Gao, X.; Hou, G.; Sun, K. SGUIE-Net: Semantic Attention Guided Underwater Image Enhancement with Multi-Scale Perception. arXiv 2022, arXiv:2201.02832. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Li, J.; Hua, Z.; Fan, L. Underwater image enhancement via adaptive group attention-based multiscale cascade transformer. IEEE Trans. Instrum. Meas. 2022, 71, 1–18. [Google Scholar] [CrossRef]
- Liu, R.; Jiang, Z.; Yang, S.; Fan, X. Twin adversarial contrastive learning for underwater image enhancement and beyond. IEEE Trans. Image Process. 2022, 31, 4922–4936. [Google Scholar] [CrossRef]
- Yuan, J.; Cai, Z.; Cao, W. TEBCF: Real-World Underwater Image Texture Enhancement Model Based on Blurriness and Color Fusion. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–15. [Google Scholar] [CrossRef]
- Zeng, H.; Cai, J.; Li, L.; Cao, Z.; Zhang, L. Learning image-adaptive 3d lookup tables for high performance photo enhancement in real-time. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 44, 2058–2073. [Google Scholar] [CrossRef]
- Ulyanov, D.; Vedaldi, A.; Lempitsky, V. Instance normalization: The missing ingredient for fast stylization. arXiv 2016, arXiv:1607.08022. [Google Scholar]
- Liu, J.; Tang, J.; Wu, G. AdaDM: Enabling Normalization for Image Super-Resolution. arXiv 2021, arXiv:2111.13905. [Google Scholar]
- Reza, A.M. Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J. VLSI Signal Process. Syst. Signal Image Video Technol. 2004, 38, 35–44. [Google Scholar] [CrossRef]
- Drews, P.L.; Nascimento, E.R.; Botelho, S.S.; Campos, M.F.M. Underwater depth estimation and image restoration based on single images. IEEE Comput. Graph. Appl. 2016, 36, 24–35. [Google Scholar] [CrossRef]
- Li, C.; Guo, C.; Ren, W.; Cong, R.; Hou, J.; Kwong, S.; Tao, D. An underwater image enhancement benchmark dataset and beyond. IEEE Trans. Image Process. 2019, 29, 4376–4389. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Sowmya, A. An underwater color image quality evaluation metric. IEEE Trans. Image Process. 2015, 24, 6062–6071. [Google Scholar] [CrossRef]
- Panetta, K.; Gao, C.; Agaian, S. Human-visual-system-inspired underwater image quality measures. IEEE J. Ocean. Eng. 2015, 41, 541–551. [Google Scholar] [CrossRef]
Model | PSNR | SSIM |
---|---|---|
UCM | 14.51 | 0.522 |
CLAHE | 18.33 | 0.652 |
UDCP | 16.75 | 0.554 |
Water-net | 20.04 | 0.703 |
Learning image-adaptive 3D LUTs | 21.02 | 0.856 |
INAM-based image-adaptive 3D LUTs | 24.87 | 0.912 |
Model | UCIQE | UIQM |
---|---|---|
UCM | 0.575 | 1.375 |
CLAHE | 0.599 | 1.401 |
UDCP | 0.585 | 1.416 |
Water-net | 0.606 | 1.355 |
Learning image-adaptive 3D LUTs | 0.623 | 1.434 |
INAM-based image-adaptive 3D LUTs | 0.653 | 1.536 |
N | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
PSNR | 20.43 | 22.83 | 24.87 | 25.81 | 25.84 |
SSIM | 0.806 | 0.868 | 0.912 | 0.919 | 0.924 |
UCIQE | 0.596 | 0.628 | 0.653 | 0.665 | 0.671 |
UIQM | 1.422 | 1.489 | 1.536 | 1.544 | 1.551 |
N | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
PSNR | 18.36 | 19.84 | 21.02 | 21.55 | 21.86 |
SSIM | 0.784 | 0.824 | 0.856 | 0.863 | 0.867 |
UCIQE | 0.576 | 0.608 | 0.623 | 0.629 | 0.633 |
UIQM | 1.314 | 1.388 | 1.434 | 1.446 | 1.453 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, X.; Gao, X.; Hui, Y.; Jin, Z.; Zhao, H. INAM-Based Image-Adaptive 3D LUTs for Underwater Image Enhancement. Sensors 2023, 23, 2169. https://doi.org/10.3390/s23042169
Xiao X, Gao X, Hui Y, Jin Z, Zhao H. INAM-Based Image-Adaptive 3D LUTs for Underwater Image Enhancement. Sensors. 2023; 23(4):2169. https://doi.org/10.3390/s23042169
Chicago/Turabian StyleXiao, Xiao, Xingzhi Gao, Yilong Hui, Zhiling Jin, and Hongyu Zhao. 2023. "INAM-Based Image-Adaptive 3D LUTs for Underwater Image Enhancement" Sensors 23, no. 4: 2169. https://doi.org/10.3390/s23042169
APA StyleXiao, X., Gao, X., Hui, Y., Jin, Z., & Zhao, H. (2023). INAM-Based Image-Adaptive 3D LUTs for Underwater Image Enhancement. Sensors, 23(4), 2169. https://doi.org/10.3390/s23042169