Accurate Heart Rate and Respiration Rate Detection Based on a Higher-Order Harmonics Peak Selection Method Using Radar Non-Contact Sensors
Abstract
:1. Introduction
2. Radar Signal Modelling
3. Signal Processing
3.1. Clutter Reduction
3.2. Range Selection
3.3. Independent Component Analysis
Algorithm 1 FastICA |
where function g is
is a constant 1 < < 2 |
3.4. Modified Covariance Method
3.5. Peak Selection Algorithm
3.6. Outliers Removal in Real-Time Measurement
Algorithm 2Outliers removal |
|
4. Experiment Results and Discussion
4.1. Experiment Setup
4.2. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dyer, A.R.; Persky, V.; Stamler, J.; Paul, O.; Shekelle, R.B.; Berkson, D.M.; Lepper, M.; Schoenberger, J.A.; Lindberg, H.A. Heart rate as a prognostic factor for coronary heart disease and mortality: Findings in three Chicago epidemiologic studies. Am. J. Epidemiol. 1980, 112, 736–749. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wang, W.; Li, F. Association between resting heart rate and coronary artery disease, stroke, sudden death and noncardiovascular diseases: A meta-analysis. CMAJ 2016, 188, E384–E392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rühlemann, D.; Kügler, K.; Mydlach, B.; Frosch, P.J. Contact dermatitis to self-adhesive ECG electrodes. Contact Dermat. 2010, 62, 314–315. [Google Scholar] [CrossRef]
- Shan, L.; Yu, M. Video-based heart rate measurement using head motion tracking and ICA. In Proceedings of the 2013 6th International Congress on Image and Signal Processing (CISP), Hangzhou, China, 16–18 December 2013; Volume 1, pp. 160–164. [Google Scholar]
- Abuella, H.; Ekin, S. Non-contact vital signs monitoring through visible light sensing. IEEE Sens. J. 2019, 20, 3859–3870. [Google Scholar] [CrossRef] [Green Version]
- Jia, Z.; Bonde, A.; Li, S.; Xu, C.; Wang, J.; Zhang, Y.; Howard, R.E.; Zhang, P. Monitoring a person’s heart rate and respiratory rate on a shared bed using geophones. In Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems, Delft, The Netherlands, 6–8 November 2017; pp. 1–14. [Google Scholar]
- Jia, Z.; Alaziz, M.; Chi, X.; Howard, R.E.; Zhang, Y.; Zhang, P.; Trappe, W.; Sivasubramaniam, A.; An, N. HB-phone: A bed-mounted geophone-based heartbeat monitoring system. In Proceedings of the 2016 15th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), Vienna, Austria, 11–14 April 2016; pp. 1–12. [Google Scholar]
- Rong, Y.; Bliss, D.W. Remote Sensing for Vital Information Based on Spectral-Domain Harmonic Signatures. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 3454–3465. [Google Scholar] [CrossRef]
- Petrović, V.L.; Janković, M.M.; Lupšić, A.V.; Mihajlović, V.R.; Popović-Božović, J.S. High-accuracy real-time monitoring of heart rate variability using 24 GHz continuous-wave Doppler radar. IEEE Access 2019, 7, 74721–74733. [Google Scholar] [CrossRef]
- Nguyen, N.T.P.; Lyu, P.Y.; Lin, M.H.; Chang, C.C.; Chang, S.F. A short-time autocorrelation method for noncontact detection of heart rate variability using CW doppler radar. In Proceedings of the 2019 IEEE MTT-S International Microwave Biomedical Conference (IMBioC), Nanjing, China, 6–8 May 2019; Volume 1, pp. 1–4. [Google Scholar]
- Mostafanezhad, I.; Yavari, E.; Boric-Lubecke, O.; Lubecke, V.M.; Mandic, D.P. Cancellation of unwanted Doppler radar sensor motion using empirical mode decomposition. IEEE Sens. J. 2013, 13, 1897–1904. [Google Scholar] [CrossRef]
- Zhang, H.; Li, S.; Jing, X.; Zhang, P.; Zhang, Y.; Jiao, T.; Lu, G.; Wang, J. The separation of the heartbeat and respiratory signal of a doppler radar based on the lms adaptive harmonic cancellation algorithm. In Proceedings of the 2013 Sixth International Symposium on Computational Intelligence and Design, Hangzhou, China, 28–29 October 2013; Volume 1, pp. 362–364. [Google Scholar]
- Malešević, N.; Petrović, V.; Belić, M.; Antfolk, C.; Mihajlović, V.; Janković, M. Contactless real-time heartbeat detection via 24 GHz continuous-wave Doppler radar using artificial neural networks. Sensors 2020, 20, 2351. [Google Scholar] [CrossRef] [Green Version]
- Adib, F.; Mao, H.; Kabelac, Z.; Katabi, D.; Miller, R.C. Smart homes that monitor breathing and heart rate. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, Seoul, Korea, 18–23 April 2015; pp. 837–846. [Google Scholar]
- Ahmad, A.; Roh, J.C.; Wang, D.; Dubey, A. Vital signs monitoring of multiple people using a FMCW millimeter-wave sensor. In Proceedings of the 2018 IEEE Radar Conference (RadarConf18), Oklahoma City, OK, USA, 23–27 April 2018; pp. 1450–1455. [Google Scholar]
- Lee, H.; Kim, B.H.; Park, J.K.; Yook, J.G. A novel vital-sign sensing algorithm for multiple subjects based on 24-GHz FMCW Doppler radar. Remote Sens. 2019, 11, 1237. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Yoo, S.; Cho, S.H. Experimental Comparison of IR-UWB Radar and FMCW Radar for Vital Signs. Sensors 2020, 20, 6695. [Google Scholar] [CrossRef]
- Chen, Z.; Bannon, A.; Rapeaux, A.; Constandinou, T.G. Towards robust, unobtrusive sensing of respiration using ultra-wideband impulse radar for the care of people living with dementia. In Proceedings of the 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER), Virtual Event, Italy, 4–6 May 2021. [Google Scholar]
- Leem, S.K.; Khan, F.; Cho, S.H. Vital sign monitoring and mobile phone usage detection using IR-UWB radar for intended use in car crash prevention. Sensors 2017, 17, 1240. [Google Scholar] [CrossRef] [Green Version]
- Le, M. Heart rate extraction based on eigenvalues using UWB impulse radar remote sensing. Sens. Actuators A Phys. 2020, 303, 111689. [Google Scholar] [CrossRef]
- Pittella, E.; Bottiglieri, A.; Pisa, S.; Cavagnaro, M. Cardiorespiratory frequency monitoring using the principal component analysis technique on UWB Radar Signal. Int. J. Antennas Propag. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.S.; Park, Y.J. Detection of heart rate through a wall using UWB impulse radar. J. Healthc. Eng. 2018, 2018. [Google Scholar] [CrossRef] [PubMed]
- Zakrzewski, M.; Vanhala, J. Separating respiration artifact in microwave Doppler radar heart monitoring by independent component analysis. In Proceedings of the SENSORS, 2010 IEEE, Waikoloa, HI, USA, 1–4 November 2010; pp. 1368–1371. [Google Scholar]
- Lazaro, A.; Girbau, D.; Villarino, R. Analysis of vital signs monitoring using an IR-UWB radar. Prog. Electromagn. Res. 2010, 100, 265–284. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, T.; Imasaka, R.; Taki, H.; Sato, T.; Yoshioka, M.; Inoue, K.; Fukuda, T.; Sakai, H. Accurate heartbeat monitoring using ultra-wideband radar. IEICE Electron. Express 2015, 12–20141197. [Google Scholar] [CrossRef] [Green Version]
- Cardillo, E.; Caddemi, A. A review on biomedical MIMO radars for vital sign detection and human localization. Electronics 2020, 9, 1497. [Google Scholar] [CrossRef]
- Romeo, K.; Bar-Shalom, Y.; Willett, P. Detecting low SNR tracks with OTHR using a refraction model. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 3070–3078. [Google Scholar] [CrossRef]
- Hua, X.; Ono, Y.; Peng, L.; Cheng, Y.; Wang, H. Target Detection within Nonhomogeneous Clutter via Total Bregman Divergence-Based Matrix Information Geometry Detectors. IEEE Trans. Signal Process. 2021, 69, 4326–4340. [Google Scholar] [CrossRef]
- Cardillo, E.; Li, C.; Caddemi, A. Vital sign detection and radar self-motion cancellation through clutter identification. IEEE Trans. Microw. Theory Tech. 2021, 69, 1932–1942. [Google Scholar] [CrossRef]
- Han, K.; Hong, S. Phase-Extraction Method With Multiple Frequencies of FMCW Radar for Human Body Motion Tracking. IEEE Microw. Wirel. Components Lett. 2020, 30, 927–930. [Google Scholar] [CrossRef]
- Rao, S. Introduction to mmWave Sensing: FMCW Radars. Available online: https://training.ti.com/sites/default/files/docs/mmwaveSensing-FMCW-offlineviewing_0.pdf (accessed on 16 April 2021).
- Islam, S.M.; Boric-Lubecke, O.; Lubekce, V.M. Concurrent respiration monitoring of multiple subjects by phase-comparison monopulse radar using independent component analysis (ICA) with JADE algorithm and direction of arrival (DOA). IEEE Access 2020, 8, 73558–73569. [Google Scholar] [CrossRef]
- Lazaro, A.; Girbau, D.; Villarino, R. Techniques for clutter suppression in the presence of body movements during the detection of respiratory activity through UWB radars. Sensors 2014, 14, 2595–2618. [Google Scholar] [CrossRef]
- Hyvärinen, A.; Oja, E. Independent component analysis: Algorithms and applications. Neural Netw. 2000, 13, 411–430. [Google Scholar] [CrossRef] [Green Version]
- Hyvärinen, A.; Karhunen, J.; Oja, E. Independent Component Analysis, 1st ed.; John Wiley & Sons: New York, NY, USA, 2008. [Google Scholar]
- Chourpiliadis, C.; Bhardwaj, A. Physiology, Respiratory Rate. StatPearls. Treasure Island (FL): StatPearls Publishing. [Updated 20 September 2021]. Available online: https://www.ncbi.nlm.nih.gov/books/NBK537306/ (accessed on 20 September 2021).
- Hayes, M.H. Statistical Digital Signal Processing and Modeling; John Wiley & Sons: New York, NY, USA, 2009. [Google Scholar]
- Novelda, AS. X4—Datasheet. Available online: https://www.radartutorial.eu/19.kartei/13.labs/pubs/x4_datasheet_revE_restricted.pdf (accessed on 16 April 2021).
- Novelda, AS. Xethru X4M200 Datasheet. Available online: http://laonuri.techyneeti.com/wp-content/uploads/2019/02/X4M200_DATASHEET.pdf (accessed on 16 April 2021).
Parameters | Values |
---|---|
Centre frequency | 7.29 GHz |
Bandwidth | 1.4 GHz |
ADC sampling rate | 23.328 GS/s |
Frame rate | 24 fps |
Detection range | 0.4–5 m |
Range resolution | 0.0514 m |
Scenarios | Time | |
---|---|---|
body position | Supine | 3 min |
Right lateral recumbent | 3 min | |
Left lateral recumbent | 3 min | |
Prone | 3 min | |
Baby position (curled up) right | 3 min | |
Baby position (curled up) left | 3 min | |
Different bed angle | Fowler’s position 1 (20 degree) | 3 min |
Fowler’s position 2 (40 degree) | 3 min | |
Fowler’s position 3 (55 degree) | 3 min | |
Sitting on the bed (90 degree) | 3 min | |
Visitor near bed | Visitor standing near head | 3 min |
Visitor sitting near head | 3 min | |
Visitor sitting and talking near head | 3 min | |
Visitor standing near leg | 3 min | |
Visitor sitting near leg | 3 min | |
Visitor sitting and talking near leg | 3 min | |
Visitor far from bed | Visitor 0.5 m near head of bed | 3 min |
Visitor 1 m near head of bed | 3 min | |
Visitor 0.5 m near leg | 3 min | |
Visitor 1 m near leg | 3 min | |
Visitor 0.5 m near tail of bed | 3 min | |
Visitor 1 m near tail of bed | 3 min |
Scenarios | Respiration Rate | Heart Rate | ||||
---|---|---|---|---|---|---|
Reference | Radar | Error | Reference | Radar | Error | |
Supine | 21 | 20 | 1 | 74 | 75 | 1 |
Right lateral recumbent | 18 | 18 | 0 | 76 | 76 | 0 |
Left lateral recumbent | 19 | 19 | 0 | 71 | 72 | 1 |
Prone | 18 | 18 | 0 | 71 | 70 | 1 |
Baby position right | 18 | 19 | 1 | 68 | 67 | 1 |
Baby position left | 18 | 19 | 1 | 68 | 67 | 1 |
Fowler’s position 1 | 21 | 20 | 1 | 71 | 70 | 1 |
Fowler’s position 2 | 18 | 20 | 2 | 70 | 66 | 4 |
Fowler’s position 3 | 20 | 20 | 0 | 72 | 75 | 3 |
Sitting on the bed | 19 | 18 | 1 | 78 | 77 | 1 |
Visitor standing near head | 18 | 19 | 1 | 70 | 68 | 2 |
Visitor sitting near head | 19 | 21 | 2 | 69 | 65 | 4 |
Visitor sitting and talking near head | 22 | 21 | 1 | 72 | 72 | 0 |
Visitor standing near leg | 16 | 17 | 1 | 67 | 66 | 1 |
Visitor sitting near leg | 17 | 18 | 1 | 65 | 63 | 2 |
Visitor sitting and talking near leg | 18 | 20 | 2 | 65 | 65 | 2 |
Visitor 0.5 m near head of bed | 20 | 20 | 0 | 77 | 78 | 1 |
Visitor 1 m near head of bed | 18 | 19 | 1 | 71 | 74 | 3 |
Visitor 0.5 m near leg | 19 | 19 | 0 | 68 | 68 | 0 |
Visitor 1 m near leg | 18 | 18 | 0 | 67 | 66 | 1 |
Visitor 0.5 m near tail of bed | 19 | 20 | 1 | 67 | 66 | 1 |
Visitor 1 m near tail of bed | 19 | 18 | 1 | 67 | 66 | 1 |
Average error | 0.82 | 1.45 |
Scenarios | Respiration Rate | Heart Rate | ||
---|---|---|---|---|
MAE | RMSE | MAE | RMSE | |
Supine | 1 | 1.18 | 1 | 2.1 |
Right lateral recumbent | 0.2 | 0.45 | 1.4 | 1.95 |
Left lateral recumbent | 0 | 0 | 2.6 | 4.171 |
Prone | 0.2 | 0.45 | 2 | 2.61 |
Baby position right | 0.8 | 1.1 | 1.4 | 1.95 |
Baby position left | 0.6 | 1 | 2 | 2.61 |
Fowler’s position 1 | 1 | 1.18 | 1 | 1 |
Fowler’s position 2 | 0.8 | 1.1 | 2.2 | 2.49 |
Fowler’s position 3 | 0.4 | 0.632 | 1.2 | 1.67 |
Sitting on the bed | 0.6 | 0.77 | 1.4 | 1.48 |
Visitor standing near head | 0.4 | 0.63 | 1.6 | 1.79 |
Visitor sitting near head | 0.6 | 0.77 | 0.8 | 1.1 |
Visitor sitting and talking near head | 0.8 | 1.1 | 0.6 | 0.77 |
Visitor standing near leg | 1 | 1.61 | 1 | 1.34 |
Visitor sitting near leg | 1.2 | 1.26 | 0.8 | 1.1 |
Visitor sitting and talking near leg | 1 | 1.34 | 2.6 | 2.93 |
Visitor 0.5 m near head of bed | 0.6 | 0.77 | 2 | 2.68 |
Visitor 1 m near head of bed | 0.4 | 0.89 | 0.6 | 0.77 |
Visitor 0.5 m near leg | 1.4 | 1.48 | 0.6 | 1 |
Visitor 1 m near leg | 0.6 | 0.77 | 0.8 | 1.41 |
Visitor 0.5 m near tail of bed | 0 | 0 | 0.8 | 1.1 |
Visitor 1 m near tail of bed | 0.8 | 1.1 | 0.6 | 0.77 |
Average error | 0.65 | 0.89 | 1.32 | 1.76 |
Radar System | Radar Frequency (GHz) | Distance (m) | Position | Method | |
---|---|---|---|---|---|
[9] | CW radar | 24 | 0.75 | Sitting | Estimate the coarse HR first, then use narrow BPF according to coarse HR. |
[17] | UWB radar, FMCW radar | 8.7 | 0.5–2.5 | Front, left, right, back | MTI and FFT |
[20] | UWB radar | 4.6 | 0.5–3 | Front, 45 degree, lateral side, backside | SVD and CZT |
[23] | Two CW radars | 10.587 and 10.525 | 0.5 | Sitting | ICA and HPF |
[25] | CW radar | 26.4 | 0.6 | Sitting | Filter only |
Proposed method | UWB radar | 7.29 | 1 | Different bed angle and different body position | ICA, modified covariance method and peak selection |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Ebrahim, M.P.; Hasan, K.; Heydari, F.; Howley, P.; Yuce, M.R. Accurate Heart Rate and Respiration Rate Detection Based on a Higher-Order Harmonics Peak Selection Method Using Radar Non-Contact Sensors. Sensors 2022, 22, 83. https://doi.org/10.3390/s22010083
Xu H, Ebrahim MP, Hasan K, Heydari F, Howley P, Yuce MR. Accurate Heart Rate and Respiration Rate Detection Based on a Higher-Order Harmonics Peak Selection Method Using Radar Non-Contact Sensors. Sensors. 2022; 22(1):83. https://doi.org/10.3390/s22010083
Chicago/Turabian StyleXu, Hongqiang, Malikeh P. Ebrahim, Kareeb Hasan, Fatemeh Heydari, Paul Howley, and Mehmet Rasit Yuce. 2022. "Accurate Heart Rate and Respiration Rate Detection Based on a Higher-Order Harmonics Peak Selection Method Using Radar Non-Contact Sensors" Sensors 22, no. 1: 83. https://doi.org/10.3390/s22010083
APA StyleXu, H., Ebrahim, M. P., Hasan, K., Heydari, F., Howley, P., & Yuce, M. R. (2022). Accurate Heart Rate and Respiration Rate Detection Based on a Higher-Order Harmonics Peak Selection Method Using Radar Non-Contact Sensors. Sensors, 22(1), 83. https://doi.org/10.3390/s22010083