Digital Filtering Techniques for Performance Improvement of Golay Coded TDM-FBG Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensing Principle of Single Pulsed and Golay Coded Time Domain Multiplexed FBG (TDM-FBG)
2.2. Digital Filtering in the Time Domain
2.2.1. Moving Average Filter (MA)
2.2.2. Savitzky–Golay Filter (SG)
2.2.3. Moving Median Filter (MM)
2.3. Experimental Setup
2.3.1. Pre- and Postprocessing of Golay Codes
2.3.2. Processing of Filtering Sessions
3. Results and Discussion
3.1. FBG Signal Responses to Increasing Golay Codelength and Multiple Digital Filters
3.1.1. Effect of Golay Codelengths and Digital Filters on the Measured TDM-FBG Signals
3.1.2. SNR Response to Golay Coding and Digital Filtering Techniques
3.2. Effect of Increasing the Number of the Filtering Samples on the Time Properties of 4-Bit Decoded Golay Signal
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kashyap, R. Fiber Bragg Gratings; Academic Press: London, UK, 2010; ISBN 978-0-12-372579-0. [Google Scholar]
- Rajan, G. Optical Fiber Sensors: Advanced Techniques and Applications; Devices, Circuits, and Systems; CRC Press: Boca Raton, FL, USA, 2015; ISBN 978-1-4822-2825-0. [Google Scholar]
- Cooper, D.J.F.; Coroy, T.; Smith, P.W.E. Time-division multiplexing of large serial fiber-optic Bragg grating sensor arrays. Appl. Opt. 2001, 40, 2643–2654. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Shang, Y.; Liu, X.-H.; Wang, C.; Yu, H.-H.; Jiang, D.-S.; Peng, G.-D. Distributed OTDR-interferometric sensing network with identical ultra-weak fiber Bragg gratings. Opt. Express 2015, 23, 29038–29046. [Google Scholar] [CrossRef]
- Zaidi, F.; Nannipieri, T.; Signorini, A.; Taki, M.; Donzella, V.; Di Pasquale, F. High performance time domain FBG dynamic interrogation scheme based on pulse coding. IEEE Photon. Technol. Lett. 2013, 25, 460–463. [Google Scholar] [CrossRef]
- Fajkus, M.; Navruz, I.; Kepak, S.; Davidson, A.; Siska, P.; Cubik, J.; Vasinek, V. Capacity of wavelength and time division multiplexing for quasi-distributed measurement using fiber BRAGG gratings. Adv. Electr. Electron. Eng. 2015, 13, 575–582. [Google Scholar] [CrossRef]
- Taki, M.; Zaidi, F.; Toccafondo, I.; Nannipieri, T.; Signorini, A.; Faralli, S.; Di Pasquale, F. High-performance hybrid Raman/fiber Bragg grating fiber-optic sensor based on simplex cyclic pulse coding. Opt. Lett. 2013, 38, 471–473. [Google Scholar] [CrossRef]
- Elgaud, M.M.; Zan, M.S.D.; Ghaith, A.A.; Bakar, A.A.A.; Arsad, N.; Naim, N.F.; Mokhtar, M.H.H. Improving the signal-to-noise ratio of time domain fiber BRAGG grating sensor based on hybrid simplex and golay coding technique. IEEE Access 2019, 7, 167089–167098. [Google Scholar] [CrossRef]
- Fu, X.; Yang, W.; Wang, J.; Li, Z. Noise resilient quasi-distributed sensing with an interferometric-noise-suppressing Golay coded optical source. Opt. Express 2019, 27, 25330–25341. [Google Scholar] [CrossRef]
- Lee, D.; Yoon, H.; Kim, P.; Park, J.; Park, N. Optimization of SNR improvement in the noncoherent OTDR based on simplex codes. J. Lightw. Technol. 2006, 24, 322–328. [Google Scholar] [CrossRef]
- Nazarathy, M.; Newton, S.; Giffard, R.; Moberly, D.; Sischka, F.; Trutna, W.; Foster, S. Real-time long range complementary correlation optical time domain reflectometer. J. Lightw. Technol. 1989, 7, 24–38. [Google Scholar] [CrossRef]
- Zan, M.S.D.B.; Horiguchi, T. A dual golay complementary pair of sequences for improving the performance of phase-shift pulse BOTDA fiber sensor. J. Lightw. Technol. 2012, 30, 3338–3356. [Google Scholar] [CrossRef]
- Zan, M.S.D.; Tsumuraya, T.; Horiguchi, T. The use of Walsh code in modulating the pump light of high spatial resolution phase-shift-pulse Brillouin optical time domain analysis with non-return-to-zero pulses. Meas. Sci. Technol. 2013, 24, 094025. [Google Scholar] [CrossRef]
- Hassan, K.N.A.K.; Elgaud, M.; Su’Ait, M.S.; Bakar, A.A.A.; Zan, M.S.D. Signal to noise improvement ratio of TDM-FBG sensor based on golay complementary codes. In Proceedings of the 2018 IEEE 7th International Conference on Photonics (ICP), Langkawi, Malaysia, 9–11 April 2018; pp. 1–3. [Google Scholar]
- Elgaud, M.M.; Zan, M.S.D.B.; Abushagur, A.; Bakar, A.A.A. Improvement of signal to noise ratio of time domain mutliplexing fiber Bragg grating sensor network with Golay complementary codes. Opt. Fiber Technol. 2017, 36, 447–453. [Google Scholar] [CrossRef]
- Zan, M.S.D.; Elgaud, M.M.; Abushagur, A.A.G.; Hamzah, A.E.; Teo, J.W.S.; Kiew, W.Y.; Mokhtar, M.M.; Arsad, N.; Bakar, A.A.A. Spatial resolution enhancement of time domain multiplexing fiber Bragg grating sensor by employing differential golay codes. In Proceedings of the 2020 IEEE 8th International Conference on Photonics (ICP), Kota Bharu, Malaysia, 12 May–30 June 2020; pp. 54–55. [Google Scholar]
- Abdulfatah, A.G.; Abushagur, N.A.; Ahmad Ashrif, A. Bakar cantilever beam with a single fiber bragg grating to measure temperature and transversal force simultaneously. Sensors 2021, 21, 2002. [Google Scholar]
- Zaidi, F.; Nannipieri, T.; Di Pasquale, F. High performance fiber optic sensor based on self referenced FBGs and high-speed dual-wavelength pulse coding. In Proceedings of the Fifth Asia-Pacific Optical Sensors Conference International Society for Optics and Photonics, Jeju, Korea, 20–22 May 2015; Volume 9655, p. 96553R. [Google Scholar]
- Wang, Y.; Gong, J.; Wang, D.Y.; Dong, B.; Bi, W.; Wang, A. A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings. IEEE Photon. Technol. Lett. 2011, 23, 70–72. [Google Scholar] [CrossRef]
- Rohollahnejad, J.; Xia, L.; Cheng, R.; Ran, Y.; Rahubadde, U.; Zhou, J.; Zhu, L. TDM interrogation of intensity-modulated USFBGs network based on multichannel lasers. Opt. Express 2017, 25, 670–680. [Google Scholar] [CrossRef]
- Pisco, M.; Ricciardi, A.; Campopiano, S.; Caucheteur, C.; Megret, P.; Cusano, A. Time delay measurements as promising technique for tilted fiber Bragg grating sensors interrogation. IEEE Photon. Technol. Lett. 2009, 21, 1752–1754. [Google Scholar] [CrossRef]
- Sancho, J.; Chin, S.; Barrera, D.; Sales, S.; Thévenaz, L. Time-frequency analysis of long fiber Bragg gratings with low reflectivity. Opt. Express 2013, 21, 7171–7179. [Google Scholar] [CrossRef] [Green Version]
- Caucheteur, C.; Wuilpart, M.; Chen, C.; Mégret, P.; Albert, J. Quasi-distributed refractometer using tilted Bragg gratings and time domain reflectometry. Opt. Express 2008, 16, 17882–17890. [Google Scholar] [CrossRef]
- Fadhel, M.M.; Rashid, H.; Hamzah, A.E.; Zan, M.S.D.; Aziz, N.A.; Arsad, N. Flat frequency comb generation employing cascaded single-drive Mach–Zehnder modulators with a simple analogue driving signal. J. Mod. Opt. 2021, 68, 536–541. [Google Scholar] [CrossRef]
- Golay, M.J.E. Complementary series. IEEE Trans. Inf. Theory 1961, 7, 82–87. [Google Scholar] [CrossRef]
- Pitas, I.; Venetsanopoulos, A.N. Nonlinear Digital Filters; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Ling, W.-K. Nonlinear Digital Filters: Analysis and Applications, 1st ed.; Academic Press: Amsterdam, The Netherlands; Boston, MA, USA, 2007; ISBN 978-0-12-372536-3. [Google Scholar]
- Smith, S.W. Digital Signal Processing: A Practical Guide for Engineers and Scientists; Demystifying Technology Series; Newnes: Amsterdam, The Netherlands; Boston, MA, USA, 2003; ISBN 978-0-7506-7444-7. [Google Scholar]
- Stone, D.C. Application of median filtering to noisy data. Can. J. Chem. 1995, 73, 1573–1581. [Google Scholar] [CrossRef]
- Lai, E. Practical Digital Signal Processing for Engineers and Technicians; Newnes: London, UK; Burlington, MA, USA, 2004; ISBN 978-0-7506-5798-3. [Google Scholar]
- Kordestani, H.; Zhang, C. Direct use of the Savitzky-Golay filter to develop an output-only trend line-based damage detection method. Sensors 2020, 20, 1983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Press, W.H.; Teukolsky, S.A. Savitzky-Golay smoothing filters. Comput. Phys. 1990, 4, 669. [Google Scholar] [CrossRef]
- Quan, Q.; Cai, K.-Y. Time-domain analysis of the Savitzky-Golay filters. Digit. Signal Process. 2012, 22, 238–245. [Google Scholar] [CrossRef]
- Yin, L.; Yang, R.; Gabbouj, M.; Neuvo, Y. Weighted median filters: A tutorial. IEEE Trans. Circuits Syst. II Express Briefs 1996, 43, 157–192. [Google Scholar] [CrossRef]
- IEEE Standard for Transitions, Pulses, and Related Waveforms; IEEE: Piscataway, NJ, USA, 2011.
- Hamzah, A.E.; Zan, M.S.D.; Elgaud, M.; Fadhel, M.M.; Alwash, S.A.; Abushagur, A.A.; Mokhtar, M.H.H.; Azeman, N.H.; bin Mohd Ali, S.H.; Bakar, A.A.A. Signal generation using system on chip for coded fiber Bragg grating sensor. In Proceedings of the 2020 IEEE 8th International Conference on Photonics (ICP), Kota Bharu, Malaysia, 12 May–30 June 2020; pp. 80–81. [Google Scholar]
- Nordin, N.D.; Zan, M.S.D.; Abdullah, F. Comparative analysis on the deployment of machine learning algorithms in the distributed brillouin optical time domain analysis (BOTDA) Fiber sensor. Photonics 2020, 7, 79. [Google Scholar] [CrossRef]
S | MA | SG | MM | |||
---|---|---|---|---|---|---|
Rising Transition (ns) | Falling Transition (ns) | Rising Transition (ns) | Falling Transition (ns) | Rising Transition (ns) | Falling Transition (ns) | |
S = 1 (unfiltered) | 1.3 | 1.5 | 1.3 | 1.5 | 1.3 | 1.5 |
S = 5 | 2.4 | 2.4 | 1.4 | 1.5 | 1.4 | 1.7 |
S = 9 | 4 | 3.9 | 2 | 2 | 1.4 | 1.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elgaud, M.M.; Zan, M.S.D.; Abushagur, A.A.G.; Hamzah, A.E.; Mokhtar, M.H.H.; Arsad, N.; A. Bakar, A.A. Digital Filtering Techniques for Performance Improvement of Golay Coded TDM-FBG Sensor. Sensors 2021, 21, 4299. https://doi.org/10.3390/s21134299
Elgaud MM, Zan MSD, Abushagur AAG, Hamzah AE, Mokhtar MHH, Arsad N, A. Bakar AA. Digital Filtering Techniques for Performance Improvement of Golay Coded TDM-FBG Sensor. Sensors. 2021; 21(13):4299. https://doi.org/10.3390/s21134299
Chicago/Turabian StyleElgaud, Mohamed M., Mohd Saiful Dzulkefly Zan, Abdulfatah A. G. Abushagur, Abdulwahhab E. Hamzah, Mohd Hadri Hafiz Mokhtar, Norhana Arsad, and Ahmad Ashrif A. Bakar. 2021. "Digital Filtering Techniques for Performance Improvement of Golay Coded TDM-FBG Sensor" Sensors 21, no. 13: 4299. https://doi.org/10.3390/s21134299
APA StyleElgaud, M. M., Zan, M. S. D., Abushagur, A. A. G., Hamzah, A. E., Mokhtar, M. H. H., Arsad, N., & A. Bakar, A. A. (2021). Digital Filtering Techniques for Performance Improvement of Golay Coded TDM-FBG Sensor. Sensors, 21(13), 4299. https://doi.org/10.3390/s21134299