Enhanced Performance of Artificial-Neural-Network-Based Equalization for Short-Haul Fiber-Optic Communications
Abstract
:1. Introduction
2. Principles of the Proposed ANN Equalizer
Advanced Training Scheme Algorithm
3. Results and Discussion
3.1. A 10-Gbaud Optical-Fiber Communication System
3.2. A 28-Gbaud Optical-Fiber Communication System
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agrawal, G.P. Fiber-Optic Communication Systems; John Wiley & Sons: Hoboken, NJ, USA, 2012; Volume 222. [Google Scholar]
- Kumar, S.; Deen, M.J. Fiber Optic Communications: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Zhong, K.; Zhou, X.; Huo, J.; Yu, C.; Lu, C.; Lau, A.P. Digital signal processing for short-reach optical communications: A review of current technologies and future trends. IEEE/OSA J. Light. Tech. 2018, 36, 377–400. [Google Scholar] [CrossRef]
- Lam, C.F.; Liu, H.; Urata, R. What devices do data centers need? In Proceedings of the Optical Fiber Communication Conference, San Francisco, CA, USA, 9–13 March 2014; p. M2K–5. [Google Scholar]
- Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A.; Soong, A.C.; Zhang, J.C. What will 5G be? IEEE J. Sel. Areas Commun. 2014, 32, 1065–1082. [Google Scholar] [CrossRef]
- Zhou, Q.; Lu, F.; Xu, M.; Peng, P.C.; Liu, S.; Shen, S.; Zhang, R.; Yao, S.; Finkelstein, J.; Chang, G.K. Enhanced multi-level signal recovery in mobile fronthaul network using DNN decoder. IEEE Photonics Technol. Lett. 2018, 30, 1511–1514. [Google Scholar] [CrossRef]
- Cartledge, J.C.; Karar, A.S. 100 Gb/s intensity modulation and direct detection. IEEE/OSA J. Light. Tech. 2014, 32, 2809–2814. [Google Scholar] [CrossRef]
- Curri, V.; Gaudino, R.; Napoli, A.; Poggiolini, P. Electronic equalization for advanced modulation formats in dispersion-limited systems. IEEE Photonics Technol. Lett. 2004, 16, 2556–2558. [Google Scholar] [CrossRef]
- Wang, J.; Kahn, J.M. Performance of electrical equalizers in optically amplified OOK and DPSK systems. IEEE Photonics Technol. Lett. 2004, 16, 1397–1399. [Google Scholar] [CrossRef]
- Li, X.; Faruk, M.S.; Savory, S.J. Advanced nonlinear digital signal processing for short-reach applications. In Proceedings of the 2021 Optical Fiber Communications Conference and Exhibition (OFC), San Francisco, CA, USA, 6–10 June 2021; pp. 1–3. [Google Scholar]
- Foggi, T.; Forestieri, E.; Colavolpe, G.; Prati, G. Maximum-likelihood sequence detection with closed-form metrics in OOK optical systems impaired by GVD and PMD. IEEE/OSA J. Light. Tech. 2006, 24, 3073–3087. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Che, Y.; Bo, T.; Kim, D.; Kim, H. Reduced-state MLSE for an IM/DD system using PAM modulation. Opt. Express. 2020, 28, 38505–38515. [Google Scholar] [CrossRef]
- Xia, C.; Rosenkranz, W. Nonlinear electrical equalization for different modulation formats with optical filtering. IEEE/OSA J. Light. Tech. 2007, 25, 996–1001. [Google Scholar] [CrossRef]
- Liu, L.; Li, L.; Huang, Y.; Cui, K.; Xiong, Q.; Hauske, F.N.; Xie, C.; Cai, Y. Intrachannel nonlinearity compensation by inverse Volterra series transfer function. IEEE/OSA J. Light. Tech. 2011, 30, 310–316. [Google Scholar] [CrossRef]
- Owaki, S.; Nakamura, M. XPM compensation in optical fiber transmission systems using neural-network-based digital signal processing. IEICE Commun. Express. 2018, 7, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.M.; Peng, Z.K.; Zhang, W.M.; Meng, G. Volterra-series-based nonlinear system modeling and its engineering applications: A state-of-the-art review. Mech. Syst. Signal Process. 2017, 87, 340–364. [Google Scholar] [CrossRef]
- Kyono, T.; Otsuka, Y.; Fukumoto, Y.; Owaki, S.; Nakamura, M. Computational-complexity comparison of artificial neural network and Volterra series transfer function for optical nonlinearity compensation with time-and frequency-domain dispersion equalization. In Proceedings of the 2018 European Conference on Optical Communication (ECOC), Rome, Italy, 23–27 September 2018; pp. 1–3. [Google Scholar]
- Zhang, W.; Ge, L.; Zhang, Y.; Liang, C.; He, Z. Compressed nonlinear equalizers for 112-gbps optical interconnects: Efficiency and stability. Sensors 2020, 20, 4680. [Google Scholar] [CrossRef]
- Estaran, J.; Rios-Müller, R.; Mestre, M.A.; Jorge, F.; Mardoyan, H.; Konczykowska, A.; Dupuy, J.Y.; Bigo, S. Artificial neural networks for linear and non-linear impairment mitigation in high-baudrate IM/DD systems. In Proceedings of the 42nd European Conference on Optical Communication (ECOC 2016), Dusseldorf, Germany, 18–22 September 2016; pp. 1–3. [Google Scholar]
- Luo, M.; Gao, F.; Li, X.; He, Z.; Fu, S. Transmission of 4× 50-gb/s PAM-4 signal over 80-km single mode fiber using neural network. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 11–15 March 2018; p. M2F–2. [Google Scholar]
- Maghrabi, M.M.T.; Kumar, S.; Bakr, M.H. Dispersion compensation of fiber optic communication system with direct detection using artificial neural networks (ANNs). Opt. Commun. 2018, 409, 109–116. [Google Scholar] [CrossRef]
- Zhang, Q.; Jiang, Y.; Zhou, H.; Deng, C.; Duan, S.; Wang, Z.; Li, Y.; Song, Y.; Chen, J.; Zhang, J.; et al. 137 Gb/s PAM-4 transmissions at 850 nm over 40 cm optical backplane with 25 g devices with improved neural network-based equalization. Appl. Sci. 2019, 9, 5095. [Google Scholar] [CrossRef] [Green Version]
- Liao, T.; Xue, L.; Hu, W.; Yi, L. Unsupervised learning for neural network-based blind equalization. IEEE Photonics Technol. Lett. 2020, 32, 569–572. [Google Scholar] [CrossRef]
- Xue, L.; Yi, L.; Lin, R.; Huang, L.; Chen, J. SOA pattern effect mitigation by neural network based pre-equalizer for 50G PON. Opt. Express 2021, 29, 24714–24722. [Google Scholar] [CrossRef]
- Yang, Z.; Gao, F.; Fu, S.; Li, X.; Deng, L.; He, Z.; Tang, M.; Liu, D. Radial basis function neural network enabled C-band 4 × 50 Gb/s PAM-4 transmission over 80 km SSMF. Opt. Lett. 2018, 43, 3542–3545. [Google Scholar] [CrossRef]
- Chuang, C.Y.; Liu, L.C.; Wei, C.C.; Liu, J.J.; Henrickson, L.; Huang, W.J.; Wang, C.L.; Chen, Y.K.; Chen, J. Convolutional neural network based nonlinear classifier for 112-Gbps high speed optical link. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 11–15 March 2018; p. W2A–43. [Google Scholar]
- Li, P.; Yi, L.; Xue, L.; Hu, W. 56 Gbps IM/DD PON based on 10G-class optical devices with 29 dB loss budget enabled by machine learning. In Proceedings of the 2018 Optical Fiber Communications Conference and Exposition (OFC), San Diego, CA, USA, 11–15 March 2018; pp. 1–3. [Google Scholar]
- Xu, Z.; Sun, C.; Ji, T.; Manton, J.H.; Shieh, W. Cascade recurrent neural network-assisted nonlinear equalization for a 100 Gb/s PAM4 short-reach direct detection system. Opt. Lett. 2020, 45, 4216–4219. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, D.; Hu, X.; Ye, C.; Zhang, K. Low-complexity recurrent neural network based equalizer with embedded parallelization for 100-Gbit/s/λ PON. IEEE/OSA J. Light. Tech. 2022, 40, 1353–1359. [Google Scholar] [CrossRef]
- Kaneda, N.; Zhu, Z.; Chuang, C.Y.; Mahadevan, A.; Farah, B.; Bergman, K.; Van Veen, D.; Houtsma, V. FPGA implementation of deep neural network based equalizers for high-speed PON. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 8–12 March 2020; p. T4D–2. [Google Scholar]
- Yuan, Q.; Chen, K.; Yu, Y.; Le, N.Q.K.; Chua, M.C.H. Prediction of anticancer peptides based on an ensemble model of deep learning and machine learning using ordinal positional encoding. Brief. Bioinform. 2023, 24, bbac630. [Google Scholar] [CrossRef]
- Kha, Q.H.; Ho, Q.T.; Le, N.Q.K. Identifying snare proteins using an alignment-free method based on multiscan convolutional neural network and pssm profiles. J. Chem. Inf. Model. 2022, 62, 4820–4826. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference for Learning Representations, San Diego, CA, USA, 7–9 May 2015; pp. 1–15. [Google Scholar]
- Zhang, Z. Improved adam optimizer for deep neural networks. In Proceedings of the 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), Banff, AB, Canada, 4–6 June 2018; pp. 1–2. [Google Scholar]
- Murrell, P. Introduction to Data Technologies, 1st ed.; CRC Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Proakis, J.G.; Salehi, M. Digital Communications, 5th ed.; McGraw Hill: New York, NY, USA, 2007. [Google Scholar]
Equalizer | Per Symbol Computational Cost | Memory Storage 1 |
---|---|---|
FFE{} | ||
DFE{,} | ||
ANNE-AT/ET{,} | ||
MLSE{} |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maghrabi, M.M.T.; Swaminathan, H.; Kumar, S.; Bakr, M.H.; Ali, S.M. Enhanced Performance of Artificial-Neural-Network-Based Equalization for Short-Haul Fiber-Optic Communications. Sensors 2023, 23, 5952. https://doi.org/10.3390/s23135952
Maghrabi MMT, Swaminathan H, Kumar S, Bakr MH, Ali SM. Enhanced Performance of Artificial-Neural-Network-Based Equalization for Short-Haul Fiber-Optic Communications. Sensors. 2023; 23(13):5952. https://doi.org/10.3390/s23135952
Chicago/Turabian StyleMaghrabi, Mahmoud M. T., Hariharan Swaminathan, Shiva Kumar, Mohamed H. Bakr, and Shirook M. Ali. 2023. "Enhanced Performance of Artificial-Neural-Network-Based Equalization for Short-Haul Fiber-Optic Communications" Sensors 23, no. 13: 5952. https://doi.org/10.3390/s23135952
APA StyleMaghrabi, M. M. T., Swaminathan, H., Kumar, S., Bakr, M. H., & Ali, S. M. (2023). Enhanced Performance of Artificial-Neural-Network-Based Equalization for Short-Haul Fiber-Optic Communications. Sensors, 23(13), 5952. https://doi.org/10.3390/s23135952